1
|
Bih NL, Rwiza MJ, Ripanda AS, Mahamat AA, Machunda RL, Choi JW. Adsorption of phenol and methylene blue contaminants onto high-performance catalytic activated carbon from biomass residues. Heliyon 2025; 11:e41150. [PMID: 39801967 PMCID: PMC11721239 DOI: 10.1016/j.heliyon.2024.e41150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Organic contaminants from wastewater toxicity to the environment has increased during the last few decades and, therefore, there is an urgent need to decontaminate wastewater prior to disposal. This study aimed to create a high surface area catalytic activated carbon (AC) under same carbonization conditions for phenol and methylene blue (organic wastewater) decontamination. Moringa oleifera husk (MH), sesame husk (SH), and baobab husk (BH) were used to prepare activated carbon for the removal of methylene blue (MB) and phenol (Ph). After characterization of the adsorbent, the BET surface areas of the M. oleifera husk activated carbon (MHC), sesame husk activated carbon (SHC), and baobab husk activated carbon (BHC) were 1902.30 m2/g, 1115.90 m2/g, and 1412.40 m2/g, respectively. Mono-adsorption and binary-adsorption systems were studied for Ph and MB adsorption. Furthermore, the effect of initial organic waste concentration, contact time, pH, temperature and AC dosage, on adsorption capacity were studied. The mono adsorption system isotherms and kinetics studies used to analyze Phenol and MB adsorption best fitted Langmuir and pseudo-second-order models. The Freundlich isotherm and pseudo-second-order model best fitted the experimental data for the binary-adsorption system. The high maximum adsorption capacities of organic waste for the single and binary systems were 352.25-855.96 mg/g and 348.90-456.39 mg/g, respectively. The results showed that the high surface activated carbon produced had the potential to adsorb high concentrations of MB and Phenol contaminants.
Collapse
Affiliation(s)
- Numfor Linda Bih
- School of Materials, Energy, Water and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), School of Materials, Energy, Water and Environmental Sciences (MEWES), P.O. Box, 447, Arusha, Tanzania
- Graduate School of International Agricultural Technology, Department of Green Eco System, Engineering, Seoul National University, Pyeongchang, 25354, Gangwon-do, South Korea
| | - Mwemezi J. Rwiza
- School of Materials, Energy, Water and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), School of Materials, Energy, Water and Environmental Sciences (MEWES), P.O. Box, 447, Arusha, Tanzania
| | - Asha S. Ripanda
- School of Materials, Energy, Water and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), School of Materials, Energy, Water and Environmental Sciences (MEWES), P.O. Box, 447, Arusha, Tanzania
| | - Assia Aboubakar Mahamat
- Nile University of Nigeria: Abuja, Federal Capital Territory, Airport Rd, Jabi, 900001, Abuja, Nigeria
| | - Revocatus L. Machunda
- School of Materials, Energy, Water and Environmental Sciences (MEWES), The Nelson Mandela African Institution of Science and Technology (NM-AIST), School of Materials, Energy, Water and Environmental Sciences (MEWES), P.O. Box, 447, Arusha, Tanzania
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Department of Green Eco System, Engineering, Seoul National University, Pyeongchang, 25354, Gangwon-do, South Korea
| |
Collapse
|
2
|
Masud MAA, Shin WS. Advanced carbo-catalytic degradation of antibiotics using conductive polymer-seaweed biochar composite: Exploring N/S functionalization and non-radical dynamics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135449. [PMID: 39137546 DOI: 10.1016/j.jhazmat.2024.135449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Polyaniline (PANI) and Saccharina Japanica seaweed (kelp) biochar (KBC) composites were synthesized in-situ through polymerization. This study presents a novel approach to the degradation of sulfamethoxazole (SMX), a prevalent antibiotic, using a PANI-KBC composite to activate peroxymonosulfate (PMS). Extensive characterizations of the PANI-KBC composite were conducted, resulting in successful synthesis, uniform distribution of PANI on the biochar surface, and the multifunctional role of PANI-KBC in SMX degradation. A removal efficiency of 97.24% for SMX (10 mg L-1) was attained in 60 min with PANI-KBC (0.1 g L-1) and PMS (1.0 mM) at pH 5.2, with PANI-KBC showing effectiveness (>92%) across a pH range of 3.0-9.0. In the degradation of SMX, both radical (SO4•- and •OH) and non-radical (1O2 and electron transfer) pathways are involved. The reaction processes are critically influenced by the roles of SO4•-, 1O2 and electron transfer mechanisms. It was suggested that pyrrolic N, oxidized sulfur (-C-SO2-C-), structural defects, and O-CO were implicated in the production of 1O2 and electron transfer processes, respectively, and a portion of 1O2 originated from the conversion of O2•-. The study evaluated by-product toxicity, composite reusability, and stability, confirming its practical potential for sustainable groundwater remediation.