1
|
Zhang N, Zeng XL, Liao WW, Chen MY, Zhang G, Ren DH, Ba XC, Zhang MK, Xu HR, Wang A, Cheng HY. A novel dynamic membrane-equipped element sulfur-based denitrification reactor for efficient and easily maintainable treatment of high-nitrate wastewater. WATER RESEARCH 2025; 283:123882. [PMID: 40424925 DOI: 10.1016/j.watres.2025.123882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/12/2025] [Accepted: 05/20/2025] [Indexed: 05/29/2025]
Abstract
Using powdered sulfur (S0) with high specific surface area enables high efficiency in an elemental sulfur-based denitrification (ESDeN) reactor but faces challenges with S0 retention. While integrating the ESDeN process with microfiltration membranes (MM) has been shown to effectively reject S0 powder, severe membrane fouling and high membrane costs restrict its practical application. This study, for the first time, reports a dynamic membrane-equipped ESDeN (ESDeN-DM) reactor. The DM was formed by in-situ pre-coating a solid mixture (particle size: 0.4 μm to 110 μm) of S0 powder and denitrifying sludge onto inexpensive nylon fabrics. Initially, we optimized the DM formation conditions, determining that a nylon fabric pore size of 25 μm and a pre-coating flux of 300 L m-² h-1 resulted in permeate turbidity lower than 5 NTU within 60 mins. Subsequently, we identified the duration (12.5 days) of a transmembrane pressure (TMP)-dependent run (≤30 KPa) for the reactor and found that the TMP increase was related to the thickening and densification of the cake layer. Finally, we conducted a comparative examination of the ESDeN-DM reactor and the conventional ESDeN-MM reactor during long-term operation. The results demonstrated that the ESDeN-DM reactor achieved a comparable denitrification rate to the ESDeN-MM reactor (both with the maximum value more than 3 kg N m⁻3 d⁻¹) but exhibited significantly better membrane fouling tolerance (56 % longer TMP-dependent run time), easier regeneration of specific flux (online backwash versus offline chemical cleaning), and exceptional cost-effectiveness (over 90 % total cost reduction). This study presents a highly efficient and easily maintained membrane-equipped ESDeN process with great potential for treating high-nitrate industrial wastewater.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xiang-Li Zeng
- State Key Laboratory of Urban Water Resources and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Wen-Wei Liao
- State Key Laboratory of Urban Water Resources and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Meng-Yi Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Guijiao Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Da-Heng Ren
- State Key Laboratory of Urban Water Resources and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xu-Chen Ba
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Min-Kun Zhang
- State Key Laboratory of Urban Water Resources and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hao-Ran Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Cas Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resources and Environment, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
2
|
Franchi O, Araya A, Aguirre A, Guerrero K, Ortega-Martínez E, Toledo-Alarcón J, Campos JL. Unraveling nitrogen removal performance during increasing loading rates in simultaneous nitrification and autotrophic denitrification: A functional and ecological analysis approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178322. [PMID: 39756305 DOI: 10.1016/j.scitotenv.2024.178322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/10/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Nitrogen contamination of water sources poses significant environmental and health risks. The sulfur-driven simultaneous nitrification and autotrophic denitrification (SNAD) process offers a cost-effective solution, as it operates in a single reactor, requires no organic carbon addition, and produces minimal sludge. However, this process remains underexplored, with microbial population dynamics, their interactions, and their implications for process efficiency not yet fully understood. To address this gap, this study analyzed microbial populations in a 0.8 L fluidized bed reactor performing sulfur-driven SNAD under increasing nitrogen loading rates (NLR), ranging from 11 to 105 g N/m3 d. The process achieved 93.5 % total nitrogen and 95.1 % ammonium removal at a hydraulic residence time (HRT) of 1.8 days. However, when the HRT was reduced to 0.96 days, nitrate removal instability occurred, reducing the nitrate removal efficiency to 42 %. Although increasing the HRT improved performance, two additional instability events were observed in subsequent stages at HRTs of 1.2 and 1.03 days, where nitrate removal efficiencies dropped to 11 % and 39 %, respectively. Functional analysis showed that NLR negatively impacted the proportion of sulfur-oxidizing bacteria, which was correlated with high nitrate levels in the effluent, although ammonium oxidation remained stable. Ecological network analysis revealed positive interactions between ammonia-oxidizing and heterotrophic bacteria, supporting nitrification stability. However, it also uncovered negative interactions between heterotrophic bacteria and sulfur-oxidizing denitrifiers, such as Dyella and Thiobacillus, suggesting these negative interactions contributed to temporary nitrogen removal problems in the system. This study highlights the importance of functional microbial and ecological network analyses over traditional metataxonomic approaches in understanding SNAD processes.
