1
|
Jing Z, Ye F, Liu X, Gao H. A critical review of microbial profiles in black and odorous waters. ENVIRONMENTAL RESEARCH 2025; 270:120972. [PMID: 39884529 DOI: 10.1016/j.envres.2025.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Black and odorous waters (BOWs) are a serious environmental problem frequently reported over the past few decades. Microorganisms are identified as implementors of the black and odorous phenomenon, which play a crucial role in the decomposition and transformation of pollutants within the BOWs. However, the information on the role of microorganisms in BOWs remains elusive. BOWs are characterized by high concentrations of organic compounds and limited oxygen inputs, which have facilitated the emergence of distinct microbial species. The algae, hydrolytic and fermentative bacterium, sulfate-reducing bacteria, Fe-reducing bacteria and other microorganisms play an important role in the process of blackening and odorization of waters. Studying these specific microbial taxonomies provides valuable insights into their adaptations and contributions to the overall functioning of BOWs. This study comprehensively reviews 1) the microbial community structure, assembly and succession in BOWs; 2) the key microbial profiles involved in BOWs formation; 3) the interspecies interactions process in the BOWs, which are the issues easily overlooked but deserve further research and development.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Fanjin Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| |
Collapse
|
2
|
Xiao M, Zhang H, Wu L, Wu Y, He X, Li B, Chen X, Yang L. Divergent responses of microalgal-bacterial granular sludge to two typical microplastics polystyrene and polybutylene succinate during the treatment of sulfamethoxazole-containing wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124286. [PMID: 39935060 DOI: 10.1016/j.jenvman.2025.124286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Accepted: 01/19/2025] [Indexed: 02/13/2025]
Abstract
This study evaluated the mechanisms by which biodegradable microplastics (polystyrene, PS MPs) and non-biodegradable microplastics (polybutylene succinate, PBS MPs), affect the performance of microalgal-bacterial granular sludge in sulfamethoxazole (SMX)-containing wastewater. Macroscopically, microalgal-bacterial granular sludge adapted to PS MPs more significantly and rapidly than PBS MPs. PS MPs slightly inhibited the removal of chemical oxygen demand (COD) and NH4+-N, with the average removal rate reduced by 4.54% and 3.65%, respectively. Nonetheless, PBS MPs facilitated the degradation of SMX with the main pathway being the breakage of N-S bonds. At the microscopic level, the inhibition of Proteobacteria and Cyanobacteria abundance by PS MPs emerged as a significant factor affecting the performance of granular sludge. Conversely, the enrichment of Desulfobacterota promoted by PBS MPs favorably impacted the removal and degradation of pollutants. Overall, PBS MPs showed better environmental compatibility and lower ecotoxicity for microalgal-bacterial granular sludge treatment of antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Meixing Xiao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Huiyin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Li Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, 130117, PR China
| | - Yaxin Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xiaoman He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Bolin Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xiaoguo Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China.
| |
Collapse
|
3
|
Yang Y, Li L, He Y, Ma T, Zheng J, Wang M, Tu W, Fan M, Chen S. Response processes to water quality changes driven by the dynamic regeneration of the surface microlayer film in slow-flowing freshwater bodies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125125. [PMID: 39414066 DOI: 10.1016/j.envpol.2024.125125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
The freshwater surface microlayer film (SMF) is a dynamically evolving micro-ecosystem closely related to water quality and microbial growth in water. However, the mechanisms of dynamic regeneration of SMF after their destruction and their impacts on the aquatic environment are still largely unknown. Herein, we modeled the dynamic processes of SMF destruction and recovery in the natural environment by constructing a water-SMF ecosystem. Chemical and biological changes in the dynamic regeneration of SMF were investigated. The results showed that the dynamic regeneration of SMF was very fast, with a regeneration thickness of up to 300 ± 50 μm in two days, and at the same time, it would rapidly enrich organic matter and Fe ions. In addition, the cyclic dynamic regeneration process of SMF is significantly correlated with the surge metabolic growth of microorganisms associated with organic matter metabolism (e.g., Methylophilus, Nevskia) and iron-redox-associated (e.g., Curvibacter). The experimental results suggest that the microbial-mediated process of iron-organic matter coupled oxidation-reduction in SMF may be another important mechanism driving water quality changes. Overall, our study provides valuable theoretical guidance for predicting changes in water quality in slow-flowing water bodies.