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Zhang R, Xia S, Yu W, Di G, Hou J, Li X, Feng M. Waste control by waste: A new approach for antibiotic removal and metal reuse from livestock wastewater using ascorbic acid-enhanced CaO 2/Cu(II) system. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135496. [PMID: 39181000 DOI: 10.1016/j.jhazmat.2024.135496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
Aiming at the coexistence of antibiotics and Cu(II) in livestock wastewater, a novelty strategy for the simultaneous removal of antibiotics and Cu ions by in-situ utilization of Cu(II) (i.e., CP/Cu(II) and CP/Cu(II)/ascorbic acid (AA) systems) was proposed. The removal rate of florfenicol (FF) in the CP/Cu(II)/AA system was 6.9 times higher than that of the CP/Cu(II) system. CP/Cu(II)/AA system was also effective in removing antibiotics from real livestock tailwater. Simultaneously, the removal of Cu ions in CP/Cu(II) and CP/Cu(II)/AA systems could reach 54.5 % and 15.7 %, respectively. The added AA could significantly enhance the antibiotics degradation but inhibit the Cu ions removal. HO•, O2•-, Cu(III), and •C-R were detected in the CP/Cu(II)/AA system, in which HO• was confirmed as the predominant contributor for FF degradation, and Cu(III) and •C-R also participated in FF elimination. The role of AA could accelerate HO• production and Cu(I)/Cu(II)/Cu(III) cycle, and form •C-R. The degradation products and pathways of FF in the CP/Cu(II)/AA system were proposed and the toxicity of the degradation products was evaluated by the toxicity analysis software (T.E.S.T). The results of this work suggest that without introducing complex catalysts, the feasibility of in-situ utilization of Cu(II) inherently or artificially introduced in livestock wastewater activating CP for antibiotic degradation and Cu ions removal was verified.
Collapse
Affiliation(s)
- Rongfa Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Song Xia
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenyue Yu
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guanglan Di
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jifei Hou
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Xuede Li
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Aryee AA, Masud MAA, Shin WS. Enhanced simazine degradation via peroxymonosulfate activation using hemin-doped rice husk biochar as a novel Fe/N-C catalyst. CHEMOSPHERE 2024; 366:143549. [PMID: 39419332 DOI: 10.1016/j.chemosphere.2024.143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The presence of herbicides, including simazine (SIM), in aquatic environments pose significant threats to these ecosystems, necessitating a method for their removal. In this study, a hemin-doped rice husk-derived biochar (RBC@Hemin20%) was synthesized using a simple, one-step pyrolysis, and its degradation efficiency towards SIM via peroxymonosulfate (PMS) was assessed. Under optimized conditions (hemin loading = 20 wt%, SIM = 0.5 ppm, RBC@Hemin20% catalyst = 0.2 g L-1, PMS = 2.0 mM, and pH = 5.84 [unadjusted]), RBC@Hemin20%, as an Fe/N-C catalyst, could activate PMS to achieve >99% degradation of SIM. Based on radical scavenger and electron spin resonance spectroscopy (ESR) experiments, both radical (•OH and SO4•-) and non-radical (such as singlet oxygen, 1O2) mechanisms and electron transfer were involved in the degradation system. Significant mineralization (97.3%) and reusability efficiency (∼74.1% SIM degradation after 4 applications) were exhibited by the RBC@Hemin20%/PMS system, which also maintained a remarkable degradation efficiency in tap-, river-, and ground-water. Additionally, the RBC@Hemin20%/PMS system exhibited rapid degradation of tetracycline (TC) and diclofenac (DCF), indicating its prospects in the degradation of other organic pollutants of aquatic environments. The plausible degradation mechanism pathways of SIM are proposed based on identified intermediates. Finally, the toxicity of these intermediate products is analysed using the Ecological Structure Activity Relationship (ECOSAR) software. It is expected that this study will expand the current knowledge on the synthesis of efficient biomass-based Fe/N-C composites for the removal of organic pollutants in water.
