1
|
Zhao Y, Zhou J, Dai S, Liu X, Zhang X. Isolation and Identification of an α-Galactosidase-Producing Lactosphaera pasteurii Strain and Its Enzymatic Expression Analysis. Molecules 2022; 27:molecules27185942. [PMID: 36144675 PMCID: PMC9502112 DOI: 10.3390/molecules27185942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022] Open
Abstract
α-Galactosidase (EC 3.2.1.22) refers to a group of enzymes that hydrolyze oligosaccharides containing α-galactoside-banded glycosides, such as stachyose, raffinose, and verbascose. These enzymes also possess great potential for application in sugar production, and in the feed and pharmaceutical industries. In this study, a strain of Lactosphaera pasteurii (WHPC005) that produces α-galactosidase was identified from the soil of Western Hunan, China. It was determined that the optimal temperature and pH for this α-galactosidase were 45 °C and 5.5, respectively. The activity of α-galactosidase was inhibited by K+, Al3+, Fe3+, fructose, sucrose, lactose, galactose, SDS, EDTA, NaCl, and (NH4)2SO4, and enhanced by Ca2+, Fe2+, Mn2, Zn2+, glucose, and raffinose. The optimal inducer was raffinose, and the optimal induction concentration was 30 μmol/L. The α-galactosidase gene was cloned using random fragment cloning methods. Sequence analysis demonstrated that the open reading frame of the α-galactosidase gene was 1230 bp, which encodes a putative protein of 409 amino acids in length. Bioinformatics analysis showed that the isoelectric point and molecular weight of this α-galactosidase were 4.84 and 47.40 kD, respectively. Random coils, alpha helixes, and beta turns were observed in its secondary structure, and conserved regions were found in the tertiary structure of this α-galactosidase. Therefore, this α-galactosidase-producing bacterial strain has the potential for application in the feed industry.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jinghui Zhou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Shan Dai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaozhu Liu
- College of Food & Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550000, China
- Correspondence: (X.L.); (X.Z.)
| | - Xuewen Zhang
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, Changsha 410128, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (X.L.); (X.Z.)
| |
Collapse
|
2
|
Anisha GS. Molecular advances in microbial α-galactosidases: challenges and prospects. World J Microbiol Biotechnol 2022; 38:148. [PMID: 35773364 DOI: 10.1007/s11274-022-03340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/19/2022] [Indexed: 11/26/2022]
Abstract
α-Galactosidase (α-D-galactosidase galactohydrolase; EC 3.2.1.22), is an industrially important enzyme that hydrolyzes the galactose residues in galactooligosaccharides and polysaccharides. The industrial production of α-galactosidase is currently insufficient owing to the high production cost, low production efficiency and low enzyme activity. Recent years have witnessed an increase in the worldwide research on molecular techniques to improve the production efficiency of microbial α-galactosidases. Cloning and overexpression of the gene sequences coding for α-galactosidases can not only increase the enzyme yield but can confer industrially beneficial characteristics to the enzyme protein. This review focuses on the molecular advances in the overexpression of α-galactosidases in bacterial and yeast/fungal expression systems. Recombinant α-galactosidases have improved biochemical and hydrolytic properties compared to their native counterparts. Metabolic engineering of microorganisms to produce high yields of α-galactosidase can also assist in the production of value-added products. Developing new variants of α-galactosidases through directed evolution can yield enzymes with increased catalytic activity and altered regioselectivity. The bottlenecks in the recombinant production of α-galactosidases are also discussed. The knowledge about the hurdles in the overexpression of recombinant proteins illuminates the emerging possibilities of developing a successful microbial cell factory and widens the opportunities for the production of industrially beneficial α-galactosidases.
