1
|
Riedel R, Commichau FM, Benndorf D, Hertel R, Holzer K, Hoelzle LE, Mardoukhi MSY, Noack LE, Martienssen M. Biodegradation of selected aminophosphonates by the bacterial isolate Ochrobactrum sp. BTU1. Microbiol Res 2024; 280:127600. [PMID: 38211497 DOI: 10.1016/j.micres.2024.127600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Aminophosphonates, like glyphosate (GS) or metal chelators such as ethylenediaminetetra(methylenephosphonic acid) (EDTMP), are released on a large scale worldwide. Here, we have characterized a bacterial strain capable of degrading synthetic aminophosphonates. The strain was isolated from LC/MS standard solution. Genome sequencing indicated that the strain belongs to the genus Ochrobactrum. Whole-genome classification using pyANI software to compute a pairwise ANI and other metrics between Brucella assemblies and Ochrobactrum contigs revealed that the bacterial strain is designated as Ochrobactrum sp. BTU1. Degradation batch tests with Ochrobactrum sp. BTU1 and the selected aminophosphonates GS, EDTMP, aminomethylphosphonic acid (AMPA), iminodi(methylene-phosphonic) (IDMP) and ethylaminobis(methylenephosphonic) acid (EABMP) showed that the strain can use all phosphonates as sole phosphorus source during phosphorus starvation. The highest growth rate was achieved with AMPA, while EDTMP and GS were least supportive for growth. Proteome analysis revealed that GS degradation is promoted by C-P lyase via the sarcosine pathway, i.e., initial cleavage at the C-P bond. We also identified C-P lyase to be responsible for degradation of EDTMP, EABMP, IDMP and AMPA. However, the identification of the metabolite ethylenediaminetri(methylenephosphonic acid) via LC/MS analysis in the test medium during EDTMP degradation indicates a different initial cleavage step as compared to GS. For EDTMP, it is evident that the initial cleavage occurs at the C-N bond. The detection of different key enzymes at regulated levels, form the bacterial proteoms during EDTMP exposure, further supports this finding. This study illustrates that widely used and structurally more complex aminophosphonates can be degraded by Ochrobactrum sp. BTU1 via the well-known degradation pathways but with different initial cleavage strategy compared to GS.
Collapse
Affiliation(s)
- Ramona Riedel
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany.
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany; FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Dirk Benndorf
- Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Köthen, Germany; Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert Hertel
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany; Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, Göttingen, Germany
| | - Katharina Holzer
- Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Ludwig E Hoelzle
- Department of Livestock Infectiology and Environmental Hygiene, Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | - Mohammad Saba Yousef Mardoukhi
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany; FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, Senftenberg, Germany; FG Molecular Microbiology, Institute for Biology, University of Hohenheim, Stuttgart, Germany
| | - Laura Emelie Noack
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany
| | - Marion Martienssen
- Chair of Biotechnology of Water Treatment Brandenburg, Institute of Environmental Technology, BTU Cottbus-Senftenberg, Cottbus, Germany
| |
Collapse
|
2
|
Broman E, Olsson M, Maciute A, Donald D, Humborg C, Norkko A, Jilbert T, Bonaglia S, Nascimento FJA. Biotic interactions between benthic infauna and aerobic methanotrophs mediate methane fluxes from coastal sediments. THE ISME JOURNAL 2024; 18:wrae013. [PMID: 38366020 PMCID: PMC10942774 DOI: 10.1093/ismejo/wrae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
Coastal ecosystems dominate oceanic methane (CH4) emissions. However, there is limited knowledge about how biotic interactions between infauna and aerobic methanotrophs (i.e. CH4 oxidizing bacteria) drive the spatial-temporal dynamics of these emissions. Here, we investigated the role of meio- and macrofauna in mediating CH4 sediment-water fluxes and aerobic methanotrophic activity that can oxidize significant portions of CH4. We show that macrofauna increases CH4 fluxes by enhancing vertical solute transport through bioturbation, but this effect is somewhat offset by high meiofauna abundance. The increase in CH4 flux reduces CH4 pore-water availability, resulting in lower abundance and activity of aerobic methanotrophs, an effect that counterbalances the potential stimulation of these bacteria by higher oxygen flux to the sediment via bioturbation. These findings indicate that a larger than previously thought portion of CH4 emissions from coastal ecosystems is due to faunal activity and multiple complex interactions with methanotrophs.
Collapse
Affiliation(s)
- Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
| | - Markus Olsson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
| | - Adele Maciute
- Department of Marine Sciences, University of Gothenburg, Gothenburg 41390, Sweden
| | - Daniel Donald
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
| | - Christoph Humborg
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
| | - Alf Norkko
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
| | - Tom Jilbert
- Tvärminne Zoological Station, Faculty of Biological of Environmental Sciences, University of Helsinki, Helsinki 10900, Finland
- Environmental Geochemistry Group, Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Gothenburg 41390, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
3
|
Ding J, Yang W, Liu X, Zhao Q, Dong W, Zhang C, Liu H, Zhao Y. Unraveling the rate-limiting step in microorganisms' mediation of denitrification and phosphorus absorption/transport processes in a highly regulated river-lake system. Front Microbiol 2023; 14:1258659. [PMID: 37901815 PMCID: PMC10613053 DOI: 10.3389/fmicb.2023.1258659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
River-lake ecosystems are indispensable hubs for water transfers and flow regulation engineering, which have frequent and complex artificial hydrological regulation processes, and the water quality is often unstable. Microorganisms usually affect these systems by driving the nutrient cycling process. Thus, understanding the key biochemical rate-limiting steps under highly regulated conditions was critical for the water quality stability of river-lake ecosystems. This study investigated how the key microorganisms and genes involving nitrogen and phosphorus cycling contributed to the stability of water by combining 16S rRNA and metagenomic sequencing using the Dongping river-lake system as the case study. The results showed that nitrogen and phosphorus concentrations were significantly lower in lake zones than in river inflow and outflow zones (p < 0.05). Pseudomonas, Acinetobacter, and Microbacterium were the key microorganisms associated with nitrate and phosphate removal. These microorganisms contributed to key genes that promote denitrification (nirB/narG/narH/nasA) and phosphorus absorption and transport (pstA/pstB/pstC/pstS). Partial least squares path modeling (PLS-PM) revealed that environmental factors (especially flow velocity and COD concentration) have a significant negative effect on the key microbial abundance (p < 0.001). Our study provides theoretical support for the effective management and protection of water transfer and the regulation function of the river-lake system.
Collapse
Affiliation(s)
- Jiewei Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xinyu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Qingqing Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Weiping Dong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Chuqi Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Haifei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|