Collapse
Affiliation(s)
- Aaron Albert Aryee
- Department of Chemistry, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana; School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Md Abdullah Al Masud
- Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, Alabama, 35487, United States; School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Aktar S, Islam ARMT, Mia MY, Jannat JN, Islam MS, Siddique MAB, Masud MAA, Idris AM, Pal SC, Senapathi V. Assessing metal(loid)s-Induced long-term spatiotemporal health risks in Coastal Regions, Bay of Bengal: A chemometric study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33141-z. [PMID: 38625466 DOI: 10.1007/s11356-024-33141-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Despite sporadic and irregular studies on heavy metal(loid)s health risks in water, fish, and soil in the coastal areas of the Bay of Bengal, no chemometric approaches have been applied to assess the human health risks comprehensively. This review aims to employ chemometric analysis to evaluate the long-term spatiotemporal health risks of metal(loid)s e.g., Fe, Mn, Zn, Cd, As, Cr, Pb, Cu, and Ni in coastal water, fish, and soils from 2003 to 2023. Across coastal parts, studies on metal(loid)s were distributed with 40% in the southeast, 28% in the south-central, and 32% in the southwest regions. The southeastern area exhibited the highest contamination levels, primarily due to elevated Zn content (156.8 to 147.2 mg/L for Mn in water, 15.3 to 13.2 mg/kg for Cu in fish, and 50.6 to 46.4 mg/kg for Ni in soil), except for a few sites in the south-central region. Health risks associated with the ingestion of Fe, As, and Cd (water), Ni, Cr, and Pb (fish), and Cd, Cr, and Pb (soil) were identified, with non-carcinogenic risks existing exclusively through this route. Moreover, As, Cr, and Ni pose cancer risks for adults and children via ingestion in the southeastern region. Overall non-carcinogenic risks emphasized a significantly higher risk for children compared to adults, with six, two-, and six-times higher health risks through ingestion of water, fish, and soils along the southeastern coast. The study offers innovative sustainable management strategies and remediation policies aimed at reducing metal(loid)s contamination in various environmental media along coastal Bangladesh.
Collapse
Affiliation(s)
- Shammi Aktar
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Yousuf Mia
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Jannatun Nahar Jannat
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental, and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, 713104, West Bengal, India
| | - Venkatramanan Senapathi
- PG and Research Department of Geology, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India
| |
Collapse
|
6
|
Sarker A, Shin WS, Masud MAA, Nandi R, Islam T. A critical review of sustainable pesticide remediation in contaminated sites: Research challenges and mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122940. [PMID: 37984475 DOI: 10.1016/j.envpol.2023.122940] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
Incidental pesticide application on farmlands can result in contamination of off-target biota, soil, groundwater, and surrounding ecosystems. To manage these pesticide contaminations sustainably, it is important to utilize advanced approaches to pesticide decontamination. This review assesses various innovative strategies applied for remediating pesticide-contaminated sites, including physical, chemical, biological, and nanoremediation. Integrated remediation approaches appear to be more effective than singular technologies. Bioremediation and chemical remediation are considered suitable and sustainable strategies for decontaminating contaminated soils. Furthermore, this study highlights key mechanisms underlying advanced pesticide remediation that have not been systematically studied. The transformation of applied pesticides into metabolites through various biotic and chemical triggering factors is well documented. Ex-situ and in-situ technologies are the two main categories employed for pesticide remediation. However, when selecting a remediation technique, it is important to consider factors such as application sites, cost-effectiveness, and specific purpose. In this review, the sustainability of existing pesticide remediation strategies is thoroughly analyzed as a pioneering effort. Additionally, the study summarizes research uncertainties and technical challenges associated with different remediation approaches. Lastly, specific recommendations and policy advocacy are suggested to enhance contemporary remediation approaches for cleaning up pesticide-contaminated sites.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55356, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh.
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| |
Collapse
|
7
|
Masud MAA, Shin WS, Sarker A, Septian A, Das K, Deepo DM, Iqbal MA, Islam ARMT, Malafaia G. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166813. [PMID: 37683867 DOI: 10.1016/j.scitotenv.2023.166813] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Biochar, a carbon-rich material produced from the pyrolysis of organic biomass, has gained significant attention as a potential solution for sustainable green remediation practices. Several studies analyze biomass-derived biochar techniques and environmental applications, but comprehensive assessments of biochar limitations, uncertainty, and future research directions still need to be improved. This critical review aims to present a comprehensive analysis of biochar's efficacy in environmental applications, including soil, water, and air, by sequentially addressing its preparation, application, and associated challenges. The review begins by delving into the diverse methods of biochar production, highlighting their influence on physical and chemical properties. This review explores the diverse applications of biochar in remediating contaminated soil, water, and air while emphasizing its sustainability and eco-friendly characteristics. The focus is on incorporating biochar as a remediation technique for pollutant removal, sequestration, and soil improvement. The review highlights the promising results obtained from laboratory-scale experiments, field trials, and case studies, showcasing the effectiveness of biochar in mitigating contaminants and restoring ecosystems. The environmental benefits and challenges of biochar production, characterization, and application techniques are critically discussed. The potential synergistic effects of combining biochar with other remediation methods are also explored to enhance its efficacy. A rigorous analysis of the benefits and drawbacks of biochar for diverse environmental applications in terms of technical, environmental, economic, and social issues is required to support the commercialization of biochar for large-scale uses. Finally, future research directions and recommendations are presented to facilitate the development and implementation of biochar-based, sustainable green remediation strategies.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do 55365, Republic of Korea.