Collapse
Affiliation(s)
- Grace Sathyanesan Anisha
- Post-Graduate and Research Department of Zoology, Government College for Women, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
3
|
Wang J, Cao X, Chen W, Xu J, Wu B. Identification and Characterization of a Thermostable GH36 α-Galactosidase from Anoxybacillusvitaminiphilus WMF1 and Its Application in Synthesizing Isofloridoside by Reverse Hydrolysis. Int J Mol Sci 2021; 22:10778. [PMID: 34639118 PMCID: PMC8509150 DOI: 10.3390/ijms221910778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
An α-galactosidase-producing strain named Anoxybacillus vitaminiphilus WMF1, which catalyzed the reverse hydrolysis of d-galactose and glycerol to produce isofloridoside, was isolated from soil. The α-galactosidase (galV) gene was cloned and expressed in Escherichia coli. The galV was classified into the GH36 family with a molecular mass of 80 kDa. The optimum pH and temperature of galV was pH 7.5 and 60 °C, respectively, and it was highly stable at alkaline pH (6.0-9.0) and temperature below 65 °C. The specificity for p-nitrophenyl α-d-galactopyranoside was 70 U/mg, much higher than that for raffinose and stachyose. Among the metals and reagents tested, galV showed tolerance in the presence of various organic solvents. The kinetic parameters of the enzyme towards p-nitrophenyl α-d-galactopyranoside were obtained as Km (0.12 mM), Vmax (1.10 × 10-3 mM s-1), and Kcat/Km (763.92 mM-1 s-1). During the reaction of reverse hydrolysis, the enzyme exhibited high specificity towards the glycosyl donor galactose and acceptors glycerol, ethanol and ethylene glycol. Finally, the isofloridoside was synthesized using galactose as the donor and glycerol as the acceptor with a 26.6% conversion rate of galactose. This study indicated that galV might provide a potential enzyme source in producing isofloridoside because of its high thermal stability and activity.
Collapse
Affiliation(s)
- Jialing Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
- School of Pharmaceutical Sciences, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Xuefei Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| | - Weihao Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| | - Jiaxing Xu
- College of Chemistry and Chemical Engineering, Huaiyin Normal University, 111 Jiangxi Road, Huai’an 223300, China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China; (J.W.); (X.C.); (W.C.)
| |
Collapse
|
4
|
Sasaki Y, Uchimura Y, Kitahara K, Fujita K. Characterization of a GH36 α-D-Galactosidase Associated with Assimilation of Gum Arabic in Bifidobacterium longum subsp. longum JCM7052. J Appl Glycosci (1999) 2021; 68:47-52. [PMID: 34429699 PMCID: PMC8367640 DOI: 10.5458/jag.jag.jag-2021_0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/09/2021] [Indexed: 10/30/2022] Open
Abstract
We recently characterized a 3-O-α-D-galactosyl-α-L-arabinofuranosidase (GAfase) for the release of α-D-Gal-(1→3)-L-Ara from gum arabic arabinogalactan protein (AGP) in Bifidobacterium longum subsp. longum JCM7052. In the present study, we cloned and characterized a neighboring α-galactosidase gene (BLGA_00330; blAga3). It contained an Open Reading Frame of 2151-bp nucleotides encoding 716 amino acids with an estimated molecular mass of 79,587 Da. Recombinant BlAga3 released galactose from α-D-Gal-(1→3)-L-Ara, but not from intact gum arabic AGP, and a little from the related oligosaccharides. The enzyme also showed the activity toward blood group B liner trisaccharide. The specific activity for α-D-Gal-(1→3)-L-Ara was 4.27- and 2.10-fold higher than those for melibiose and raffinose, respectively. The optimal pH and temperature were 6.0 and 50 °C, respectively. BlAga3 is an intracellular α-galactosidase that cleaves α-D-Gal-(1→3)-L-Ara produced by GAfase; it is also responsible for a series of gum arabic AGP degradation in B. longum JCM7052.
Collapse
Affiliation(s)
- Yuki Sasaki
- 1 The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Yumi Uchimura
- 2 Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University
| | - Kanefumi Kitahara
- 1 The United Graduate School of Agricultural Sciences, Kagoshima University.,2 Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University
| | - Kiyotaka Fujita
- 1 The United Graduate School of Agricultural Sciences, Kagoshima University.,2 Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University
| |
Collapse
|
5
|
Delgado-Fernandez P, de Las Rivas B, Muñoz R, Jimeno ML, Doyagüez EG, Corzo N, Moreno FJ. Biosynthesis of Nondigestible Galactose-Containing Hetero-oligosaccharides by Lactobacillus plantarum WCFS1 MelA α-Galactosidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:955-965. [PMID: 33434031 DOI: 10.1021/acs.jafc.0c06417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work describes the high capacity of MelA α-galactosidase from Lactobacillus plantarum WCFS1 to transfer galactosyl residues from melibiose to the C6-hydroxyl group of disaccharide-acceptors with β-linkages (lactulose, lactose, and cellobiose) or α-linkages (isomaltulose and isomaltose) to produce novel galactose-containing hetero-oligosaccharides (HOS). A comprehensive nuclear magnetic resonance characterization of the transfer products derived from melibiose:lactulose reaction mixtures revealed the biosynthesis of α-d-galactopyranosyl-(1 → 6)-β-d-galactopyranosyl-(1 → 4)-β-d-fructose as the main component as well as the presence of α-d-galactopyranosyl-(1 → 3)-β-d-galactopyranosyl-(1 → 4)-β-d-fructose and α-d-galactopyranosyl-(1 → 6)-α-d-galactopyranosyl-(1 → 6)-β-d-galactopyranosyl-(1 → 4)-β-d-fructose. Melibiose-derived α-galactooligosaccharides (α-GOS), manninotriose and verbascotetraose, were also simultaneously synthesized. An in vitro assessment of the intestinal digestibility of the novel biosynthesized HOS revealed a high resistance of α-galactosides derived from lactulose, lactose, cellobiose, and isomaltulose. According to the evidence gathered for conventional α-GOS and certain disaccharides used as acceptors in this work, these novel nondigestible α-galactosides could be potential candidates to selectively modulate the gut microbiota composition, among other applications, such as low-calorie food ingredients.
