1
|
Lv Y, Zhang L, Wang X, Zhang Y. Genomic evidence on the distribution and ecological function of Pseudomonas in hadal zone. BMC Microbiol 2025; 25:100. [PMID: 40021978 PMCID: PMC11869652 DOI: 10.1186/s12866-025-03834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
The hadal zone is the deepest region on Earth. It serves as a depositional zone for the sinking matter from surface ocean and continental margin, aided by its unique V-shaped structure. Due to extreme depth (over 6000 m), normally only organic matter with low degradability typically reaches the bottom of the trench. Concurrently, reports have indicated highly active carbon turnover and dense bacterial cells in the Mariana Trench. There remains a cognitive gap in understanding the connection between this phenomenon and the microbial taxa along with their metabolic activities. Here, we surveyed the Pseudomonas, one of the most widely distributed bacterial genera on Earth. The result revealed widespread distribution of Pseudomonas in the hadal zones. We obtained 21 metagenome-assembled genomes (MAGs) from seawater and sediment samples of the Mariana Trench, including three novel species. Comparative genomic analysis showed that hadal Pseudomonas possess more unique ortholog groups of genes related to energy generation and substances transport, distinct from those in other marine zones. These bacteria exhibit the ability to utilize diverse electron acceptors and accumulate compatible solutes, indicating two key strategies for adaptation for high hydrostatic pressure conditions. Furthermore, predicted genomic capabilities suggest that Pseudomonas could decompose various components of organic matter, particularly aromatics, as supported by metatranscriptomic datasets. These findings significantly enhance our understanding of Pseudomonas diversity and metabolic potential, providing valuable insights into the carbon and nitrogen cycles in hadal trench ecosystems.
Collapse
Affiliation(s)
- Yongxin Lv
- Hainan Research Institute, Shanghai Jiao Tong University, Sanya, China
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangyu Wang
- School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Zhang
- Hainan Research Institute, Shanghai Jiao Tong University, Sanya, China.
- Shanghai Key Laboratory of Polar Life and Environment Sciences, School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Jin B, Jia Y, Cheng K, Chu C, Wang J, Liu Y, Du J, Wang L, Pang L, Ji J, Cao X. Facilitating effects of the synergy with zero-valent iron and peroxysulfate on the sludge anaerobic fermentation system: Combined biological enzyme, microbial community and fermentation mechanism assessment. CHEMOSPHERE 2024; 355:141805. [PMID: 38552797 DOI: 10.1016/j.chemosphere.2024.141805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
This study evaluated a synergetic waste activated sludge treatment strategy with environmentally friendly zero-valent iron nanoparticles (Fe0) and peroxysulfate. To verify the feasibility of the synergistic treatment, Fe0, peroxysulfate, and the mixture of peroxysulfate and Fe0 (synergy treatment) were added to different sludge fermentation systems. The study demonstrated that the synergy treatment fermentation system displayed remarkable hydrolysis performance with 435.50 mg COD/L of protein and 197.67 mg COD/L of polysaccharide, which increased 1.13-2.85 times (protein) and 1.12-1.49 times (polysaccharide) for other three fermentation system. Additionally, the synergy treatment fermentation system (754.52 mg COD/L) exhibited a well acidification performance which was 1.35-41.73 times for other systems (18.08-557.27 mg COD/L). The synergy treatment fermentation system had a facilitating effect on the activity of protease, dehydrogenase, and alkaline phosphatase, which guaranteed the transformation of organic matter. Results also indicated that Comamonas, Soehngenia, Pseudomonas, and Fusibacter were enriched in synergy treatment, which was beneficial to produce SCFAs. The activation of Fe0 on peroxysulfate promoting electron transfer, improving the active groups, and increasing the enrichment of functional microorganisms showed the advanced nature of synergy treatment. These results proved the feasibility of synergy treatment with Fe0 and peroxysulfate to enhance waste activated sludge anaerobic fermentation.