| | - Ardie Septian
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency (Badan Riset dan Inovasi Nasional, BRIN), Serpong 15314, Indonesia.
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Republic of Korea.
| | | | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute-Urutaí Campus, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
8
|
Zhou X, Almatrafi E, Liu S, Yan H, Ma D, Qian S, Qin L, Yi H, Fu Y, Li L, Zhang M, Xu F, Li H, Zhou C, Yan M, Zeng G, Lai C. Insight into the selection of oxidant in persulfate activation system: The effect of the target pollutant properties. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132363. [PMID: 37633017 DOI: 10.1016/j.jhazmat.2023.132363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
As a rising branch of advanced oxidation processes, persulfate activation has attracted growing attention. Unlike catalysts that have been widely studied, the selection of persulfate is previously overlooked. In this study, the affecting factors of persulfates were studied. The effect of target pollutant properties on superior persulfate species (the species with a higher degradation efficiency) was investigated by multiwalled carbon nanotube (MWCNT)/persulfate catalytic systems. Innovatively, the EHOMO (or vertical ionization potential (VIP)) value of the target pollutant was proposed to be an index to judge the superior persulfate species, and the threshold is VIP= 6.397-6.674 eV, EHOMO= -8.035∼- 7.810 eV, respectively. To be specific, when the VIP of phenolic compounds is higher (or EHOMO of phenolic compounds is lower) than the threshold, the catalytic performance of peroxymonosulfate would be higher than that of peroxydisulfate. Moreover, the effects of coexisting cations on peroxydisulfate superior species were further investigated. It was illustrated that the hydrated cation radius of coexisting cations would influence the pollutant degradation efficiency under some circumstances. This study provides a new approach to improve the cost of persulfate activation systems and promotes the underlying downstream application of persulfate activation systems.
Collapse
Affiliation(s)
- Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Eydhah Almatrafi
- Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huchuan Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Shixian Qian
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hanxi Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chengyun Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Center of Research Excellence in Renewable Energy and Power Systems, Center of Excellence in Desalination Technology, Department of Mechanical Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
9
|
Cheng H, Huang C, Wang P, Ling D, Zheng X, Xu H, Feng C, Liu H, Cheng M, Liu Z. Molybdenum disulfide co-catalysis boosting nanoscale zero-valent iron based Fenton-like process: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 227:115752. [PMID: 36965812 DOI: 10.1016/j.envres.2023.115752] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
The conventional Fenton process has the drawbacks of low efficiency of Fe3+/Fe2+ conversion, low utilization of H2O2, and narrow range of pH. In this paper, molybdenum sulfide (MoS2) was used as a co-catalyst to boost the nanoscale zero-valent iron (nZVI) based heterogeneous Fenton-like process for the degradation of Rhodamine B (RhB). The catalytic performance, influences of parameters, degradation mechanism, and toxicity of intermediates were explored. Compared with the conventional like-Fenton process, the existence of MoS2 accelerated the decomposition of H2O2 and the RhB degradation rate constant of MoS2/nZVI/H2O2 reached more than six times that of nZVI/H2O2. In addition, the effective pH range of MoS2/nZVI/H2O2 was broadened to 9.0 with 84.9% of RhB being removed within 15 min. The co-catalytic system of MoS2 and nZVI was stable and had high reusability according to the results of four consecutive runs. Quenching tests and electron paramagnetic resonance (EPR) demonstrated that hydroxyl radical (·OH), superoxide anions (·O2-), and singlet oxygen (1O2) were all involved in MoS2/nZVI/H2O2. Compared with nZVI/H2O2 system, MoS2 not only increased the corrosion of nZVI but also accelerated the conversion of Fe3+/Fe2+. ECOSAR analysis suggested that the overall acute and chronic toxicity of the degradation products decreased after treatment. Hence, this MoS2 co-catalytic nZVI based Fenton-like process can be used as a promising alternative for the treatment of organic wastewater.
