1
|
Han J, Xu G, Liu X, Jiang L, Shao K, Yang H, Zhu G, Ding A, Shang Z, Chen L, Dou J. Carbonate composite materials for the leaching remediation of uranium-contaminated soils: Mechanistic insights and engineering applications. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136814. [PMID: 39662348 DOI: 10.1016/j.jhazmat.2024.136814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
In this study, a composite leaching agent consisting of Na2CO3, NaHCO3, H2O2, and deep eutectic solvents was synthesized, and its composition and application conditions were optimized to mitigate soil contamination resulting from uranium mining. Laboratory and pilot field tests revealed that the use of this agent facilitated up to 92.6 % removal of uranium from contaminated soils. Analytical characterization through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) revealed that CO32- readily formed complexes with uranium, increasing its mobility and desorption from soil particles. The safety of the leaching process was confirmed through plant growth tests and enzyme activity assays. Moreover, the leaching strategy not only adheres to environmentally sustainable principles but also replenishes carbon and nitrogen in the soil, thereby aiding in the restoration of its functional use.
Collapse
Affiliation(s)
- Juncheng Han
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinyao Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Likun Jiang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Kexin Shao
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Haotian Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Guangsheng Zhu
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Zhaorong Shang
- Nuclear and Radiation Safety Center, Ministry of Ecology and Environment, Beijing 100082, PR China
| | - Ling Chen
- China Institute of Atomic Energy, Beijing 102413, PR China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; Engineering Research Center for Groundwater Pollution Control and Remediation Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
2
|
Zhou L, Hou S, Duan X, Lu Y, Liao J, Liu N, Zhao R, Zhao C. New insights into uranium biomineralization mediated by Pseudomonas sp. WG2-6 in the presence of organic phosphorus: Promoting effect of extracellular polymeric substance and formation of U-P nanominerals. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136123. [PMID: 39405684 DOI: 10.1016/j.jhazmat.2024.136123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
Microbial biomineralization significantly affects the uranium (U) behavior in the environment. However, the mechanism of microbial biomineralization of U is still not fully understood. In this study, a dominant bacterium (Pseudomonas sp. WG2-6) was isolated from U tail mining area. Abiotic precipitation tests demonstrated that U biomineralization was entirely attributed to the mediation of Pseudomonas sp. WG2-6 when the concentration ratio of exogenous β-glycerophosphate (SGP) to U was 10:1. Pseudomonas sp. WG2-6 exhibited strong immobilization ability towards U (97.59 %) according to batch experiments, and acylamide, carbonyls, and phosphate groups were the main functional groups that interacted with U. Besides, U mainly existed in the form of amorphous U-P complexes after biomineralization by Pseudomonas WG2-6, which could be converted into crystalline nano-minerals H2(UO2)2(PO4)2·8H2O in the presence of SGP. In particular, the formation and structural composition changes of extracellular polymeric substance (EPS) as well as the decrease in U4f binding energy were observed during the U biomineralization process of Pseudomonas sp. WG2-6 in the presence of SGP, indicating that EPS provided the nucleation site for the formation of stable biomineralized products. This work provides new insight into the mechanism of U microbial biomineralization and a theoretical basis for the remediation of U contaminated environments through microbial biomineralization.
Collapse
Affiliation(s)
- Lin Zhou
- School of Public Health, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Siyu Hou
- School of Public Health, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - XingQi Duan
- School of Public Health, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Yalin Lu
- School of Public Health, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ran Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, Sichuan, China.
