1
|
Lopopolo L, Herrera-Melián JA, Arocha-Espiau D, Naghoum I, Ranieri E, Guedes-Alonso R, Sosa-Ferrera Z. Upgrading a horizontal surface flow constructed wetland with forest waste and aeration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124468. [PMID: 39914219 DOI: 10.1016/j.jenvman.2025.124468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Constructed wetlands (CWs) are regarded as sustainable wastewater treatment systems for small to medium-sized communities. However, ponds and horizontal surface flow CWs (SF-CWs) can be an ideal environment for mosquitoes to thrive. In the current context of climate change, this may pose serious health problems for the population, which may predispose authorities against their use. A possible solution for existing SF-CWs is to convert them into sub-surface flow by filling them with conventional media, i.e. gravel and/or sand. However, the mining of these materials poses an enormous environmental threat. Thus, alternative, sustainable filling materials for CWs should be tested. Another constraint of CWs is their large footprint, which in many cases (lack of expensive land) limits their applicability. This work studies the effects of filling a full-scale SF-CW with a forest residue (palm tree branches) and aeration. The results indicate that in terms of percentage removal, filling increased that of E. coli and Total Coliforms, while the combination of filling and aeration resulted in a significant improvement in BOD5, turbidity, and ammonium. However, the analysis of surface loads removed indicated significant increases in E. coli and TC with the filling alone, and of BOD5, turbidity, E. coli, Total Coliformis, and ammonium for the filling + aeration combination. Studies at full-scale level on the use of forest residues as CW substrate and aeration are scarce, thus this work can serve as a guide for more sustainable designs.
Collapse
Affiliation(s)
- L Lopopolo
- Università degli studi di Bari "Aldo Moro", Italy.
| | - J A Herrera-Melián
- Institute of Environmental Studies and Natural Resources, i-Unat, University of Las Palmas de Gran Canaria, Spain
| | - D Arocha-Espiau
- Institute of Environmental Studies and Natural Resources, i-Unat, University of Las Palmas de Gran Canaria, Spain
| | - I Naghoum
- Faculty of Sciences and Tecnhiques de Tanger (FSTT), Morocco
| | - E Ranieri
- Università degli studi di Bari "Aldo Moro", Italy
| | - R Guedes-Alonso
- Institute of Environmental Studies and Natural Resources, i-Unat, University of Las Palmas de Gran Canaria, Spain
| | - Z Sosa-Ferrera
- Institute of Environmental Studies and Natural Resources, i-Unat, University of Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Alkahtani MQ, Morabet RE, Khan RA, Khan AR. Pharmaceuticals removal from hospital wastewater by fluidized aerobic bioreactor in combination with tubesettler. Sci Rep 2024; 14:24052. [PMID: 39402097 PMCID: PMC11473777 DOI: 10.1038/s41598-024-73494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/18/2024] [Indexed: 10/17/2024] Open
Abstract
Micropollutants, especially pharmaceutical compounds, are of significant concern owing to their ngL- 1 to µgL- 1 concentration, making them difficult for conventional treatment plants to remove from wastewater. Despite municipal wastewater treatment plant being a primary source of these compounds to be released into the wastewater, on comparison little attention has been given to hospital wastewater. The major focus of studies addressing pharmaceutical compounds is based on synthetic wastewater. This study addresses this research gap by treating wastewater to remove micropollutants (Fluvastatin, ketoprofen, paracetamol, ciprofloxacin, carbamazepine, sulfamethoxazole, and lorazepam) by employing a fluidized aerobic bioreactor. Tubesettler was attached to a fluidized-bed bioreactor to see if it could be used as a polishing unit rather than a secondary clarifier. The environmental risk from the effluent discharge into the environment was assessed regarding the hazard quotient. The paracetamol and ketoprofen were removed at an efficiency of 51% and 60%, respectively, followed by carbamazepine at 50%, ciprofloxacin at 40%, fluvastatin at 47%, sulfamethoxazole at 31%, and lorazepam at 20%. The influent posed moderate environmental risk with (Hazard Quotient) HQ > 0.5, while in effluent the risk was reduced with HQ value 0.4. For effluent from fluidized bed bioreactors (HQ 0.13) and tube setters (HQ 0.15). The associated tube settler was found suitable for polishing units with additional removal efficiencies of 15-43% for all the targeted pharmaceutical compounds. Further studies are required to explore disinfectants' effect on the reactor's biodegradation efficiency. Also, further modification and a hybrid version of the fluidized bed bioreactor can be used.
