1
|
Yang S, Zheng C, Cheng S, Wen L, Li P, Li J, Lan X, Jiang D. Albumin-conjugation enables improved tumor targeting of aptamers via SPECT imaging. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102483. [PMID: 40083648 PMCID: PMC11904533 DOI: 10.1016/j.omtn.2025.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Aptamers are single-stranded oligonucleotides with specific spatial structures. They have been widely used in preclinical studies because of their high affinity and specificity for various biological targets. AS1411, an aptamer targeting the nucleolin overexpressed on the cancer cell membrane, is one of the most promising and extensively studied aptamers. However, extremely low bioavailability due to rapid renal excretion remains a great obstacle for aptamers' clinical translation. Human serum albumin (HSA), with long blood circulation and excellent biocompatibility, has been an attractive vehicle for extending drugs' blood half-life in the clinic. This work investigated the effect of an albumin-conjugated strategy in improving aptamers' tumor targeting in vivo for the first time by taking AS1411 as an example. HSA-AS1411 was synthesized via the maleimide-sulfhydryl reaction. The excellent serum stability and maintained target affinity of HSA-AS1411 were demonstrated in vitro. The pharmacokinetic analysis and tumor SPECT imaging studies revealed that HSA-AS1411 had over 14 times longer circulation half-life and superior tumor uptake than those of AS1411. The immunofluorescence staining of tumor tissues further indicated the improved tumor retention of AS1411 as a result of prolonged blood circulation. Therefore, the HSA-conjugated strategy has a promising prospect in improving aptamers' tumor targeting for clinical applications.
Collapse
Affiliation(s)
- Shaowen Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan 430022, China
| | - Chengwen Zheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan 430022, China
| | - Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan 430022, China
| | - Li Wen
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan 430022, China
| | - Pinghui Li
- Inner Mongolia Medical University, Hohhot 010050, China
| | - Jianbo Li
- Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan 430022, China
| |
Collapse
|
2
|
Yue F, Hu M, Bai M, Guo Y, Sun X, Zhao G. An exonuclease III-driven dual-mode aptasensor based on Au-Pd@Fc nanozyme and magnetic separation pretreatment for aminoglycoside antibiotics detection. Food Chem 2024; 460:140480. [PMID: 39032300 DOI: 10.1016/j.foodchem.2024.140480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
A novel dual-mode aptasensor was constructed for aminoglycoside antibiotics (AAs) detection by using a broad-spectrum aptamer as a biorecognition element, and Au-Pd@Fc functionalized by signal DNA as nanoprobes. In electrochemical mode, the target-induced cyclic amplification reaction run under the action of exonuclease-III, which increased the number of nanoprobes on the electrode surface. AAs could be quantitatively detected with LOD of 0.0355 ± 0.00613 nM. In colorimetric mode, the Au-Pd@Fc nanozyme catalyzed the color reaction of 3,3',5,5'-tetramethylbenzidine. The blue-shifted absorbance will be observed with the change of AAs concentration, and the LOD was 0.0458 ± 0.00572 nM. Furthermore, a magnetic molecular-imprinted material capable of specific adsorption of AAs was prepared on milk sample pretreatment. The aptasensor was used to detect 10 kinds of AAs in milk and the recoveries were 97.19 ± 4.41% ∼ 98.70 ± 4.45% and 96.38 ± 3.53%-97.54 ± 4.13% in electrochemical and colorimetric methods. This work provided a theoretical basis for the application of aptamers in simultaneous detection of antibiotics.
Collapse
Affiliation(s)
- Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong Province, China; School of Agricultural and Bioengineering, Heze University, No. 2269 Daxue Road, Heze 274015, Shandong Province, China
| | - Mengjiao Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong Province, China
| | - Mengyuan Bai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong Province, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong Province, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo 255049, Shandong Province, China.
| | - Guihong Zhao
- School of Agricultural and Bioengineering, Heze University, No. 2269 Daxue Road, Heze 274015, Shandong Province, China.