Collapse
Affiliation(s)
- Yuankun Yang
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China.
| | - Lunzhen Li
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Yu He
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Tian Ma
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Juncheng Zheng
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Maosheng Wang
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Weiguo Tu
- Sichuan Provincial Academy of Natural Resource Sciences, Sichuan, 610015, PR China
| | - Min Fan
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Shu Chen
- Low-cost Wastewater Treatment Technology International Sci-Tech Cooperation Base of Sichuan Province, School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, PR China
| |
Collapse
|
4
|
Wang W, Wu S, Huang J, Zhang X, Xie J, Lu Y, Li J, Wei J, Wu B, Cheng S. Microalgae realizes self N-doped biochar for heavy metal polluted sediment remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135746. [PMID: 39244985 DOI: 10.1016/j.jhazmat.2024.135746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Heavy metal contamination in sediment has become a significant global environmental challenge. Numerous studies have demonstrated the effectiveness of modified biochar to solve heavy metal contamination in sediment. However, the modification process with complex methods and expensive modifiers prevented its large-scale application. In this study, an N self-doped biochar was obtained by pyrolysis of Spirulina sp. (SBC). Meanwhile, the K2CO3 impregnation method was utilized to prepare Spirulina sp. biochar (KSBC), which demonstrated a higher specific surface area (874 m2/g) and richer O, N functional groups. The adsorption capacity of KSBC550-120 for Cu (Ⅱ), Zn (Ⅱ), and Cd (Ⅱ) was 57.9 ± 0.3 mg/g, 43.6 ± 0.7 mg/g, and 63.9 ± 0.6 mg/g, respectively. The adsorption process is primarily governed by chemical processes, mainly through ion exchange, surface complexation, dissolution-precipitation, electrostatic interactions, adsorption-reduction, and cation-π interactions. Moreover, utilizing KSBC550-120 for mixing or capping effectively reduced heavy metal concentrations in both the overlying and pore water of the sediments. 1.0 wt% KSBC550-120 with capping treatment significantly reduced the release of heavy metals from the sediment by 80.3-91.9%. This study provides effective theoretical support for re-utilizing waste algal residues and remediation of the heavy metal-contaminated river and lake sediments using microalgae biochar.
Collapse
Affiliation(s)
- Weicong Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Institute of Eco-Environmental Engineering, Tongji University, Shanghai 200092, China
| | - Shuangqi Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Institute of Eco-Environmental Engineering, Tongji University, Shanghai 200092, China
| | - Jianshi Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Institute of Eco-Environmental Engineering, Tongji University, Shanghai 200092, China
| | - Xueqi Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Institute of Eco-Environmental Engineering, Tongji University, Shanghai 200092, China
| | - Jiawei Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Institute of Eco-Environmental Engineering, Tongji University, Shanghai 200092, China
| | - Yebin Lu
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Jianfeng Li
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Jun Wei
- Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
| | - Boran Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Institute of Eco-Environmental Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shuiping Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Institute of Eco-Environmental Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Wang S, Fang L, Sun X, Lu W. Occurrence and distribution of antibiotic resistance genes in urban rivers with black-odor water of Harbin, China. ENVIRONMENTAL RESEARCH 2024; 259:119497. [PMID: 38944102 DOI: 10.1016/j.envres.2024.119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Antibiotic resistance gene contamination in polluted rivers remains a widely acknowledged environmental issue. This study focused on investigating the contamination conditions of antibiotic resistance genes (ARGs) in Harbin's urban black-odor rivers, specifically Dongfeng Ditch and Hejia Ditch. The research employed a SmartChip Real-Time PCR System to explore the types, abundance, and distribution of ARGs in diverse habitats, such as surface water and sediment. Additionally, the study examined the correlation of ARGs with mobile genetic elements (MGEs) and various environmental factors. It was found that antibiotic resistance genes were prevalent in both water and sediment within the black-odor ditches. The dominant types of ARGs identified included aminoglycoside, sulfonamide, multidrug-resistant, and β-lactam ARGs. Notably, the top four ARGs, in terms of relative abundance, were sul1, fox5, qacEdelta1-01 and aadA1. Most categories of ARGs have significant positive connections with MGEs, indicating that the enrichment and spreading of ARGs in rivers are closely related to MGEs. Based on the correlation analysis, it is found that environmental factors such as dissolved oxygen (DO), ammonia nitrogen (NH4-N), and phosphate (PO4-P) played a substantial role in influencing the variations observed in ARGs. By employing a risk assessment framework based on the human association, host pathogenicity, and mobility of ARGs, the identification of seven high-risk ARGs was achieved. In addition, it is important to assess the environmental risk of ARGs from multiple perspectives (abundance,detection rateand mobility). This study provides a significant reference regarding the presence of ARGs contamination in urban inland black-odor rivers, essential for assessing the health risks associated with ARGs and devising strategies to mitigate the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Shuangshuang Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Lanjin Fang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Xingbin Sun
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Weimin Lu
- Heilongjiang Province Light Industrial Science Research Institute, Harbin, Heilongjiang, 150010, China
| |
Collapse
|
6
|
