1
|
Wang M, Deng M, Zhao G, Fan Y, Liu T, Huang Y, Peng L, Fu H, Fang S. Optimizing the thiosulfate-mediated zerovalent iron/persulfate activation systems: Trade-off between Fe(III)/Fe(II) cycling and quenching effects in environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124817. [PMID: 40086275 DOI: 10.1016/j.jenvman.2025.124817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
The remediation of organic-contaminated water is a critical environmental challenge, and iron-based persulfate (PS) activation processes have emerged as a promising solution. However, the introduction of reductive sulfur species, while accelerating the Fe(III)/Fe(II) redox cycle, may also quench reactive species, potentially compromising the efficiency of Fenton-like systems. Here we systematically investigate the trade-off between accelerated Fe(III)/Fe(II) cycling and quenching effects in the zerovalent iron/PS (ZVI/PS) system using thiosulfate (TSF) as an activator. Our results show that low-level TSF (0.03-1.00 mmol/L) effectively facilitated the removal of naphthalene (Nap) and atrazine (ATZ), respectively. This enhancement is attributed to accelerated ZVI dissolution and FeSx formation, which promote the Fe(III)/Fe(II) cycle, with Fe(IV) was identified as the primary active species. However, high-level TSF (>1.0 mmol/L) drastically reduced Nap removal due to PS consumption and active species elimination. The optimal TSF dosage of 0.20 mmol/L (TSF/PS molar ratio of 1:10) demonstrated robust organic pollutant degradation, achieving a 22-fold increase in the rate constant (kobs) for Nap removal and 0.47-7.5-fold increases for ATZ removal. These findings highlight the potential of the TSF-ZVI/PS system as a versatile and efficient solution for degrading a wide range of organic pollutants, including PAHs and herbicides, in water treatment applications.
Collapse
Affiliation(s)
- Maolin Wang
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Mi Deng
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Gang Zhao
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Yanchun Fan
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Tianwen Liu
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Ying Huang
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Lan Peng
- Jiangxi Provincial Key Laboratory of Environmental Pollution Control, Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang, 330039, China
| | - Haoyang Fu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Republic of Singapore.
| | - Shengqiong Fang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
2
|
Wu S, Liang H, Sun K, Li Z, Hu M, Wang L, Yang L, Han Q, Zhang Q, Lang J. Domain-limited thermal transformation preparation of novel graphitized carbon-supported layered double oxides for efficient tetracycline degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120040. [PMID: 38215597 DOI: 10.1016/j.jenvman.2024.120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 12/23/2023] [Indexed: 01/14/2024]
Abstract
The resource utilization of industrial lignin to construct high-performance catalysts for wastewater treatment field is pioneering research. Herein, the novel graphitized carbon-supported CuCoAl-layered double oxides (LDOs-GC) were successfully designed by the domain-limited thermal transformation technology using sodium lignosulfonate (LS) self-assembled CuCoAl-layered double hydroxides as the precursor. The optimized LDOs-GC catalyst owned the excellent tetracycline (TC) degradation of 98.0% within 15 min by activated peroxymonosulfate (PMS) under optimal conditions (20 mg/L catalyst, 1.5 mM PMS, 30 mg/L TC). The density of metal ions in the catalyst and the synergistic interaction between graphitized carbon (GC) and metal ions played a major role in TC degradation. Based on a comprehensive analysis, the TC degradation in LDOs-GC/PMS system was proved to be accomplished by a combination of free radicals (SO4·- and HO·) and non-radicals (1O2). Meanwhile, the possible degradation pathways of TC were proposed by the analysis of TC degradation intermediates and a comprehensive analysis of the rational reaction mechanism for TC degradation by LDOs-GC/PMS system was also performed. This work provides a new strategy for developing novel high-performance catalysts from industrial waste, while offering a green, cheap and sustainable approach to antibiotic degradation.
Collapse
Affiliation(s)
- Si Wu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, PR China
| | - Huicong Liang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, PR China
| | - Kexin Sun
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, PR China
| | - Zexin Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, PR China
| | - Mingzhi Hu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, PR China
| | - Liqi Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, PR China
| | - Lili Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, PR China
| | - Qiang Han
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, PR China
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, PR China.
