1
|
Jiang Y, Wang Z, Yang W, Yang P, Feng X, Qin P, Huang F. Lead-Free Cs 2AgBiBr 6/TiO 2 S-Scheme Heterojunction for Efficient Photocatalytic Antibiotic Rifampicin Degradation. NANO LETTERS 2024; 24:12597-12604. [PMID: 39329391 DOI: 10.1021/acs.nanolett.4c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Exploring efficient and stable halide perovskite-based photocatalysts is a great challenge due to the balance between the photocatalytic performance, toxicity, and intrinsic chemical instability of the materials. Here, the environmentally friendly lead-free perovskite Cs2AgBiBr6 confined in the mesoporous TiO2 crystal matrix has been designed to enhance the charge carrier extraction and utilization for efficient photocatalytic rifampicin degradation. The as-prepared Cs2AgBiBr6/TiO2 catalyst was stable in air for over 500 days. An S-scheme heterojunction was formed between the (004) plane of Cs2AgBiBr6 and the (101) plane of TiO2 through the Bi-O-Br bonds. The built-in electric field at the interface efficiently promoted the photoinduced charge separation and carrier extraction. The Cs2AgBiBr6/TiO2-200 showed a 92.83% degradation efficiency of rifampicin within 80 min under simulated sunlight illumination (AM 1.5G 100 mW cm-2). This work offers an effective way for the construction of halide perovskite-based photocatalysts with high photocatalytic performance, good stability, and low toxicity simultaneously.
Collapse
Affiliation(s)
- Yin Jiang
- Director, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Zhaoyang Wang
- Director, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Wen Yang
- Director, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Peizhi Yang
- Director, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Xiaobo Feng
- Director, Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500, China
| | - Peng Qin
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, Beijing 100049, China
| | - Fuqiang Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240 Shanghai, China
| |
Collapse
|
2
|
Du H, Hu X, Huang Y, Bai Y, Fei Y, Gao M, Li Z. A review of copper-based Fenton reactions for the removal of organic pollutants from wastewater over the last decade: different reaction systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27609-27633. [PMID: 38589591 DOI: 10.1007/s11356-024-33220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
In recent years, as global industrialization has intensified, environmental pollution has become an increasingly serious problem. Improving water quality and achieving wastewater purification remain top priorities for environmental health initiatives. The Fenton process is favored by researchers due to its high efficiency and ease of operation. Central to the Fenton process is a catalyst used to activate hydrogen peroxide, rapidly degrading pollutants, improving water quality. Among various catalysts developed, copper-based catalysts have attracted considerable attention due to their affordability, high activity, and stable performance. Based on this, this paper reviews the development of copper-based Fenton systems over the past decade. It mainly involves the research and application of copper-based catalysts in different Fenton systems, including photo-Fenton, electro-Fenton, microwave-Fenton, and ultrasonic-Fenton. This review provides a fundamental reference for the subsequent studies of copper-based Fenton systems, contributing to the goal of transitioning these systems from laboratory research into practical environmental applications.
Collapse
Affiliation(s)
- Huixian Du
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Yao Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yaxing Bai
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yuhuan Fei
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Meng Gao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Zilong Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
3
|
Ali ZSN, Okla MK, Kokilavani S, Abdel-Maksoud MA, Alatar AA, Sivaranjani PR, Al-Amri SS, Alaraidh IA, Khan SS. Unravelling the enhanced rifampicin photocatalytic degradation over green-synthesized SrO 2@SnIn 4S 8 p-n heterojunction: Pathway, toxicity evaluation and mechanistic insights. CHEMOSPHERE 2024; 352:141464. [PMID: 38364922 DOI: 10.1016/j.chemosphere.2024.141464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
In recent years, the discharge of pharmaceutical drugs into aquatic ecosystems has become a growing concern, posing a significant threat to aquatic life. In response to this environmental challenge, advanced oxidation processes have gained prominence in wastewater treatment due to their efficacy in eliminating pharmaceutical pollutants and their potential for reusability. In this study, we have fabricated SnIn4S8 coupled SrO2 nano-heterojunction (NH) using a greener co-precipitation approach using leaf extract derived from Acaphyla wilkesiana. The resulting NH exhibited exceptional photocatalytic activity against rifampicin (RIF), achieving a remarkable 97.4% degradation under visible light, surpassing the performance of its individual components. The morphological characteristics of the NH were thoroughly analyzed through SEM, TEM, XRD, and XPS techniques, while EIS, DRS, and BET techniques provided valuable insights into its photocatalytic and optical properties. Furthermore, radical scavenging assays and ESR analysis identified hydroxyl radicals (•OH) and superoxide radicals (O2•-) were the species contributing to the visible light-driven photocatalytic degradation. The study also elucidated the potential degradation pathways and intermediates of RIF through GC-MS analysis. Additionally, the toxicity of the produced intermediates was assessed using the ECOSAR model. The findings have significant implications for the treatment of pharmaceutical pollutants and underscore the importance of eco-friendly synthesis methods in addressing environmental challenges.