| |
Collapse
|
3
|
Yang K, Xue Y, Fan R, Jin N, Dou J, Cheng H. Radiological risk and impact on soil microbial diversity of radionuclides in agricultural topsoils downstream of a decommissioned hydrometallurgical uranium plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122781. [PMID: 39378811 DOI: 10.1016/j.jenvman.2024.122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/05/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Containing only low levels of U-bearing minerals, U ores often have to undergo hydrometallurgical processing for the separation of other minerals. Hydrometallurgical operations, even after being shut down, could pose radiological risk to the ecosystem and human health due to the radionuclide contamination of surrounding environmental media. This study investigated the contamination of radionuclides in the agricultural topsoils downstream of a decommissioned hydrometallurgical U plant in southern China, and assessed the corresponding radiological risk and evaluated its impact on soil microbial communities. The values of geoaccumulation index and potential ecological risk index indicate that all soil samples were significantly contaminated with U and 226Ra, with their concentrations being 4.4-28.7 times and 4.4-114.8 times higher than the corresponding regional background values, respectively. The mean outdoor annual effective dose (OAED) in the sampling plot next to the drainage ditch downstream of the decommissioned plant was up to 3.9 and 8.2 times higher than the Chinese annual effective dose limit and global average, respectively, which is indicative of unacceptable radiological risk for the local farm workers. Soil microbial composition was obviously impacted by the soil physicochemical properties and radionuclides. Specifically, Cladophialophora, which belongs to the fungal genus, exhibited significantly positive correlations with the contents of total Cd, total U, organic U, residual U, and total K, while Methanosarcina, which belongs to the archaeal genus, exhibited significantly positive correlations with the contents of 226Ra and residual U. Soil pH and total N content were significantly correlated with the abundance of several bacterial genera and the dominant archaeal genus (i.e., Candidatus Nitrocosmicus). These findings demonstrate the existence of potentially significant radiological risk associated with the radionuclides released from historical hydrometallurgical processing of U ores to the surrounding environment, and the need for proper site management and remediation.
Collapse
Affiliation(s)
- Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Xue
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Runchuan Fan
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Junfeng Dou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Wang L, Liang Y, Liu S, Chen F, Ye Y, Chen Y, Wang J, Paterson DJ, Kopittke PM, Wang Y, Li C. Effect of silicon on the distribution and speciation of uranium in sunflower (Helianthus annuus). JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135433. [PMID: 39146584 DOI: 10.1016/j.jhazmat.2024.135433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/15/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
Sunflower (Helianthus annuus) can potentially be used for uranium (U) phytoremediation. However, the factors influencing the absorption of U and its subsequent distribution within plant tissues remain unclear, including the effect of silicon (Si) which is known to increase metal tolerance. Here, using hydroponics, the effect of Si on the distribution and speciation of U in sunflower was examined using synchrotron-based X-ray fluorescence and fluorescence-X-ray absorption near-edge spectroscopy. It was found that ∼88 % of U accumulates within the root regardless of treatments. Without the addition of Si, most of the U appeared to bind to epidermis within the roots, whereas in the leaves, U primarily accumulated in the veins. The addition of Si alleviated U phytotoxicity and decreased U concentration in sunflower by an average of 60 %. In the roots, Si enhanced U distribution in cell walls and impeded its entry into cells, likely due to increased callose deposition. In the leaves, Si induced the sequestration of U in trichomes. However, Si did not alter U speciation and U remained in the hexavalent form. These results provide information on U accumulation and distribution within sunflower, and suggest that Si could enhance plant growth under high U stress.
Collapse
Affiliation(s)
- Linlin Wang
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - Yanru Liang
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - Song Liu
- Northwest A&F University, College of Agronomy, Yangling 712100, China
| | - Fan Chen
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - Yin Ye
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - Yanlong Chen
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - Jingjing Wang
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China
| | - David J Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sustainability, St Lucia, Queensland 4072, Australia
| | - Yuheng Wang
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China.
| | - Cui Li
- Northwestern Polytechnical University, School of Ecology and Environment, Xi'an 710072, China.