Collapse
Affiliation(s)
- Meshel Qablan Alkahtani
- Department of Civil Engineering, King Khalid University, Al Faraa Campus, Abha, Saudi Arabia
| | - Rachida El Morabet
- Department of Geogprahy, LADES Lab. FLSH-M, Hassan II University of Casablanca, Mohammedia, Morocco
| | - Roohul Abad Khan
- Department of Civil Engineering, King Khalid University, Al Faraa Campus, Abha, Saudi Arabia.
| | - Amadur Rahman Khan
- Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Nguyen MK, Lin C, Bui XT, Rakib MRJ, Nguyen HL, Truong QM, Hoang HG, Tran HT, Malafaia G, Idris AM. Occurrence and fate of pharmaceutical pollutants in wastewater: Insights on ecotoxicity, health risk, and state-of-the-art removal. CHEMOSPHERE 2024; 354:141678. [PMID: 38485003 DOI: 10.1016/j.chemosphere.2024.141678] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/18/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Pharmaceutical active compound (PhAC) residues are considered an emerging micropollutant that enters the aquatic environment and causes harmful ecotoxicity. The significant sources of PhACs in the environment include the pharmaceutical industry, hospital streams, and agricultural wastes (animal husbandry). Recent investigations demonstrated that wastewater treatment plants (WWTPs) are an important source of PhACs discharging ecosystems. Several commonly reported that PhACs are detected in a range level from ng L-1 to μg L-1 concentration in WWTP effluents. These compounds can have acute and chronic adverse impacts on natural wildlife, including flora and fauna. The approaches for PhAC removals in WWTPs include bioremediation, adsorption (e.g., biochar, chitosan, and graphene), and advanced oxidation processes (AOPs). Overall, adsorption and AOPs can effectively remove PhACs from wastewater aided by oxidizing radicals. Heterogeneous photocatalysis has also proved to be a sustainable solution. Bioremediation approaches such as membrane bioreactors (MBRs), constructed wetlands (CWs), and microalgal-based systems were applied to minimize pharmaceutical pollution. Noteworthy, applying MBRs has illustrated high removal efficiencies of up to 99%, promising prospective future. However, WWTPs should be combined with advanced solutions, e.g., AOPs/photodegradation, microalgae-bacteria consortia, etc., to treat and minimize their accumulation. More effective and novel technologies (e.g., new generation bioremediation) for PhAC degradation must be investigated and specially designed for a low-cost and full-scale. Investigating green and eco-friendly PhACs with advantages, e.g., low persistence, no bioaccumulation, less or non-toxicity, and environmentally friendly, is also necessary.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Viet Nam
| | - Md Refat Jahan Rakib
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Quoc-Minh Truong
- Faculty of Management Science, Thu Dau Mot University, Binh Duong 75000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai 76100, Viet Nam
| | - Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
4
|
Mumtaj ZA, Khan AR, Alsubih M, Aleya L, Khan RA, Khan S. Removal of pharmaceutical contaminants from hospital wastewater using constructed wetlands: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12856-12870. [PMID: 38277099 DOI: 10.1007/s11356-024-32022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
AbstractPharmaceutical compounds are a significant source of environmental pollution, particularly in hospital wastewater, which contains high concentrations of such compounds. Constructed wetlands have emerged as a promising approach to removing pharmaceutical compounds from wastewater. This paper aims to review the current state of knowledge on the removal of pharmaceutical compounds from hospital wastewater using constructed wetlands, including the mechanism of removal, removal efficiency, and future prospects. Pharmaceutical contaminants have been considered to be one of the most emerging pollutants in recent years. In this review article, various studies on constructed wetlands are incorporated in order to remove the pharmaceutical contaminants. The nature of constructed wetland can be explained by understanding the types of constructed wetland, characteristics of hospital wastewater, removal mechanism, and removal efficiency. The results of the review indicate that constructed wetlands are effective in removing pharmaceutical compounds from hospital wastewater. The removal mechanism of these compounds involves a combination of physical, chemical, and biological processes, including adsorption, degradation, and uptake by wetland plants. The removal efficiency of constructed wetlands varies depending on several factors, including the type and concentration of pharmaceutical compounds, the design of the wetland system, and the environmental conditions. Further research is necessary to optimize the performance of these systems, particularly in the removal of emerging contaminants, to ensure their effectiveness and long-term sustainability.