| |
Collapse
|
3
|
Kumar V, Chopada R, Singh A, Kumar N, Misra M, Kim KH. The potential of MXene-based materials in fluorescence-based sensing/biosensing of ionic and organic contaminants in environment and food samples: Recent advancements and challenges. Adv Colloid Interface Sci 2024; 332:103264. [PMID: 39116585 DOI: 10.1016/j.cis.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/15/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
MXenes belong to one of the recently developed advanced materials with tremendous potential for diverse sensing applications. To date, various types of MXene-based materials have been developed to generate direct/indirect ultrasensitive sensing signals against various forms of analytes via fluorescence quenching or enhancement. In this work, the fluorescence sensing/biosensing capabilities of the MXene-based materials have been explored and evaluated against a list of ionic/emerging pollutants in environment and food matrices. The suitability of an MXene-based sensing approach is also validated through the assessment of the performance based on the basic quality assurance parameters, e.g., limit of detection (LOD), sensing range, and response time. Accordingly, the best performing MXene-based materials are selected and recommended for the given target(s) to help facilitate their scalable applications under real-world conditions.
Collapse
Affiliation(s)
- Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
| | - Rinkal Chopada
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Ashwani Singh
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India; Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Nitin Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India; Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, India
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
4
|
Wu B, Sun X, Shao Z, Liu S, Yang Z, Zhang Q, Wei Y. Gold nanoparticle-enhanced D-shaped optical fiber sensor for mercury ion detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5872-5882. [PMID: 39148341 DOI: 10.1039/d4ay00811a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Mercury ions (Hg2+) are highly toxic heavy metal ions that pose serious health risks to humans when present at concentrations above the safety threshold. Therefore, the development of a rapid and effective Hg2+ detection method is of significant importance. In this study, based on surface plasmon resonance (SPR) technology integrated with COMSOL simulation analysis, a highly sensitive and selective Hg2+ sensing system is constructed. Initially, gold nanoparticles and the surface of a fiber-optic gold film are modified by sodium sulfide (Na2S). In the presence of Hg2+, the sulfur ions on the modified gold film and gold nanoparticles specifically bind to Hg2+, forming the composite structure Au/S-Hg2+-S/AuNPS. Due to the strong electromagnetic coupling between the gold nanoparticles and the gold film, a significant SPR wavelength shift occurs. These results show that the Hg2+ sensor has high sensitivity and enhanced selectivity. The detection limit for mercury ions was 8.15 nM, and the recovery rate in real environmental samples was up to 90.1-97.3%. This sensing system provides an alternative method for rapid and accurate determination of mercury content.
Collapse
Affiliation(s)
- Bing Wu
- Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, China.
| | - Xiaoyu Sun
- Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, China.
| | - Zeman Shao
- Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, China.
| | - Sen Liu
- Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, China.
| | - Zhongmei Yang
- Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, China.
| | - Qiuyang Zhang
- Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, China.
| | - Yanchun Wei
- Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai'an, Jiangsu, China.
| |
Collapse
|
5
|
Choukairi M, Hejji L, Achache M, Touil M, Bouchta D, Draoui K, Azzouz A. Electrochemical and quantum chemical approaches to the study of dopamine sensing using bentonite and l-cysteine modified carbon paste electrode. Talanta 2024; 276:126247. [PMID: 38759358 DOI: 10.1016/j.talanta.2024.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
This work presents a significant investigation involving both electrochemical experiment and quantum chemical simulation approaches. The objective was to characterize the electrochemical detection of dopamine (DA). The detection was carried out using a modified carbon paste electrode (CPE) incorporating bentonite (Bent) and l-cysteine (CySH) (named as CySH/Bent/CPE). To understand and explain the oxidation mechanism of DA on the CySH/Bent modified electrode surface, the coupling of the two approaches were exploited. The CySH/Bent/CPE showed excellent electroactivity toward DA such as good sensibility, selectivity, stability, and regenerative ability. The developed sensor shows a dynamic linear range from 0.8 to 80 μM with a limit of detection and quantification of 0.5 μM and 1.5 μM, respectively. During the quantitative analysis of DA in presence of ascorbic acid (AA) and uric acid (UA) the electrochemical oxidation signals of AA, DA, and UA distinctly appear as three separate peaks. The potential differences between the peaks are 190 mv, 150 mv, and 340 mV for the AA-DA, DA-UA, and AA-UA oxidation pairs, respectively. These observations stem from square wave voltammetry (SWV) studies, along with the corresponding redox peak potential separations. The developed sensor is simple and accurate to monitor DA in human serum samples. On the other hand, CySH acts as an electrocatalyst on the CySH/Bent/CPE surface by increasing its active electron transfer sites, as suggested by the quantum chemical modeling with analytical results of Fukui. Furthermore, the voltammetric results obtained agree well with the theoretical calculations.