| |
Collapse
|
5
|
Miller C, Neidhart A, Hess K, Ali AMS, Benavidez A, Spilde M, Peterson E, Brearley A, Wang X, Dhanapala BD, Cerrato JM, Gonzalez-Estrella J, El Hayek E. Uranium accumulation in environmentally relevant microplastics and agricultural soil at acidic and circumneutral pH. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171834. [PMID: 38521258 PMCID: PMC11141427 DOI: 10.1016/j.scitotenv.2024.171834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
The co-occurrence of microplastics (MPs) with potentially toxic metals in the environment stresses the need to address their physicochemical interactions and the potential ecological and human health implications. Here, we investigated the reaction of aqueous U with agricultural soil and high-density polyethylene (HDPE) through the integration of batch experiments, microscopy, and spectroscopy. The aqueous initial concentration of U (100 μM) decreased between 98.6 and 99.2 % at pH 5 and between 86.2 and 98.9 % at pH 7.5 following the first half hour of reaction with 10 g of soil. In similar experimental conditions but with added HDPE, aqueous U decreased between 98.6 and 99.7 % at pH 5 and between 76.1 and 95.2 % at pH 7.5, suggesting that HDPE modified the accumulation of U in soil as a function of pH. Uranium-bearing precipitates on the cracked surface of HDPE were identified by SEM/EDS after two weeks of agitation in water at both pH 5 and 7.5. Accumulation of U on the near-surface region of reacted HDPE was confirmed by XPS. Our findings suggest that the precipitation of U was facilitated by the weathering of the surface of HDPE. These results provide insights about surface-mediated reactions of aqueous metals with MPs, contributing relevant information about the mobility of metals and MPs at co-contaminated agricultural sites.
Collapse
Affiliation(s)
- Casey Miller
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA; Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA
| | - Andrew Neidhart
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA; Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kendra Hess
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Michael Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Eric Peterson
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Adrian Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, NM 87131, USA
| | - Xuewen Wang
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - B Dulani Dhanapala
- College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 740784, USA
| | - José M Cerrato
- Gerald May Department of Civil, Construction & Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jorge Gonzalez-Estrella
- School of Civil and Environmental Engineering, EN0059, Oklahoma State University, Stillwater, OK 740784, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, MSC09 5360, University of New Mexico, College of Pharmacy, Albuquerque, NM 87131, USA.
| |
Collapse
|
6
|
de Souza Pereira W, Kelecom A, Lopes JM, do Carmo AS, Padilha Filho LG, Campelo ELC, Potenciano NREP, Schenberg ACG, da Silva LF, da Silva AX. Environmental impact assessment due to the intake of uranium contained in surface waters in a semi-arid region in Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27085-27098. [PMID: 38503952 DOI: 10.1007/s11356-024-32671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
In Santa Quitéria City, part of the population uses surface water for potation. These waters do not undergo any treatment before consumption. As the region has a deposit of uranium, assessing water quality becomes important. In the present study, the uranium activity concentration (AC) in becquerels per liter was determined in water samples from six points. Univariate statistics showed differences between the soluble and the particulate fraction (soluble AC > particulate AC). The particulate fraction showed no variation in AC among the six points. On the other hand, the soluble fraction and the total fraction presented different ACs between them. The multivariate statistics allowed to separate the soluble from the particulate fraction of the points. The same tools applied to the total fraction made it possible to differentiate the sampling points, grouping them ((#1, #2); (#3, #4), and (#5, #6)). The maximum mean value of AC found was 0.177 Bq∙L-1, corresponding to 25% of the chemical toxicity limit (0.72 Bq∙L-1). The maximum mean dose rate, 2.25 µSv∙year-1, is lower than the considered negligible dose rate (> 10 µSv∙year-1). The excess lifetime cancer risk was 10-6, two orders of magnitude smaller than the threshold considered for taking action. The assessment parameters used in this work indicate that the risk due to the uranium intake by the local population is negligible.
Collapse
Affiliation(s)
- Wagner de Souza Pereira
- Programa de Engenharia Nuclear, Universidade Federal Do Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, 21941-914, Brazil.
- Indústrias Nucleares Do Brasil S/A - INB, 27.555-000, Resende, RJ, Brazil.
