1
|
Cheng L, Lian J, Wang X, Munir MAM, Huang X, He Z, Xu C, Tong W, Yang X. Evaluating a Soil Amendment for Cadmium Mitigation and Enhanced Nutritional Quality in Faba Bean Genotypes: Implications for Food Safety. PLANTS (BASEL, SWITZERLAND) 2025; 14:141. [PMID: 39795401 PMCID: PMC11723064 DOI: 10.3390/plants14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Soil amendments combined with low cadmium (Cd)-accumulating crops are commonly used for remediating Cd contamination and ensuring food safety. However, the combined effects of soil amendments and the cultivation of faba beans (Vicia faba L.)-known for their high nutritional quality and low Cd accumulation-in moderately Cd-contaminated soils remain underexplored. This study investigates the impact of a soil amendment (SA) on agronomic traits, seed nutrition, and Cd accumulation in 11 faba bean genotypes grown in acidic soil (1.3 mg·kg-1 Cd, pH 5.39). The SA treatment increased soil pH to 6.0 (an 11.31% increase) and reduced DTPA-Cd by 37.1%. Although the average yield of faba beans decreased marginally by 8.74%, it remained within the 10% national permissible limit. Notably, SA treatment reduced Cd concentration in seeds by 60% and significantly mitigated Mn and Al toxicity. Additionally, SA treatment enhanced levels of essential macronutrients (Ca, Mg, P, S) and micronutrients (Mo, Cu) while lowering Phytate (Phy)/Ca, Phy/Mg, and Phy/P ratios, thus improving mineral nutrient bioavailability. Among the genotypes, F3, F5, and F6 showed the most favorable balance of nutrient quality, and yield following SA application. This study provides valuable insights into the effectiveness of SA for nutrient fortification and Cd contamination mitigation in Cd-contaminated farmland.
Collapse
Affiliation(s)
- Liping Cheng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Jiapan Lian
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi University, Nanning 530004, China
| | - Xin Wang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Mehr Ahmed Mujtaba Munir
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Xiwei Huang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| | - Zhenli He
- Department of Soil, Water and Ecosystem Sciences, Indian River Research and Education Center, University of Florida—IFAS, Fort Pierce, FL 34945, USA;
| | - Chengjian Xu
- Qujiang District Agricultural Technology Extension Center, Quzhou 324022, China;
| | - Wenbin Tong
- Qujiang District Agricultural Technology Extension Center, Quzhou 324022, China;
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China; (L.C.); (J.L.); (X.W.); (M.A.M.M.); (X.H.)
| |
Collapse
|
2
|
Su J, Ma Y, Xu Z, Liu Y, Zhao Y, Li X, Hu Y. Cumulative effects of experimental nitrogen deposition on soil chemistry in a desert steppe: A 12-year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175388. [PMID: 39122050 DOI: 10.1016/j.scitotenv.2024.175388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Although the effects of human-enhanced atmospheric nitrogen (N) deposition are well documented, the response of dryland soils to N deposition remains unclear owing to the divergence in hydrological outputs and soil heterogeneity. We selected a typical desert steppe in western China to simulate the effects of long-term N deposition by applying 0 (CK), 3.5, 7, and 14 g N m-2 yr-1 for 12 consecutive years. We found that, compared with the CK plots, the total N content of the upper (0-10 cm) and lower (10-20 cm) soil layers in fertilized plots increased by 8.3-14.6 % and 2.4-8.2 %, respectively. Correspondingly, the available, NH4+-, and NO3--N contents in the upper soil significantly increased by 25.5-68.3 %. However, in the lower soil, available and NO3--N contents were significantly lower than those in the CK plots, and their variation trend was opposite to that of NH4+-N, implying N turnover and leaching. As a result, the upper and lower soil pH in fertilized plots significantly decreased by 0.36-0.53 and 0.31-0.37 units; however, their CaCO3 content significantly increased by 9.8-22.8 % and 7.2-30.3 %, respectively. The total phosphorus (P) content in the upper and lower soil layers in fertilized plots significantly increased and decreased by 3.6-51.3 % and 16.7-62.5 %, respectively, however, both significantly decreased along the N fertilization gradient. Furthermore, the upper and lower soil organic carbon (SOC) content in the fertilized plots significantly increased by 57.7-78.1 % and 19.2-27.4 %, respectively. Pearson's correlation analysis revealed that available soil P was significantly negatively correlated with plant shoot Mn content (a proxy for rhizosphere carboxylates), whereas dissolved OC, SOC, and CaCO3 were significantly positively correlated, suggesting that Ca cycling is involved in P cycling and SOC sequestration. Our study suggests that long-term N input exacerbates P limitation in desert steppes, however, enhances SOC sequestration.