Collapse
Affiliation(s)
- Zareen Suhara Nazeer Ali
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - S Kokilavani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Alatar
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - P R Sivaranjani
- School of Engineering, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Saud S Al-Amri
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - S Sudheer Khan
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
4
|
Song Y, Ren S, Zhang Y, Zhang Z, Wang A. Facile synthesis of bimetallic ACF/CC@FeOCl-Cu composite cathode for efficient degradation of sulfamethoxazole at neutral pH by a flow-through heterogeneous electro-Fenton process. CHEMOSPHERE 2023; 341:139971. [PMID: 37652245 DOI: 10.1016/j.chemosphere.2023.139971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Flow-through heterogeneous electro-Fenton (FHEF) process shows a broad prospect for refractory organic pollutants removal. However, maintaining a long-term service life of higher catalytic cathode is crucial for the development of cathode materials, especially for iron-functionalized cathode operated under harsh conditions. In this study, a novel bimetallic CC@FeOCl-Cu composite was synthesized through one-step calcination, coupled with a series of microstructure characterization methodology, including XRD, SEM-EDS, XPS, and FTIR. The superior catalytic activity of CC@FeOCl-Cu could be ascribed to Fe-Cu synergy and better dispersion of FeOCl nanosheets. With the optimal Cu:Fe ratio of 1:60, the bifunctional ACF/CC@FeOCl-Cu cathode was employed in FHEF process, exhibiting an outstanding performance for sulfamethoxazole (SMX) removal over a wide pH range (3.0-9.0). Comparison of experimental results indicated that the ACF/CC@FeOCl-Cu-FHEF process showed higher performance than ACF/CC@FeOCl-FHEF and homogeneous EF processes. The average SMX removal efficiency was 98% and TOC removal efficiency was more than 57% even after 10 cycles. Radical quenching experiments and electron spin resonance test confirmed that •OH was the primary active species. More •OH was generated in the ACF/CC@FeOCl-Cu-FHEF process because the doping of Cu could enhance catalytic activity of cathode. In addition, the satisfactory performance could be observed in the ACF/CC@FeOCl-Cu-FHEF process for the treatment of real landfill leachate, indicating its potential for practical application in wastewater treatment.
Collapse
Affiliation(s)
- Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| |
Collapse
|
5
|
Yakamercan E, Bhatt P, Aygun A, Adesope AW, Simsek H. Comprehensive understanding of electrochemical treatment systems combined with biological processes for wastewater remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121680. [PMID: 37149253 DOI: 10.1016/j.envpol.2023.121680] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
The presence of toxic pollutants in wastewater discharge can affect the environment negatively due to presence of the organic and inorganic contaminants. The application of the electrochemical process in wastewater treatment is promising, specifically in treating these harmful pollutants from the aquatic environment. This review focused on recent applications of the electrochemical process for the remediation of such harmful pollutants from aquatic environments. Furthermore, the process conditions that affect the electrochemical process performance are evaluated, and the appropriate treatment processes are suggested according to the presence of organic and inorganic contaminants. Electrocoagulation, electrooxidation, and electro-Fenton applications in wastewater have shown effective performance with high removal rates. The disadvantages of these processes are the formation of toxic intermediate metabolites, high energy consumption, and sludge generation. To overcome such disadvantages combined ecotechnologies can be applied in large-scale wastewater pollutants removal. The combination of electrochemical and biological treatment has gained importance, increased removal performance remarkably, and decreased operational costs. The critical discussion with depth information in this review could be beneficial for wastewater treatment plant operators throughout the world.
Collapse
Affiliation(s)
- Elif Yakamercan
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Ahmet Aygun
- Department Environmental Engineering Department, Bursa Technical University, Bursa, Turkiye
| | - Adedolapo W Adesope
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
6
|
Ha SJ, Hwang J, Kwak MJ, Yoon JC, Jang JH. Graphene-Encapsulated Bifunctional Catalysts with High Activity and Durability for Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300551. [PMID: 37052488 DOI: 10.1002/smll.202300551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Carbon-based electrocatalysts with both high activity and high stability are desirable for use in Zn-air batteries. However, the carbon corrosion reaction (CCR) is a critical obstacle in rechargeable Zn-air batteries. In this study, a cost-effective carbon-based novel material is reported with a high catalytic effect and good durability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), prepared via a simple graphitization process. In situ growth of graphene is utilized in a 3D-metal-coordinated hydrogel by introducing a catalytic lattice of transition metal alloys. Due to the direct growth of few-layer graphene on the metal alloy decorated 3d-carbon network, greatly reduced CCR is observed in a repetitive OER test. As a result, an efficient bifunctional electrocatalytic performance is achieved with a low ΔE value of 0.63 V and good electrochemical durability for 83 h at a current density of 10 mA cm-2 in an alkaline media. Moreover, graphene-encapsulated transition metal alloys on the nitrogen-doped carbon supporter exhibit an excellent catalytic effect and good durability in a Zn-air battery system. This study suggests a straightforward way to overcome the CCR of carbon-based materials for an electrochemical catalyst with wide application in energy conversion and energy storage devices.
