1
|
Lee JI, Choi D, Kim S, Park SJ, Kwon EE. Fabrication of Fe-doped biochar for Pb adsorption through pyrolysis of agricultural waste with red mud. CHEMOSPHERE 2025; 370:143930. [PMID: 39667532 DOI: 10.1016/j.chemosphere.2024.143930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Synthesis of metal-doped biochar have gained prominence due to their adsorption capability for heavy metal(loid)s. In this study, iron-doped biochar (Fe-BC) was fabricated through pyrolysis of waste mushroom substrate (WMS) with red mud (RM). The synthesised Fe-BC was employed as an adsorbent for Pb removal. During pyrolysis of WMS, introducing RM contributed to the enhanced syngas formation, this observation was attributed to the catalytic function of Fe species in RM. The Fe-BCs were made at three different temperatures (500, 600, and 700 °C), and their adsorption capabilities for Pb were evaluated. Among the prepared Fe-BCs, Fe-BC fabricated at 700 °C (Fe-BC-700) demonstrated the highest Pb adsorption performance (243.07 mg g-1). This performance primarily stemmed from the presence of zero-valent Fe and surface functional groups (-OH) in Fe-BC-700. Pb removal by Fe-BC-700 was dominated by surface precipitation and complexation mechanisms. Therefore, this study highlights a promising approach for producing an effective adsorbent for Pb removal from industrial wastewater by utilizing wastes such as RM and WMS.
Collapse
Affiliation(s)
- Jae-In Lee
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Dongho Choi
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seungwon Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seong-Jik Park
- Institute of Agricultural Environmental Science, Hankyong National University, Anseong, 17579, Republic of Korea; Department of Bioresources and Rural System Engineering, Hankyong National University, Anseong, 17579, Republic of Korea.
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Dai A, Wu Q, Xu C, Xiong J, Fan L, Ke L, Zeng Y, Cobb K, Ruan R, Wang Y. Walnut shell oil-bath torrefaction coupled with fast pyrolysis: Effect of torrefaction heating modes. BIORESOURCE TECHNOLOGY 2024; 406:130984. [PMID: 38880267 DOI: 10.1016/j.biortech.2024.130984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
Lignocellulosic biomass, renewable with short growth cycle and diverse sources, can be substituted fossil fuel. However, low effective hydrogen-to-carbon ratio (H/Ceff) limits its applications. Torrefaction and co-pyrolysis with high H/Ceff feedstocks are promising technology. This paper investigated the effect of heating modes on oil-bath torrefaction of walnut shells, followed by fast co-pyrolysis. Six heating modes during oil-bath torrefaction were evaluated. Com1 (Microwave 67 %, Lightwave 33 %) yielded the lowest residual yield 84 wt%, while the highest gas production 495.47 mL/g which mainly composed of CO and CO2. Torrefied feedstock under Com1 had the highest H/Ceff. Decarboxylation and decarbonylation reactions dominated among oil-bath torrefaction. Com1 produced the most hydrocarbons and least oxygen-containing compounds. As microwave ratio decreased, the content of olefins, acids and phenols decreased, monocyclic aromatic hydrocarbons and alcohols was showed opposite tend. This study offers new ideas for microwave and lightwave torrefaction and promoting hydrocarbon production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Anqi Dai
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qiuhao Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Chuangxin Xu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Jianyun Xiong
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Linyao Ke
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuan Zeng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Krik Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55112, USA
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55112, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang University, Jiangxi, China.
| |
Collapse
|
3
|
Wu X, Quan W, Chen Q, Gong W, Wang A. Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar. Molecules 2024; 29:1005. [PMID: 38474517 PMCID: PMC10935008 DOI: 10.3390/molecules29051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.
Collapse
Affiliation(s)
- Xichang Wu
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| |
Collapse
|