Collapse
Affiliation(s)
- Baodan Jin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| | - Yusheng Jia
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Ken Cheng
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Chenchen Chu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jiacheng Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Ye Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jingjing Du
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Lan Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Long Pang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Jiantao Ji
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Xia Cao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Vass M, Ramasamy KP, Andersson A. Microbial hitchhikers on microplastics: The exchange of aquatic microbes across distinct aquatic habitats. Environ Microbiol 2024; 26:e16618. [PMID: 38561820 DOI: 10.1111/1462-2920.16618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Microplastics (MPs) have the potential to modify aquatic microbial communities and distribute microorganisms, including pathogens. This poses a potential risk to aquatic life and human health. Despite this, the fate of 'hitchhiking' microbes on MPs that traverse different aquatic habitats remains largely unknown. To address this, we conducted a 50-day microcosm experiment, manipulating estuarine conditions to study the exchange of bacteria and microeukaryotes between river, sea and plastisphere using a long-read metabarcoding approach. Our findings revealed a significant increase in bacteria on the plastisphere, including Pseudomonas, Sphingomonas, Hyphomonas, Brevundimonas, Aquabacterium and Thalassolituus, all of which are known for their pollutant degradation capabilities, specifically polycyclic aromatic hydrocarbons. We also observed a strong association of plastic-degrading fungi (i.e., Cladosporium and Plectosphaerella) and early-diverging fungi (Cryptomycota, also known as Rozellomycota) with the plastisphere. Sea MPs were primarily colonised by fungi (70%), with a small proportion of river-transported microbes (1%-4%). The mere presence of MPs in seawater increased the relative abundance of planktonic fungi from 2% to 25%, suggesting significant exchanges between planktonic and plastisphere communities. Using microbial source tracking, we discovered that MPs only dispersed 3.5% and 5.5% of river bacterial and microeukaryotic communities into the sea, respectively. Hence, although MPs select and facilitate the dispersal of ecologically significant microorganisms, drastic compositional changes across distinct aquatic habitats are unlikely.
Collapse
Affiliation(s)
- Máté Vass
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Division of Systems and Synthetic Biology, Department of Life Sciences, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Kesava Priyan Ramasamy
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Umeå Marine Sciences Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Zhang T, Yan L, Wei M, Su R, Qi J, Sun S, Song Y, Li X, Zhang D. Bioaerosols in the coastal region of Qingdao: Community diversity, impact factors and synergistic effect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170246. [PMID: 38246385 DOI: 10.1016/j.scitotenv.2024.170246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Atmospheric bioaerosols are influenced by multiple factors, including physical, chemical, and biotic interactions, and pose a significant threat to the public health and the environment. The nonnegligible truth however is that the primary driver of the changes in bioaerosol community diversity remains unknown. In this study, putative biological association (PBA) was obtained by constructing an ecological network. The relationship between meteorological conditions, atmospheric pollutants, water-soluble inorganic ions, PBA and bioaerosol community diversity was analyzed using random forest regression (RFR)-An ensemble learning algorithm based on a decision tree that performs regression tasks by constructing multiple decision trees and integrating the predicted results, and the contribution of different rich species to PBA was predicted. The species richness, evenness and diversity varied significantly in different seasons, with the highest in summer, followed by autumn and spring, and was lowest in winter. The RFR suggested that the explanation rate of alpha diversity increased significantly from 73.74 % to 85.21 % after accounting for the response of the PBA to diversity. The PBA, temperature, air pollution, and marine source air masses were the most crucial factors driving community diversity. PBA, particularly putative positive association (PPA), had the highest significance in diversity. We found that under changing external conditions, abundant taxa tend to cooperate to resist external pressure, thereby promoting PPA. In contrast, rare taxa were more responsive to the putative negative association because of their sensitivity to environmental changes. The results of this research provided scientific advance in the understanding of the dynamic and temporal changes in bioaerosols, as well as support for the prevention and control of microbial contamination of the atmosphere.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Lingchong Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Mingming Wei
- Laoshan District Meteorological Bureau, Qingdao 266107, PR China
| | - Rongguo Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Jianhua Qi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Shaohua Sun
- Laoshan District Meteorological Bureau, Qingdao 266107, PR China
| | - Yongzhong Song
- Jufeng Peak Tourist Management Service Center of Laoshan Scenic Spot, Qingdao 266100, PR China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China.
| |
Collapse
|