Collapse
Affiliation(s)
- Seong-Ji Ha
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Jongha Hwang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Myung-Jun Kwak
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Jong-Chul Yoon
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| | - Ji-Hyun Jang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan, 44919, Republic of Korea
| |
Collapse
|
7
|
Song Y, Wang A, Ren S, Zhang Y, Zhang Z. Flow-through heterogeneous electro-Fenton system using a bifunctional FeOCl/carbon cloth/activated carbon fiber cathode for efficient degradation of trimethoprim at neutral pH. ENVIRONMENTAL RESEARCH 2023; 222:115303. [PMID: 36642126 DOI: 10.1016/j.envres.2023.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The synthesis of multifunctional cathode with high-efficiency and stable catalytic activity for simultaneously producing and activating H2O2 is an effective way for promoting the performance of heterogeneous electro-Fenton process (HEF). In addition, accelerating mass transfer by adopting a flow-through reactor is also great importance because of its better utilization of catalysts and adequate contact of the contaminant with the oxidants generated on the electrode surface. Herein, a novel flow-through HEF (FHEF) system was designed for the degradation of trimethoprim (TMP) using bifunctional cathode with a sandwich structure FeOCl nanosheets loaded onto carbon cloth (CC) and activated carbon fiber (ACF) (FeOCl/CC/ACF). The cathode exhibited excellent performance in activating H2O2 for the in-situ generation of hydroxyl radicals (•OH). The electron spin resonance (ESR) measurements and radical quenching tests proved that the high production of •OH in the FHEF process was favorable to the high catalytic efficiency. 25 mg L-1 TMP was entirely degraded after 60 min, with the TOC removal of 62.6% (180 min) at pH 6.8, 9.0 mA cm-2, and flux rate 210 mL min-1. Moreover, the degradation rate still could reach 83% (60 min) after 10 cycles without obvious valence and crystal phase changes. Simultaneously, the current utilization rate has also been greatly enhanced, with an average current efficiency of 69.9% and a low energy consumption of 0.28 kWh kg-1. The reasonable degradation pathways for TMP were proposed based on the UPLC-QTOF-MS/MS results. Finally, the results of toxicological simulation showed a declining trend in the toxicity of the samples during TMP degradation. These results claim that the FeOCl/CC/ACF-FHEF system is an efficient and economical technology for the treatment of organic contaminants in effluents.
Collapse
Affiliation(s)
- Yongjun Song
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China.
| | - Songyu Ren
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Yanyu Zhang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, China
| |
Collapse
|
8
|
Noor H, David IG, Jinga ML, Popa DE, Buleandra M, Iorgulescu EE, Ciobanu AM. State of the Art on Developments of (Bio)Sensors and Analytical Methods for Rifamycin Antibiotics Determination. SENSORS (BASEL, SWITZERLAND) 2023; 23:976. [PMID: 36679772 PMCID: PMC9863535 DOI: 10.3390/s23020976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
This review summarizes the literature data reported from 2000 up to the present on the development of various electrochemical (voltammetric, amperometric, potentiometric and photoelectrochemical), optical (UV-Vis and IR) and luminescence (chemiluminescence and fluorescence) methods and the corresponding sensors for rifamycin antibiotics analysis. The discussion is focused mainly on the foremost compound of this class of macrocyclic drugs, namely rifampicin (RIF), which is a first-line antituberculosis agent derived from rifampicin SV (RSV). RIF and RSV also have excellent therapeutic action in the treatment of other bacterial infectious diseases. Due to the side-effects (e.g., prevalence of drug-resistant bacteria, hepatotoxicity) of long-term RIF intake, drug monitoring in patients is of real importance in establishing the optimum RIF dose, and therefore, reliable, rapid and simple methods of analysis are required. Based on the studies published on this topic in the last two decades, the sensing principles, some examples of sensors preparation procedures, as well as the performance characteristics (linear range, limits of detection and quantification) of analytical methods for RIF determination, are compared and correlated, critically emphasizing their benefits and limitations. Examples of spectrometric and electrochemical investigations of RIF interaction with biologically important molecules are also presented.
Collapse
Affiliation(s)
- Hassan Noor
- Department of Surgery, Faculty of Medicine, “Lucian Blaga” University Sibiu, Lucian Blaga Street 25, 550169 Sibiu, Romania
| | - Iulia Gabriela David
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Maria Lorena Jinga
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Dana Elena Popa
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Mihaela Buleandra
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Emilia Elena Iorgulescu
- Department of Analytical Chemistry and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Av. 90-92, District 5, 050663 Bucharest, Romania
| | - Adela Magdalena Ciobanu
- Department of Psychiatry “Prof. Dr. Al. Obregia” Clinical Hospital of Psychiatry, Berceni Av. 10, District 4, 041914 Bucharest, Romania
- Discipline of Psychiatry, Neurosciences Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street 37, 020021 Bucharest, Romania
| |
Collapse
|