Jing Z, Li Q, Lu J, Ma J, Ye F, Tu S, Dong B, Liu X, Gao H. Revealing microbial community assembly patterns and succession process in the blackening process of black-odor water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124129. [PMID: 38729505 DOI: 10.1016/j.envpol.2024.124129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/25/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Human-imported pollutants could induce water black, changing microbial community structure and function. Employed 16S rRNA high-throughput sequencing, field-scale investigations and laboratory-scale experiments were successively conducted to reveal mechanistic insights into microbial community assembly and succession of black-odor waters (BOWs). In the field-scale investigation, livestock breeding wastewater (56.7 ± 3.2%) was the most critical microbial source. Moreover, fermentation (27.1 ± 4.4%) was found to be the dominant function. Combined with laboratory experiments, the critical environmental factors, such as total organic carbon (30-100 mg/L), ammonia nitrogen (2.5-9 mg/L), initial dissolved oxygen (2-8 mg/L) and chlorophyll a (0-90 mg/L), impacted the intensity of blackening. The differentiation of ecological niches within the microbial community played a significant role in driving the blackening speed. In laboratory-scale experiments, the microbial ecological niche determined the blackening timing and dominations of the stochastic processes in the microbial assembly process (88 - 51%). The three stages, including the anaerobic degradation stage, blackening stage and slow recovery stage, were proposed to understand the assembly of the microbial communities. These findings enhance our understanding of microorganisms in BOWs and provide valuable insights for detecting and managing heavily organic polluted waters.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Jinxia Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Jiwei Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Fanjin Ye
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Hongjie Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| |
Collapse
|
7
|
Liu YH, Gao L, Jiang HC, Fang BZ, Huang Y, Li L, Li S, Abdugheni R, Lian WH, Zhang JY, Yang ZD, Mohamad OAA, Li WJ. Response of microbial diversity and function to the degradation of Barkol Saline Lake. Front Microbiol 2024; 15:1358222. [PMID: 38784797 PMCID: PMC11111964 DOI: 10.3389/fmicb.2024.1358222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Barkol Lake, a shrinking hypersaline lake situated in the northeast of Xinjiang, China, has experienced the exposure of its riverbed and the gradual drying up of its original sediment due to climate change and human activities, resulting in the formation of alkaline soils. These changes have correspondingly altered the physicochemical characteristics of the surrounding environment. Microorganisms play a crucial role, with special functioning involved in various nutrient cycling and energy transfer in saline lake environments. However, little is known about how the microbial community dynamics and metabolic functions in this shrinking saline lake relate to the degradation process. To address this knowledge gap, a cultivation-independent method of amplicon sequencing was used to identify and analyze the microbial community and its potential ecological functions in the sediment and degraded area. The microbial community diversity was found to be significantly lower in the degraded areas than in the sediment samples. The Pseudomonadota was dominant in Barkol Saline Lake. The abundance of Desulfobacterota and Bacillota in the degraded areas was lower than in the lake sediment, while Pseudomonadota, Acidobacteriota, and Actinobacteriota showed an opposite trend. The βNTI showed that microbial community assembly was primarily associated with deterministic processes in Barkol Saline Lake ecosystems and stochastic processes at the boundary between sediment and degraded areas. Functional predictions showed that sulfur metabolism, particularly sulfate respiration, was much higher in sediment samples than in the degraded areas. Overall, these findings provided a possible perspective for us to understand how microorganisms adapt to extreme environments and their role in saline lakes under environmental change.
Collapse
Affiliation(s)
- Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hong-Chen Jiang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shuai Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jing-Yi Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhen-Dong Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Department of Biological, Marine Sciences and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Arish, Egypt
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Jing Z, Tu S, Yuan P, Liu X, Wang S, Dong B, Li Q, Gao H. The ecological role of microbiome at community-, taxonomic - and genome-levels in black-odorous waters. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133673. [PMID: 38340561 DOI: 10.1016/j.jhazmat.2024.133673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/17/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Black-odorous waters (BOWs) are heavily polluted waters where microbial information remains elusive mechanistically. Based on gene amplicon and metagenomics sequencing, a comprehensive study was conducted to investigate the microbial communities in urban and rural BOWs. The results revealed that microbial communities' assembly in urban and rural BOWs was predominantly governed by stochastic factors at the community level. At the taxonomic level, there were 62 core species (58.48%) in water and 207 core species (44.56%) in sediment across urban and rural areas. Notably, significant differences were observed in the functional genetic composition of BOWs between urban and rural areas. Specifically, rural areas exhibited an enhanced abundance of genes involved in nitrogen fixation, Fe2+ transport, and sulfate reduction. Conversely, urban areas showed higher abundances of some genes associated with carbon fixation, nitrification and denitrification. A sulfur-centered ecological model of microbial communities was constructed by integrating data from the three levels of analysis, and 14 near-complete draft genomes were generated, representing a substantial portion of the microbial community (35.04% in rural BOWs and 29.97% in urban BOWs). This research provides significant insights into the sustainable management and preservation of aquatic ecosystems affected by BOWs.
Collapse
Affiliation(s)
- Zhangmu Jing
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Shengqiang Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Peng Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Xiaoling Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Siyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qingqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China
| | - Hongjie Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| |
Collapse
|