Collapse
Affiliation(s)
- Oscar Franchi
- Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Chile.
| | - Antonia Araya
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
| | - Alberto Aguirre
- Escuela de Ciencias Biológicas e Ingeniería, Universidad Yachay Tech, Urcuquí, Ecuador
| | - Karlo Guerrero
- Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Chile
| | - Eduardo Ortega-Martínez
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
| | - Javiera Toledo-Alarcón
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
| | - José Luis Campos
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Avda. Padre Hurtado 750, Viña del Mar, Chile
| |
Collapse
|
3
|
Sun YL, Zhang JZ, Ngo HH, Shao CY, Wei W, Zhang XN, Guo W, Cheng HY, Wang AJ. Optimized start-up strategies for elemental sulfur packing bioreactor achieving effective autotrophic denitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168036. [PMID: 37890632 DOI: 10.1016/j.scitotenv.2023.168036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
The start-up efficiency of the elemental sulfur packing bioreactor (S0PB) is constrained by the slow growth kinetics of autotrophic microorganisms, which is essentially optimized. This study aims to optimize start-up procedures and offer scientific guidance for the practical applications of S0PB. Through comparing the start-up efficiencies under various conditions related to inoculation, backwashing, and EBCT, it was found that these conditions did not significantly influence start-up time, but they did impact denitrification performance in detail. Using activated sludge as the inoculum was not recommended as the 2.5 ± 0.2 mg-N/L higher nitrite accumulation and 26.0 ± 5.1 % lower TN removal rate, compared to self-enrichment. Starting with a long-to-short EBCT (1 → 0.33 h) achieved higher nitrate removal of 11.5 ± 0.6 mg-N/L and eliminated nitrite accumulation compared to constantly short EBCT (0.33 h) conditions. Daily and postponed backwashing were suggested for long-to-short EBCT and constantly short EBCT start-up, respectively. Enrichment of Sulfurimonas was beneficial for the effective nitrite reduction process.
Collapse
Affiliation(s)
- Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing-Zhe Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Chen-Yang Shao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Sun Q, Fang YK, Liu WZ, Xie N, Dong H, Guadie A, Liu Y, Cheng HY, Wang AJ. Synergistic between autotrophic and heterotrophic microorganisms for denitrification using bio-S as electron donor. ENVIRONMENTAL RESEARCH 2023; 231:116047. [PMID: 37149031 DOI: 10.1016/j.envres.2023.116047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
In recent years, biological sulfur (bio-S) was employed in sulfur autotrophic denitrification (SAD) in which autotrophic Thiobacillus denitrificans and heterotrophic Stenotrophomonas maltophilia played a key role. The growth pattern of T.denitrificans and S.maltophilia exhibited a linear relationship between OD600 and CFU when OD600 < 0.06 and <0.1, respectively. When S.maltophilia has applied alone, the NorBC and NosZ were undetected, and denitrification was incomplete. The DsrA of S.maltophilia could produce sulfide as an alternative electron donor for T.denitrificans. Even though T.denitrificans had complete denitrification genes, its efficiency was low when used alone. The interaction of T.denitrificans and S.maltophilia reduced nitrite accumulation, leading to complete denitrification. A sufficient quantity of S.maltophilia may trigger the autotrophic denitrification activity of T.denitrificans. When the colony-forming units (CFU) ratio of S.maltophilia to T.denitrificans was reached at 2:1, the highest denitrification performance was achieved at 2.56 and 12.59 times higher than applied alone. This research provides a good understanding of the optimal microbial matching for the future application of bio-S.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ying-Ke Fang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450002, PR China
| | - Wen-Zong Liu
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Nan Xie
- Norendar International Ltd., Shijiazhuang, 050011, PR China
| | - Heng Dong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Awoke Guadie
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Ying Liu
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261325, PR China
| | - Hao-Yi Cheng
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|