Collapse
Affiliation(s)
- Zeba Ali Mumtaj
- Department of Chemistry, Integral University, Dashauli, India
| | | | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
| | - Lotfi Aleya
- National Center of Scientific Research (6249) Franche-Comté University, Besançon, France
| | - Roohul Abad Khan
- Department of Civil Engineering, King Khalid University, Abha, Saudi Arabia
| | - Saimah Khan
- Department of Chemistry, Integral University, Dashauli, India.
| |
Collapse
|
5
|
Lin JY, Zhang Y, Bian Y, Zhang YX, Du RZ, Li M, Tan Y, Feng XS. Non-steroidal anti-inflammatory drugs (NSAIDs) in the environment: Recent updates on the occurrence, fate, hazards and removal technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166897. [PMID: 37683862 DOI: 10.1016/j.scitotenv.2023.166897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Non-steroidal Anti-inflammatory Drugs (NSAIDs) are extensively utilized pharmaceuticals worldwide. However, owing to the improper discharge and disposal practices, they have emerged as significant contaminants that are widely distributed in water, soils, and sewage sediments. This ubiquity poses a substantial threat to the ecosystem and human health. Consequently, it is imperative to develop rapid, cost-effective, efficient and reliable approaches for containing these substance in order to mitigate the deleterious impact of NSAIDs. This research provides a comprehensive review of the occurrence, fate, and hazards associated with NSAIDs in the general environment. Additionally, various removal technologies, including advanced oxidation processes, biodegradation, and adsorption, were systematically summarized. The study also presents a comparative analysis of the benefits and drawbacks of different removal technologies while interpreting challenges related to NSAIDs' removal and proposing strategies for future development.
Collapse
Affiliation(s)
- Jia-Yuan Lin
- School of Pharmacy, China Medical University, Shenyang 110122, China; Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Bian
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yi-Xin Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Rong-Zhu Du
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Yue Tan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Huynh NC, Nguyen TTT, Nguyen DTC, Tran TV. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165317. [PMID: 37419350 DOI: 10.1016/j.scitotenv.2023.165317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most frequently used pharmaceuticals for human therapy, pet therapeutics, and veterinary feeds, enabling them to enter into water sources such as wastewater, soil and sediment, and seawater. The control of NSAIDs has led to the advent of the novel materials for treatment techniques. Herein, we review the occurrence, impact and toxicity of NSAIDs against aquatic microorganisms, plants and humans. Typical NSAIDs, e.g., ibuprofen, ketoprofen, diclofenac, naproxen and aspirin were detected at high concentrations in wastewater up to 2,747,000 ng L-1. NSAIDs in water could cause genotoxicity, endocrine disruption, locomotive disorders, body deformations, organs damage, and photosynthetic corruption. Considering treatment methods, among adsorbents for removal of NSAIDs from water, metal-organic frameworks (10.7-638 mg g-1) and advanced porous carbons (7.4-400 mg g-1) were the most robust. Therefore, these carbon-based adsorbents showed promise in efficiency for the treatment of NSAIDs.