| | - Alphonse Kelecom
- Instituto de Biologia, Universidade Federal Fluminense - UFF, 24.001-970, Niterói, RJ, Brazil
| | - José Marques Lopes
- Departamento de Física da Terra E Do Meio Ambiente, Universidade Federal da Bahia (UFBA), Salvador, 40170-290, Brazil
- Programa de Pós-Graduação Em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, Salvador, 40.170-110, Brazil
| | - Alessander Sá do Carmo
- Coordenação de Matéria Condensada, Física Aplicada E Nanociência - Setor de Criogenia, Centro Brasileiro de Pesquisas Físicas (CBPF), 22.290-180, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Lucas Faria da Silva
- Escola de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ademir Xavier da Silva
- Programa de Engenharia Nuclear, Universidade Federal Do Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, 21941-914, Brazil
| |
Collapse
|
7
|
Proshad R, Li J, Sun G, Zheng X, Yue H, Chen G, Zhang S, Li Z, Zhao Z. Field application of hydroxyapatite and humic acid for remediation of metal-contaminated alkaline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13155-13174. [PMID: 38243026 DOI: 10.1007/s11356-024-32015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Abstract
The quality of soil is essential for ensuring the safety and quality of agricultural products. However, soils contaminated with toxic metals pose a significant threat to agricultural production and human health. Therefore, remediation of contaminated soils is an urgent task, and humic acid (HA) with hydroxyapatite (HAP) materials was applied for this study in contaminated alkaline soils to remediate Cd, Pb, Cu, and Zn. Physiochemical properties, improved BCR sequential extraction, microbial community composition in soils with superoxide dismutase (SOD), peroxidase (POD), and chlorophyll content in plants were determined. Among the studied treatments, application of HAP-HA (2:1) (T7) had the most significant impact on reducing the active forms of toxic metals from soil such as Cd, Pb, Cu, and Zn decreased by 18.59%, 9.12%, 11.83%, and 3.33%, respectively, but HAP and HA had a minor impact on metal accumulation in Juncao. HAP (T2) had a beneficial impact on reducing the TCleaf/root of Cd, Cu, and Zn, whereas HAP-HA (T5) showed the best performance for reducing Cd and Cu in EFleaf/soil. HAP-HA (T5 and T7) showed higher biomass (57.3%) and chlorophyll (17.9%), whereas HAP (T4) showed better performance in POD (25.8%) than T0 in Juncao. The bacterial diversity in soil was increased after applying amendments of various treatments and enhancing metal remediation. The combined application of HAP and HA effectively reduced active toxic metals in alkaline soil. HAP-HA mixtures notably improved soil health, plant growth, and microbial diversity, advocating for their use in remediating contaminated soils.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jie Li
- CCTEG Chongqing Engineering (Group) Co., LTD., Chongqing, 400000, People's Republic of China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Geng Chen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shuangting Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ziyi Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
8
|
He Z, Xu Y, Yang Y, Zhu P, Jin Z, Zhang D, Pan X. Efficient bio-cementation between silicate tailings and biogenic calcium carbonate: Nano-scale structure and mechanism of the interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121665. [PMID: 37080520 DOI: 10.1016/j.envpol.2023.121665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Biogenic calcium carbonate (bio-CaCO3) cementing tailings is an efficient technology to immobilize heavy metals in waste tailings. However, the underlying mechanism of interface cementation has not yet been clearly established, which limits the technological development. In this study, we used advanced techniques, including atomic force microscopy-based Lorentz contact resonance (AFM-LCR) spectroscopy, AFM-based nanoscale infrared (AFM-IR) spectroscopy, and solid-state nuclear magnetic resonance (ssNMR) spectroscopy, to reveal the structural, mechanical, and chemical properties of the interface on the nanoscale. Ureolytic bacteria produced bio-CaCO3 to fill in pore space and to bind cement tailings particles, which prevented the formation of leachate containing heavy metals. After cementation, a strong 40-300 nm thin interface was formed between the taillings and bio-CaCO3 particles. Unlike chemically synthesized CaCO3, bio-CaCO3 is strongly negatively charged, which gives it better adhesion ability. Fourier transform infrared (FTIR), AFM-IR, and 29Si ssNMR spectra indicated that the Si-OH and Si-O-Si groups on the silicate surface were converted to deprotonated silanol groups (≡Si-O-) at a high pH and they formed strong chemical bonds of Si-O-Ca on the interface through a Ca ion bridge. In addition, hydrogen bonding with Si-OH also played a role at the cementation interface. These findings provide the nano-scale interfacial structure and mechanism of bio-CaCO3 cementing silicate tailings and accelerate the development of tailings disposal technology.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yiting Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yingli Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Pengfeng Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhengzhong Jin
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|