1
|
Praeg N, Steinwandter M, Urbach D, Snethlage MA, Alves RP, Apple ME, Bilovitz P, Britton AJ, Bruni EP, Chen TW, Dumack K, Fernandez-Mendoza F, Freppaz M, Frey B, Fromin N, Geisen S, Grube M, Guariento E, Guisan A, Ji QQ, Jiménez JJ, Maier S, Malard LA, Minor MA, Mc Lean CC, Mitchell EAD, Peham T, Pizzolotto R, Taylor AFS, Vernon P, van Tol JJ, Wu D, Wu Y, Xie Z, Weber B, Illmer P, Seeber J. Biodiversity in mountain soils above the treeline. Biol Rev Camb Philos Soc 2025. [PMID: 40369817 DOI: 10.1111/brv.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Biological diversity in mountain ecosystems has been increasingly studied over the last decade. This is also the case for mountain soils, but no study to date has provided an overall synthesis of the current state of knowledge. Here we fill this gap with a first global analysis of published research on cryptogams, microorganisms, and fauna in mountain soils above the treeline, and a structured synthesis of current knowledge. Based on a corpus of almost 1400 publications and the expertise of 37 mountain soil scientists worldwide, we summarise what is known about the diversity and distribution patterns of each of these organismal groups, specifically along elevation, and provide an overview of available knowledge on the drivers explaining these patterns and their changes. In particular, we document an elevation-dependent decrease in faunal diversity above the treeline, while for cryptogams there is an initial increase above the treeline, followed by a decrease towards the nival belt. Thus, our data confirm the key role that elevation plays in shaping the biodiversity and distribution of these organisms in mountain soils. The response of prokaryote diversity to elevation, in turn, was more diverse, whereas fungal diversity appeared to be substantially influenced by plants. As far as available, we describe key characteristics, adaptations, and functions of mountain soil species, and despite a lack of ecological information about the uncultivated majority of prokaryotes, fungi, and protists, we illustrate the remarkable and unique diversity of life forms and life histories encountered in alpine mountain soils. By applying rule- as well as pattern-based literature-mining approaches and semi-quantitative analyses, we identified hotspots of mountain soil research in the European Alps and Central Asia and revealed significant gaps in taxonomic coverage, particularly among biocrusts, soil protists, and soil fauna. We further report thematic priorities for research on mountain soil biodiversity above the treeline and identify unanswered research questions. Building upon the outcomes of this synthesis, we conclude with a set of research opportunities for mountain soil biodiversity research worldwide. Soils in mountain ecosystems above the treeline fulfil critical functions and make essential contributions to life on land. Accordingly, seizing these opportunities and closing knowledge gaps appears crucial to enable science-based decision making in mountain regions and formulating laws and guidelines in support of mountain soil biodiversity conservation targets.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Michael Steinwandter
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Davnah Urbach
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Mark A Snethlage
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Rodrigo P Alves
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Martha E Apple
- Department of Biological Sciences, Montana Technological University, Butte, 59701, MT, USA
| | - Peter Bilovitz
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Andrea J Britton
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Estelle P Bruni
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 702/7, České Budějovice, 37005, Czech Republic
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Fernando Fernandez-Mendoza
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Michele Freppaz
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
- Research Center on Natural Risks in Mountain and Hilly Environments, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Nathalie Fromin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Route de Mende 34199, Montpellier Cedex 5, France
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martin Grube
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Elia Guariento
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Géopolis, Lausanne, 1015, Switzerland
| | - Qiao-Qiao Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
| | - Juan J Jiménez
- Instituto Pirenaico de Ecología (IPE), Consejo Superior de Investigaciones Cientificas (CSIC), Avda. Ntra. Sra. de la Victoria 16, Jaca, 22700, Huesca, Spain
| | - Stefanie Maier
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Lucie A Malard
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
| | - Maria A Minor
- School of Food Technology and Natural Sciences, Massey University, Riddett Road, Palmerston North, 4410, New Zealand
| | - Cowan C Mc Lean
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Thomas Peham