Collapse
Affiliation(s)
- Jieqiong Su
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Ying Ma
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Zhihao Xu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yinzhu Liu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Testa G, Ciaramella BR, Fernando AL, Kotoula D, Scordia D, Gomes LA, Cosentino SL, Alexopoulou E, Papazoglou EG. Harnessing Lignocellulosic Crops for Phytomanagement of Contaminated Soils: A Multi-Country Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:2671. [PMID: 39409541 PMCID: PMC11478524 DOI: 10.3390/plants13192671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
The dwindling availability of agricultural land, caused by factors such as rapid population growth, urban expansion, and soil contamination, has significantly increased the pressure on food production. To address this challenge, cultivating non-food crops on contaminated land has emerged as a promising solution. This approach not only frees up fertile soil for food production but also mitigates human exposure to contaminants. This work aimed to examine the impact of soil contamination with Cd, Pb, Ni, and Zn on the growth, productivity, metal accumulation, and the tolerance of five lignocellulosic non-food crops: switchgrass (Panicum virgatum L.), biomass sorghum (Sorghum bicolor L. Moench), giant reed (Arundo donax L.), African fodder cane (Saccharum spontaneum L. spp. aegyptiacum Willd. Hackel), and miscanthus (Miscanthus × giganteus Greef et Deu.). A two-year pot experiment was conducted in Greece, Italy, and Portugal, following the same protocols and applying various levels of metals: Cd (0, 4, 8 mg kg-1), Pb and Zn (0, 450, 900 mg kg-1), and Ni (0, 110, 220 mg kg-1). The experimental design was completely randomized, with three replicates for each treatment. The results showed that switchgrass and sorghum generally maintained their height and productivity under Cd and Pb stress but were adversely affected by high Zn and Ni concentrations. Giant reed and African fodder cane showed reduced height and productivity at higher Ni and Zn levels. Miscanthus exhibited resilience in height but experienced productivity reductions only at the highest Zn concentration. Heavy metal uptake varied among crops, with switchgrass and sorghum showing high Cd and Pb uptake, while giant reed accumulated the most Cd and Zn. Miscanthus had the highest Ni accumulation. The tolerance indices indicated that switchgrass and sorghum were more tolerant to Cd and Zn at lower concentrations, whereas miscanthus had lower tolerance to Cd but a higher tolerance to Zn at higher concentrations. Giant reed and African fodder cane demonstrated stable tolerance across most heavy metals. Accumulation indices highlighted the effectiveness of switchgrass and sorghum in Cd and Pb uptake, while miscanthus excelled in Ni and Zn accumulation. The cluster analysis revealed similar responses to heavy metal stress between African fodder cane and giant reed, as well as between sorghum and miscanthus, with switchgrass displaying distinct behavior. Overall, the study highlights the differential tolerance and accumulation capacities of these crops, indicating the potential for phytoremediation applications and biomass production in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Giorgio Testa
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (B.R.C.); (S.L.C.)
| | - Barbara Rachele Ciaramella
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (B.R.C.); (S.L.C.)
| | - Ana Luisa Fernando
- MEtRICs, CubicB, Chemistry Department (DQ), NOVA School of Science and Technology|NOVA FCT, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Danai Kotoula
- Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| | - Danilo Scordia
- Dipartimento di Scienze Veterinarie, University of Messina, Via G. Palatucci s.n., 98168 Messina, Italy;
| | | | - Salvatore Luciano Cosentino
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (B.R.C.); (S.L.C.)