Collapse
Affiliation(s)
- Mohamed Choukairi
- Laboratory of Materials Engineering and Sustainable Energy (MISE-Lab), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco.
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'H IannechI, 93002, Tetouan, Morocco
| | - Mohamed Achache
- Laboratory of Materials Engineering and Sustainable Energy (MISE-Lab), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - M'hamed Touil
- Laboratory of Materials Engineering and Sustainable Energy (MISE-Lab), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Dounia Bouchta
- Laboratory of Materials Engineering and Sustainable Energy (MISE-Lab), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Khalid Draoui
- Laboratory of Materials Engineering and Sustainable Energy (MISE-Lab), Faculty of Science, Abdelmalek Essaadi University, B.P. 2121, 93002, Tetouan, Morocco
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'H IannechI, 93002, Tetouan, Morocco.
| |
Collapse
|
6
|
Udhayakumari D. A Review of Nanotechnology-Enabled Fluorescent Chemosensors for Environmental Toxic Ion Detection. J Fluoresc 2024:10.1007/s10895-024-03793-8. [PMID: 38949752 DOI: 10.1007/s10895-024-03793-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
This review examines the utilization of nanotechnology-based chemosensors for identifying environmental toxic ions. Over recent decades, the creation of nanoscale materials for applications in chemical sensing, biomedical, and biological analyses has emerged as a promising avenue. Nanomaterials play a vital role in improving the sensitivity and selectivity of chemosensors, thereby making them effective tools for monitoring and evaluating environmental contamination. This is due to their highly adjustable size- and shape-dependent chemical and physical properties. Nanomaterials possess distinct surface chemistry, thermal stability, high surface area, and large pore volume per unit mass, which can be harnessed for sensor development. The discussion encompasses different types of nanomaterials utilized in chemosensor design, LOD, their sensing mechanisms, and their efficacy in detecting specific toxic ions. Furthermore, the review explores the progress made, obstacles faced, and future prospects in this rapidly evolving field, highlighting the potential contributions of nanotechnology to the creation of robust sensing platforms for environmental monitoring.
Collapse
|
7
|
Raghunathan M, Kapoor A, Kumar P, Laxshmivarahan A, Tripathi SC, Ahmad I, Pal DB. Nanostructured transition metal dichalcogenides-based colorimetric sensors: Synthesis, characterization, and emerging applications. LUMINESCENCE 2024; 39:e4833. [PMID: 39051471 DOI: 10.1002/bio.4833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
Nanostructured transition metal dichalcogenides (TMDCs) have garnered significant attention as prospective materials for the development of highly sensitive and versatile colorimetric sensors. This work explores the synthesis, characterization, and emerging applications of TMDC-based sensors, focusing on their unique structural aspects and inherent properties. The synthesis methods involve tailored fabrication techniques, such as chemical vapor deposition and hydrothermal processes, aimed at producing well-defined nanostructures that enhance sensor performance. Characterization techniques, including microscopy, spectroscopy, and surface analysis, are employed to elucidate the structural and chemical features of the nanostructured TMDCs. These analyses provide insights into the correlation between the material's morphology and its sensing capabilities. The colorimetric sensing mechanism relies on the modulation of optical properties in response to specific analytes, enabling rapid and visual detection. The emerging applications of TMDC-based colorimetric sensors span diverse fields, including environmental monitoring, healthcare, and industrial processes. The sensors exhibit high sensitivity, selectivity, and real-time response, making them ideal candidates for detecting various target analytes. Furthermore, their integration with complementary technologies such as microfluidics, can facilitate the development of on-site and point-of-care applications. This work highlights the interdisciplinary significance of nanostructured TMDC-based colorimetric sensors and underscores their potential contributions to addressing contemporary challenges in sensing technology.