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Roberto Pizzolotto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Ponte Pietro Bucci 4b, Rende, 87036, Italy
| | - Andy F S Taylor
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Philippe Vernon
- UMR 6553 EcoBio CNRS, University of Rennes, Biological Station, Paimpont, 35380, France
| | - Johan J van Tol
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Donghui Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yunga Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Zhijing Xie
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Bettina Weber
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Julia Seeber
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| |
Collapse
|
2
|
Ma C, Zhao T, Baoyin T, Han X, Frey B, Yang J, Dong S. Long-term grazing reduces soil fungal network complexity but enhances plant-soil microbe network connectivity in a semi-arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176498. [PMID: 39326755 DOI: 10.1016/j.scitotenv.2024.176498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Grazing plays a significant role in shaping both aboveground vegetation and belowground microbial communities in arid and semi-arid grasslands, which in turn affects ecosystem functions and sustainability. Therefore, it was essential to implement effective grazing management practices to preserve ecological balance and support sustainable development in these delicate environments. To optimize the traditional continuous grazing policy, we conducted a 10-year seasonal grazing experiment with five treatments in a typical grassland in northern China: no grazing (NG), continuous summer grazing (CG), and three seasonal grazing treatments (G57 in May and July, G68 in June and August, and G79 in July and September). Our study found that although grazing reduced plant community biomass, G68 treatment maintained high plant height and community diversity (P < 0.05). Grazing did not affect soil bacterial and archaeal alpha diversity, but CG treatment reduced soil fungal diversity (P < 0.05). CG reduced the archaeal network's vertices (which represent microbial taxa, OTUs) and connections (ecological interactions between taxa), but seasonal grazing increased its complexity. Furthermore, grazing did not change bacterial networks but enhanced cross-domain interactions (relationships between different biological groups) of plant-soil fungi and plant-soil archaea. Overall, we used the Mantel test to find that soil microbial diversity was positively correlated with soil physicochemical properties rather than plant community characteristics after grazing. These findings are beneficial for the optimization of sustainable grassland management policies and the protection of plant and soil biodiversity.
Collapse
Affiliation(s)
- Chunhui Ma
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Tianqi Zhao
- Yinshanbeilu Grassland Eco-hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Taogetao Baoyin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xingguo Han
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurich, Birmensdorf 8903, Switzerland
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zurich, Birmensdorf 8903, Switzerland
| | - Juejie Yang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Sánchez-Marañón M, Ortega R, Pulido-Fernández M, Barrena-González J, Lavado-Contador F, Miralles I, García-Salcedo JA, Soriano M. Compositional and functional analysis of the bacterial community of Mediterranean Leptosols under livestock grazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171811. [PMID: 38508263 DOI: 10.1016/j.scitotenv.2024.171811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The composition and functioning of soil bacterial communities, as well as their responses to multiple perturbations, are not well understood in the terrestrial ecosystems. Our study focuses on the bacterial community of erosive and poorly developed soils (Haplic Leptosols) in Mediterranean rangelands of Extremadura (W Spain) with different grazing intensities. Leptosols from similar natural conditions were selected and sampled at two depths to determine the soil properties as well as the structure and activity of bacterial communities. As grazing intensified, the soil C and N content increased, as did the number and diversity of bacteria, mainly of fast-growing lineages. Aridibacter, Acidobacteria Gp6 and Gp10, Gemmatimonas, and Segetibacter increased their abundance along the grazing-intensity gradient. Firmicutes such as Romboutsia and Turicibacter from livestock microbiome also increased. In functional terms, the KEGG pathways enriched in the soils with moderate and high grazing intensity were ABC transporters, DNA repair and recombination proteins, the two-component system, and the degradation of xenobiotics. All of these proved to be related to stronger cell division and response mechanisms to environmental stressors such as drought, warming, toxic substances, and nutrient deprivation. Consequently, the bacterial community was affected by grazing, but appeared to adapt and counteract the effects of a high grazing intensity. Therefore, a clearly detrimental effect of grazing was not detected in the bacterial community of the soils studied.