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, PR China.
| |
Collapse
|
3
|
Gong J, Jiang H, Li X, Cheng H, Wang Z, Cai J, Li M, Wang P, Wang H, Hu X, Hu X. Highly efficient activation of periodate by a manganese-modified biochar to rapidly degrade methylene blue. ENVIRONMENTAL RESEARCH 2024; 241:117657. [PMID: 37980988 DOI: 10.1016/j.envres.2023.117657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/25/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
In this study, the manganese oxide/biochar composites (Mn@BC) were synthesized from Phytolacca acinosa Roxb. The Mn@BC was analyzed via techniques of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD). The results show that MnOx is successfully loaded on the surface of BC, and the load of MnOx can increase the number of surface functional groups of BC. X-ray photoelectron spectroscopy (XPS) shows that MnOx loaded on BC mainly exists in three valence forms: Mn(Ⅱ), Mn(Ⅲ), and Mn(Ⅳ). The ability of Mn@BC to activate periodate (PI) was studied by simulating the degradation of methylene blue (MB) dye. The degradation experiment results showed that the MB removal rate by the Mn@BC/PI system reached 97.4% within 30 min. The quenching experiment and electron paramagnetic resonance (EPR) analysis confirmed that Mn@BC can activate PI to produce iodate (IO3•), singlet oxygen (1O2), and hydroxyl radical (•OH), which can degrade MB during the reaction. Response surface methodology (RSM) based on Box-Behnken Design (BBD) was used to determine the interaction between pH, Mn@BC and PI concentration in the Mn@BC/PI system, and the optimum technological parameters were determined. When pH = 5.4, Mn@BC concentration 0.56 mg/L, PI concentration 1.1 mmol/L, MB removal rate can reach 98.05%. The cyclic experiments show that Mn@BC can be reused. After four consecutive runs, the removal rate of MB by the Mn@BC/PI system is still 82%, and the Mn@BC/PI system also shows high performance in treating MB in actual water bodies and degrading other pollutants. This study provides a practical method for degrading dyes in natural sewage.
Collapse
Affiliation(s)
- Jiamin Gong
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Honghui Jiang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Xiang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Hao Cheng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Ziqi Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Jingju Cai
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Meifang Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xi Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China
| |
Collapse
|
4
|
Peng Z, Li S, He H, Wen Y, Huang H, Su L, Yi Z, Peng X, Zhou N. FeS and Fe 3O 4 Co-modified biochar to build a highly resistant advanced oxidation process system for quinclorac degradation in irrigation water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119492. [PMID: 37922748 DOI: 10.1016/j.jenvman.2023.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Advanced oxidation processes (AOPs), based on sulfate radical (SO4·-) produced by peroxymonosulfate (PMS), can effectively mineralize refractory organic pollutants. However, the coexistence of anions and natural organic matters in actual wastewater prevents the application of AOPs. A simple one-step method was used to prepare FeS/Fe3O4 co-modified biochar materials (FFB) that could activate PMS to degrade quinclorac (QNC) with a removal rate of 100%, even exhibiting optimum degradation of QNC reached 99.31% in irrigation water, demonstrating excellent anti-interference performance for co-existing anions and natural organic matter. Meanwhile, ecotoxicity analysis showed that the toxicity of degradation intermediates was lower than that of QNC. Characterization results demonstrated the even distribution of FeS and Fe3O4 onto biochar, supplying abundant Fe2+ to activate PMS producing reactive oxygen species (ROS), while the generated Fe3+ after reactive continue to be reduced with sulfur species to promote the cycle of Fe2+/Fe3+. The coexistence of ·OH, SO4·-, 1O2, and O2·- in the FFB/PMS-QNC system suggest the possession of two pathway with free radical and non-free radical pathways to degrade QNC. The density functional theory (DFT) was used to analyze the adsorption sites and adsorption energy of PMS, as well as the differential charge density, which further proved the generation of SO4·-, O2·- and 1O2. In addition, the electrochemical test results showed that electron transfer also played an important role in the degradation of QNC. This study provides a feasible approach for the removal of organic pollutants in actual water.
Collapse
Affiliation(s)
- Zhengjie Peng
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China; School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Shikai Li
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China; School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Hao He
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China; School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Yujiao Wen
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China; School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Haolong Huang
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China; School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Lezhu Su
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China; School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha, 410128, China
| | - Zhigang Yi
- Hunan Renhe Environment Co., LTD, Changsha, 410022, China
| | - Xing Peng
- Hunan Renhe Environment Co., LTD, Changsha, 410022, China.
| | - Nan Zhou
- Hunan Engineering Research Center for Biochar, Hunan Agricultural University, Changsha, 410128, China; School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|