Collapse
Affiliation(s)
- Muthukumar Raghunathan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| | - Praveen Kumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Ananya Laxshmivarahan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - Subhash Chandra Tripathi
- Institute of Applied Sciences & Humanities, Department of Chemistry, GLA University, Mathura, Uttar Pradesh, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Harcourt Butler Technical University, Kanpur, Uttar Pradesh, India
| |
Collapse
|
8
|
Aziz K, Naz A, Raza N, Manzoor S, Kim KH. Reduced and modified graphene oxide with Ag/V 2O 5 as a ternary composite visible light photocatalyst against dyes and pesticides. ENVIRONMENTAL RESEARCH 2024; 247:118256. [PMID: 38266900 DOI: 10.1016/j.envres.2024.118256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 01/26/2024]
Abstract
Water pollution by dyes and pesticides poses significant threats to our ecosystem. In this research, a visible-light ternary composite photocatalytic system was fabricated using graphene oxide (GO) by reducing with N2H4, modifying with KOH, and decorating with Ag/V2O5. The fabricated photocatalysts were characterized through FTIR, SEM, XRD, BET, PL, EDX, ESR, UV-vis spectroscopy, TGA, ESI-MS, and Raman spectroscopy. The point zero charge of the reduced and modified GO (RMGO/Ag/V2O5) was measured to be 6.7 by the pH drift method. This ternary composite was able to achieve complete removal of methyl orange (MO) and chlorpyrifos (CP) in solutions in 80 min under the optimum operation conditions (e.g., in terms of pollutant/catalyst concentrations, pH effects, and contact time). The role of active species responsible for photocatalytic activity was confirmed by scavenger analysis and ESR investigations. The potential mechanism for photocatalytic activity was studied through a fragmentation process carried out by MS analysis. Through nonlinear fitting of the experimental data, MO and CP exhibited the best fit results with the pseudo 1st-order kinetics (quantum yields of 1.07 × 10-3 and 2.16 × 10-3 molecules photon-1 and space-time yields of 1.53 × 10-5 and 2.7 × 10-5 molecules photon-1 mg-1, respectively). The structure of the nanomaterials remained mostly intact to support increased stability and reusability of the prepared photocatalysts even after 10 successive regeneration cycles.
Collapse
Affiliation(s)
- Khalid Aziz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Asma Naz
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan.
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Shamaila Manzoor
- Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská Dolina, Bratislava, 842 48, Slovakia
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
9
|
Melo RLF, Neto FS, Dari DN, Fernandes BCC, Freire TM, Fechine PBA, Soares JM, Dos Santos JCS. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 2024; 264:130817. [PMID: 38479669 DOI: 10.1016/j.ijbiomac.2024.130817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Biosensors with nanomaterials and enzymes detect and quantify specific targets in samples, converting recognition into measurable signals. The study explores the intrinsic synergy between these elements for detecting and quantifying particular targets in biological and environmental samples, with results demonstrated through bibliometric analysis and a comprehensive review of enzyme-based biosensors. Using WoS, 57,331 articles were analyzed and refined to 880. Key journals, countries, institutions, and relevant authors were identified. The main areas highlighted the multidisciplinary nature of the field, and critical keywords identified five thematic clusters, revealing the primary nanoparticles used (CNTs, graphene, AuNPs), major application fields, basic application themes, and niche topics such as sensitive detection, peroxidase activity, and quantum dot utilization. The biosensor overview covered nanomaterials and their primary applications, addressing recent advances and inherent challenges. Patent analysis emphasized the U.S. leadership in the industrial sector, contrasting with China's academic prominence. Future studies should focus on enhancing biosensor portability and analysis speed, with challenges encompassing efficient integration with recent technologies and improving stability and reproducibility in the nanomaterial-enzyme interaction.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Bloco 729, CEP 60440-554 Fortaleza, CE, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, CEP 60455-760 Fortaleza, CE, Brazil
| | - Dayana Nascimento Dari
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró CEP 59625-900, RN, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, CEP 60451-970 Fortaleza, CE, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró CEP 59610-090, RN, Brazil.