Collapse
Affiliation(s)
- Nguyen Chi Huynh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
7
|
Isik Z, Bouchareb R, Arslan H, Özdemir S, Gonca S, Dizge N, Balakrishnan D, Prasad SVS. Green synthesis of iron oxide nanoparticles derived from water and methanol extract of Centaurea solstitialis leaves and tested for antimicrobial activity and dye decolorization capability. ENVIRONMENTAL RESEARCH 2023; 219:115072. [PMID: 36529334 DOI: 10.1016/j.envres.2022.115072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In this research, nanoparticles derived from water extract of Centaurea solstitialis leaves were used as green adsorbent in Fenton reaction for Reactive Red 180 (RR180) and Basic Red 18 (BR18) dyes removal. At optimum operating conditions, nanoparticles proved high performance in the tested dyes removal with more than 98% of removal elimination. The free-radical scavenging, DNA nuclease, biofilm inhibition capability, antimicrobial activity, microbial cell viability, and antimicrobial photodynamic therapy activities of the iron oxide nanoparticles (FeO-NPs) derived from water and methanol extract of plant were investigated. Each of the following analysis: SEM-EDX, XRD, and Zeta potential was implemented for the prepared NPs characterization and to describe their morphology, composition and its behavior in an aqueous solution, respectively. It was found that, the DPPH scavenging activities increased when the amount of nanoparticles increased. The highest radical scavenging activity achieved with FeO-NPs derived from water extract of plant as 97.41% at 200 mg/L. The new green synthesized FeO-NPs demonstrated good DNA cleavage activity. FeO-NPs showed good in vitro antimicrobial activities against human pathogens. The results showed that both synthesized FeO-NPs displayed 100% antimicrobial photodynamic therapy activity after LED irradiation. The water extract of FeO-NPs and methanol extract of FeO-NPs also showed a significant biofilm inhibition.
Collapse
Affiliation(s)
- Zelal Isik
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Raouf Bouchareb
- Department of Environmental Engineering, Process Engineering Faculty, Saleh Boubnider University, Constantine, 25000, Algeria
| | - Hudaverdi Arslan
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, 33343, Turkey
| | - Serpil Gonca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Mersin, Mersin, 33343, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, 33343, Turkey.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - Sista Venkata Surya Prasad
- Department of Electronics and Communication Engineering, MLR Institute of Technology, Hyderabad, 500043, India.
| |
Collapse
|
8
|
Liu A, Zhao Y, Cai Y, Kang P, Huang Y, Li M, Yang A. Towards Effective, Sustainable Solution for Hospital Wastewater Treatment to Cope with the Post-Pandemic Era. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2854. [PMID: 36833551 PMCID: PMC9957062 DOI: 10.3390/ijerph20042854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the globe since the end of 2019, posing significant challenges for global medical facilities and human health. Treatment of hospital wastewater is vitally important under this special circumstance. However, there is a shortage of studies on the sustainable wastewater treatment processes utilized by hospitals. Based on a review of the research trends regarding hospital wastewater treatment in the past three years of the COVID-19 outbreak, this review overviews the existing hospital wastewater treatment processes. It is clear that activated sludge processes (ASPs) and the use of membrane bioreactors (MBRs) are the major and effective treatment techniques applied to hospital wastewater. Advanced technology (such as Fenton oxidation, electrocoagulation, etc.) has also achieved good results, but the use of such technology remains small scale for the moment and poses some side effects, including increased cost. More interestingly, this review reveals the increased use of constructed wetlands (CWs) as an eco-solution for hospital wastewater treatment and then focuses in slightly more detail on examining the roles and mechanisms of CWs' components with respect to purifying hospital wastewater and compares their removal efficiency with other treatment processes. It is believed that a multi-stage CW system with various intensifications or CWs incorporated with other treatment processes constitute an effective, sustainable solution for hospital wastewater treatment in order to cope with the post-pandemic era.
Collapse
Affiliation(s)
- Ang Liu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yamei Cai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Peiying Kang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Yulong Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Min Li
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| | - Anran Yang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|