| | - Efthymia Alexopoulou
- Center for Renewable Energy Sources, Biomass Department, 19009 Pikermi Attiki, Greece;
| | - Eleni G. Papazoglou
- Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece;
| |
Collapse
|
4
|
Ma S, Hu Y, Nan Z, Zhao C, Zang F, Zhao C. Recalcification stabilizes cadmium but magnifies phosphorus limitation in wastewater-irrigated calcareous soil. ENVIRONMENTAL RESEARCH 2024; 252:118920. [PMID: 38657849 DOI: 10.1016/j.envres.2024.118920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Long-term wastewater irrigation leads to the loss of calcium carbonate (CaCO3) in the tillage layer of calcareous land, which irreversibly damages the soil's ability to retain cadmium (Cd). In this study, we selected calcareous agricultural soil irrigated with wastewater for over 50 years to examine the recalcification effects of sugar beet factory lime (SBFL) at doses of 0%, 2.5%, 5%, and 10%. We found that SBFL promoted Cd transformation in the soil from active exchangeable species to more stable carbonate-bonded and residual species, which the X-ray diffraction patterns also confirmed results that CdSO4 reduced while CdS and CaCdCO3 increased. Correspondingly, the soil bioavailable Cd concentration was significantly reduced by 65.6-84.7%. The Cd concentrations in maize roots and shoots were significantly reduced by 11.7-50.6% and 13.0-70.0%, respectively, thereby promoting maize growth. Nevertheless, SBFL also increased the proportion of plant-unavailable phosphorus (P) in Ca8-P and Ca10-P by 4.3-13.0% and 10.7-25.9%, respectively, reducing the plant-available P (Olsen P) content by 5.2-22.1%. Consequently, soil P-acquiring associated enzyme (alkaline phosphatase) activity and microbial (Proteobacteria, Bacteroidota, and Actinobacteria) community abundance significantly increased. Our findings showed that adding SBFL to wastewater-irrigated calcareous soil stabilized Cd, but exacerbated P limitation. Therefore, it is necessary to alleviate P limitations in the practice of recalcifying degraded calcareous land.
Collapse
Affiliation(s)
- Shuangjin Ma
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China; Observation Station of Subalpine Ecology Systems in the Middle Qilian Mountains, Zhangye, 734000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Zhongren Nan
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Cuicui Zhao
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fei Zang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China; Observation Station of Subalpine Ecology Systems in the Middle Qilian Mountains, Zhangye, 734000, China
| | - Chuanyan Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China; Observation Station of Subalpine Ecology Systems in the Middle Qilian Mountains, Zhangye, 734000, China
| |
Collapse
|
5
|
Su J, Zeng Q, Li S, Wang R, Hu Y. Comparison of organic and synthetic amendments for poplar phytomanagement in copper and lead-contaminated calcareous soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120553. [PMID: 38471314 DOI: 10.1016/j.jenvman.2024.120553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Soil remediation can be achieved through organic and synthetic amendments, but the differences in the phytomanagement of trace metal-contaminated land are unclear. We conducted an outdoor microcosm experiment to simulate the effects of organic amendment citric acid and synthetic amendments EDTA and EGTA on poplar phytomanagement of copper (Cu)- and lead (Pb)-contaminated calcareous land at doses of 0, 1, 3, and 9 mmol kg-1. We found that soil-bioavailable Cu and Pb contents increased by 2.11-27.27 and 1.48-269 times compared to the control, respectively. Additionally, synthetic amendments had a long-lasting (within 25 days) effect on metal bioavailability relative to organic amendments. Consequently, organic amendments increased the root Cu and Pb contents by 2.68-48.61% and 6.60-49.51%, respectively, whereas synthetic amendments increased them by 65.94-260% and 12.50-103%. The Cu and Pb contents in the leaves were lower than those in the roots, and increased significantly by 47.04-179% and 237-601%, respectively, only under synthetic amendments. Interestingly, none of the amendments increased the Cu and Pb content in poplar stems (<5 mg kg-1), which remained within the normal range for terrestrial plants. Regardless of the type and addition level, the amendments did not affect poplar growth. Nevertheless, synthetic amendments caused a significant redistribution of metals (Cu: 22-32%; Pb: 23-53%) from the topsoil into the subsoil within the root zone at medium and high levels relative to organic amendments. Therefore, organic and synthetic amendments can assist poplar phytomanagement with a phytostabilization strategy for Cu- and Pb-contaminated calcareous land and obtain marketable wood biomass. Moreover, collecting leaf litter is crucial when using synthetic amendments at optimum concentration levels.
Collapse
Affiliation(s)
- Jieqiong Su
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiaohong Zeng
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuqi Li
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rui Wang
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|