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790-970 Redenção, CE, Brazil.
| |
Collapse
|
10
|
Gontrani L, Bauer EM, Casoli L, Ricci C, Lembo A, Donia DT, Quaranta S, Carbone M. Inulin-Coated ZnO Nanoparticles: A Correlation between Preparation and Properties for Biostimulation Purposes. Int J Mol Sci 2024; 25:2703. [PMID: 38473955 DOI: 10.3390/ijms25052703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Within the framework of plant biostimulation, a pivotal role is played by the achievement of low-cost, easily prepared nanoparticles for priming purposes. Therefore, in this report, two different synthetic strategies are described to engineer zinc oxide nanoparticles with an inulin coating. In both protocols, i.e., two-step and gel-like one-pot protocols, nanoparticles with a highly pure ZnO kernel are obtained when the reaction is carried out at T ≥ 40 °C, as ascertained by XRD and ATR/FTIR studies. However, a uniformly dispersed, highly homogeneous coating is achieved primarily when different temperatures, i.e., 60 °C and 40 °C, are employed in the two phases of the step-wise synthesis. In addition, a different binding mechanism, i.e., complexation, occurs in this case. When the gel-like process is employed, a high degree of coverage by the fructan is attained, leading to micrometric coated aggregates of nanometric particles, as revealed by SEM investigations. All NPs from the two-step synthesis feature electronic bandgaps in the 3.25-3.30 eV range in line with previous studies, whereas the extensive coating causes a remarkable 0.4 eV decrease in the bandgap. Overall, the global analysis of the investigations indicates that the samples synthesized at 60 °C and 40 °C are the best suited for biostimulation. Proof-of-principle assays upon Vicia faba seed priming with Zn5 and Zn5@inu indicated an effective growth stimulation of seedlings at doses of 100 mgKg-1, with concomitant Zn accumulation in the leaves.
Collapse
Affiliation(s)
- Lorenzo Gontrani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Elvira Maria Bauer
- Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Strada Provinciale 35d, n. 9, 00015 Monterotondo, Italy
| | - Lorenzo Casoli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Cosimo Ricci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Angelo Lembo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Domenica Tommasa Donia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simone Quaranta
- Institute for the Study of Nanostructured Materials-Italian National Research Council (ISMN-CNR), Strada Provinciale 35 d, n. 9, 00010 Montelibretti, Italy
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
11
|
Ateia M, Wei H, Andreescu S. Sensors for Emerging Water Contaminants: Overcoming Roadblocks to Innovation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2636-2651. [PMID: 38302436 DOI: 10.1021/acs.est.3c09889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ensuring water quality and safety requires the effective detection of emerging contaminants, which present significant risks to both human health and the environment. Field deployable low-cost sensors provide solutions to detect contaminants at their source and enable large-scale water quality monitoring and management. Unfortunately, the availability and utilization of such sensors remain limited. This Perspective examines current sensing technologies for detecting emerging contaminants and analyzes critical barriers, such as high costs, lack of reliability, difficulties in implementation in real-world settings, and lack of stakeholder involvement in sensor design. These technical and nontechnical barriers severely hinder progression from proof-of-concepts and negatively impact user experience factors such as ease-of-use and actionability using sensing data, ultimately affecting successful translation and widespread adoption of these technologies. We provide examples of specific sensing systems and explore key strategies to address the remaining scientific challenges that must be overcome to translate these technologies into the field such as improving sensitivity, selectivity, robustness, and performance in real-world water environments. Other critical aspects such as tailoring research to meet end-users' requirements, integrating cost considerations and consumer needs into the early prototype design, establishing standardized evaluation and validation protocols, fostering academia-industry collaborations, maximizing data value by establishing data sharing initiatives, and promoting workforce development are also discussed. The Perspective describes a set of guidelines for the development, translation, and implementation of water quality sensors to swiftly and accurately detect, analyze, track, and manage contamination.
Collapse
Affiliation(s)
- Mohamed Ateia
- Center for Environmental Solutions & Emergency Response, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1827, United States
| | - Haoran Wei
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park Street, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13676-5810, United States
| |
Collapse
|