Collapse
Affiliation(s)
- Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Dingxun Ling
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyu Zheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chongling Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Min Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|
10
|
Sarker A, Al Masud MA, Deepo DM, Das K, Nandi R, Ansary MWR, Islam ARMT, Islam T. Biological and green remediation of heavy metal contaminated water and soils: A state-of-the-art review. CHEMOSPHERE 2023; 332:138861. [PMID: 37150456 DOI: 10.1016/j.chemosphere.2023.138861] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/09/2023]
Abstract
Contamination of the natural ecosystem by heavy metals, organic pollutants, and hazardous waste severely impacts on health and survival of humans, animals, plants, and microorganisms. Diverse chemical and physical treatments are employed in many countries, however, the acceptance of these treatments are usually poor because of taking longer time, high cost, and ineffectiveness in contaminated areas with a very high level of metal contents. Bioremediation is an eco-friendly and efficient method of reclaiming contaminated soils and waters with heavy metals through biological mechanisms using potential microorganisms and plant species. Considering the high efficacy, low cost, and abundant availability of biological materials, particularly bacteria, algae, yeasts, and fungi, either in natural or genetically engineered (GE) form, bioremediation is receiving high attention for heavy metal removal. This report comprehensively reviews and critically discusses the biological and green remediation tactics, contemporary technological advances, and their principal applications either in-situ or ex-situ for the remediation of heavy metal contamination in soil and water. A modified PRISMA review protocol is adapted to critically assess the existing research gaps in heavy metals remediation using green and biological drivers. This study pioneers a schematic illustration of the underlying mechanisms of heavy metal bioremediation. Precisely, it pinpoints the research bottleneck during its real-world application as a low-cost and sustainable technology.
Collapse
Affiliation(s)
- Aniruddha Sarker
- Residual Chemical Assessment Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeollabuk-do, 55365, Republic of Korea
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Deen Mohammad Deepo
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rakhi Nandi
- Bangladesh Academy for Rural Development (BARD), Kotbari, Cumilla, Bangladesh
| | - Most Waheda Rahman Ansary
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | | | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
11
|
Masud MAA, Shin WS, Kim DG. Degradation of phenol by ball-milled activated carbon (AC BM) activated dual oxidant (persulfate/calcium peroxide) system: Effect of preadsorption and sequential injection. CHEMOSPHERE 2023; 312:137120. [PMID: 36334750 DOI: 10.1016/j.chemosphere.2022.137120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
This study explored pre-adsorption and sequential injection of dual oxidant (DuOx) of persulfate (PS) and calcium peroxide (CP) for phenol degradation in an aqueous solution. Ball-milled activated carbon (ACBM) was used as the catalyst in the following systems: pre-adsorption and sequential injection of PS and CP (ACBM + PS + CP), pre-adsorption and simultaneous injection of PS and CP (ACBM + PS/CP), simultaneous injection of ACBM, PS, and CP (ACBM/PS/CP), simultaneous injection of ACBM and PS (ACBM/PS), and simultaneous injection of ACBM and CP (ACBM/CP). The ACBM had a larger specific surface area, more graphitic structures, and more defects. Moreover, it showed better phenol removal when introduced simultaneously with PS and CP. The phenol removal was most the efficient in ACBM + PS + CP (98.8%) with a near-neutral final pH, followed by ACBM + PS/CP, ACBM/PS, ACBM/PS/CP, and ACBM/CP. This indicates that pre-adsorption and separate injection of PS and CP were the key strategy for improved performance and maintained favorable pH for the activation of PS and CP. The dual oxidant system (PS/CP) is superior to single oxidant systems (PS or CP). Scavenger experiments and the electron spin resonance spectra (ESR) demonstrated that non-radical species (1O2) were dominantly involved in ACBM + PS + CP, but radical species (HO•, SO4•-) also contributed. HCO3- and HPO42- inhibited phenol degradation in ACBM + PS + CP, whereas Cl- and HA had negligible effects. The ACBM + PS + CP showed high total organic carbon removal and ACBM was recyclable with a slight decrease in activity. This work is important as it provides a detailed insight into the strategy of pre-adsorption and sequential injection of dual oxidants for a practical and cost-effective method of groundwater remediation.
Collapse
Affiliation(s)
- Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Do Gun Kim
- Department of Environmental Engineering, Sunchon National University, Suncheon, Jeollanam-do, 57922, Republic of Korea.
| |
Collapse
|