Collapse
Affiliation(s)
- Manuel Sánchez-Marañón
- Department of Soil Science and Agricultural Chemistry, Science Faculty, University of Granada, E-18071 Granada, Spain
| | - Raúl Ortega
- Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Ctra. Sacramento s/n, E-04120 Almería, Spain
| | - Manuel Pulido-Fernández
- Grupo de Investigación GeoAmbiental, Universidad de Extremadura, Avenida de la Universidad s/n, E-10071 Cáceres, Spain
| | - Jesús Barrena-González
- Grupo de Investigación GeoAmbiental, Universidad de Extremadura, Avenida de la Universidad s/n, E-10071 Cáceres, Spain
| | - Francisco Lavado-Contador
- Grupo de Investigación GeoAmbiental, Universidad de Extremadura, Avenida de la Universidad s/n, E-10071 Cáceres, Spain
| | - Isabel Miralles
- Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Ctra. Sacramento s/n, E-04120 Almería, Spain
| | - José A García-Salcedo
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada - Avenida de la Ilustración 114 - E-18016 Granada, Spain; Microbiology Unit, University Hospital Virgen de las Nieves, E-18014 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Soriano
- Research Center for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Ctra. Sacramento s/n, E-04120 Almería, Spain; GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada - Avenida de la Ilustración 114 - E-18016 Granada, Spain
| |
Collapse
|
4
|
Ren W, Lin C, Ma J, Zhang Z, Shen Y. Enhancing the component intra- and interrelationship of Elymus nutans mono- and mixed sowing communities via adjusting sowing patterns in the Qinghai Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169949. [PMID: 38220004 DOI: 10.1016/j.scitotenv.2024.169949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/05/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Spatial arrangement is a key factor in maintaining community yield and stability via regulating component intra-/interspecific competition in an alpine climate environment. A 2-yr field trial was conducted on the Qinghai Tibetan Plateau, including cross row (S_C), double row (S_D), single row (S_R), broadcast (M_B), dependent row (M_D) and independent row (M_I). Our results showed that S_C could avoid intraspecific competition by reasonable spatial arrangement, which favored the dominant component growth (1st year: leaf; 2nd year: stem and reproductive organ). For mixed communities, RII (relative interaction intensity) implied that interspecific competition also embodied on dominant component, and higher Elymus nutans component advantages seriously limited Onobrychis viciifolia's components growth in the 2nd year. More details displayed that E. nutans in M_B or M_D produced the maximum system yield via increasing leaf investment at the initial stages and stem investment after July 2019. Besides, M_I possessed lower component numbers than M_B and M_D in the unit area. PCA analysis revealed that component numbers or biomasses changed synchronously, besides the E. nutans of S_C, M_B, and M_D presented significant discrepancies compared to other treatments in September 2019, which verified the effect of sowing patterns on component growth (P < 0.05), but O. viciifolia in different sowing patterns was similar in the 2nd year. Considering the adaptability and production for the environment of the Qinghai Tibetan Plateau, S_C is recommended for the promoted effect on component biomasses. M_B and M_D, with the merit of spacing utilization as well as higher resistance to variation in seasonal growth conditions via optimizing interspecific relationships for mixed communities, are adapted for increasing yield via component harvesting. Our results unveiled the potential of optimizing spatial usage efficiency via controlling component growth characteristics and stressed the importance of dynamic change of dominant components to enhance forage system production in alpine regions.
Collapse
Affiliation(s)
- Wen Ren
- College of Pastoral Agriculture Science and Technology, Lanzhou University, 730020 Lanzhou, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, 730020 Lanzhou, China; Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; Shangqiu Station of National Field Agro-ecosystem Experimental Network/National Agricultural Experimental Station for Agricultural Environment/National Long-term Experimental Station for Agricultural Green Development, Shangqiu 476000, Henan, China
| | - Changxing Lin
- College of Pastoral Agriculture Science and Technology, Lanzhou University, 730020 Lanzhou, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, 730020 Lanzhou, China
| | - Jingyong Ma
- College of Pastoral Agriculture Science and Technology, Lanzhou University, 730020 Lanzhou, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, 730020 Lanzhou, China
| | - Zhixin Zhang
- College of Grassland Agriculture, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Yuying Shen
- College of Pastoral Agriculture Science and Technology, Lanzhou University, 730020 Lanzhou, China; State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, 730020 Lanzhou, China.
| |
Collapse
|