Collapse
Affiliation(s)
- Paloma Delgado-Fernandez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Blanca de Las Rivas
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rosario Muñoz
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Luisa Jimeno
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Nieves Corzo
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
6
|
Wang J, Yang X, Yang Y, Liu Y, Piao X, Cao Y. Characterization of a protease-resistant α-galactosidase from Aspergillus oryzae YZ1 and its application in hydrolysis of raffinose family oligosaccharides from soymilk. Int J Biol Macromol 2020; 158:708-720. [PMID: 32387605 DOI: 10.1016/j.ijbiomac.2020.04.256] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
The α-galactosidase gene (galC) was cloned from Aspergillus oryzae YZ1 and expressed in Pichia pastoris. The galC (2319 bp) containing two introns encoded a protein of 726 amino acids. The activity of the α-galactosidase (GalC) increased 1-fold after coding sequence optimization. Purified GalC exhibited a single protein band (100 kDa) in SDS-PAGE. The optimum pH and temperature of GalC were pH 4.66 and 50 °C, respectively. Like many GH36 family α-galactosidases, GalC displayed its activities towards raffinose and stachyose. The Km values for pNPG, raffinose and stachyose were 2.16, 4.63 and 8.54 mM, respectively. The GalC retained about 90% activity within the pH range 3.0-8.0. The activity of GalC was inhibited by Cu2+, while Ca2+ increased the enzyme activity. Different concentrations of glucose, mannose, galactose, xylose and sucrose slightly affected the activity of GalC. The GalC displayed strong resistance to trypsin, α-chymotrypsin, and proteinase K. Under simulated gastric conditions, GalC maintained most of its native activity after pepsin treatment for 3 h. The GalC could also effectively degrade raffinose and stachyose in soymilk. The GalC with high hydrolysis efficiency towards raffinose family oligosaccharides (RFOs) and strong resistance to proteases is considered to have great potential in food and feed industries.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xu Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yongzhi Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yajing Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
7
|
A thermophilic fungal GH36 α-galactosidase from Lichtheimia ramosa and its synergistic hydrolysis of locust bean gum. Carbohydr Res 2020; 491:107911. [PMID: 32217360 DOI: 10.1016/j.carres.2020.107911] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 01/07/2023]
Abstract
A novel GH36 α-galactosidase gene (LrAgal36A) from Lichtheimia ramosa was synthesized and highly expressed in Pichia pastoris. The enzyme titer and protein yield for high-density fermentation in a 5 L fermentor were up to 953.6 U mL-1 and 4.36 g L-1. Purified recombinant LrAgal36A showed the maximum activity at pH 6.0 and 65 °C and was thermostable with a half-life of 70 min at 60 °C. LrAgal36A displayed the highest specific activity (353.17 ± 4.19 U mg-1) toward p-nitrophenyl-α-d-galactopyranoside (pNPGal) followed by galacto-oligosaccharides and could act slightly on galactomannans. The Km and catalytic efficiency (kcat/Km) of LrAgal36A for pNPGal were 0.33 mM and 1569.50 mM-1 s-1, respectively. LrAgal36A and GH5 β-mannanase from L. ramosa showed a significant synergistic effect on the degradation of locust bean gum (LBG), resulting in release more reducing sugars (1.56 folds) and galactose (7.6 folds) by simultaneous or sequential reactions. Due to its hydrolysis properties, LrAgal36A might have potential applications in the area of pulp biobleaching, feed and food processing.
Collapse
|
8
|
Production of isofloridoside from galactose and glycerol using α-galactosidase from Alicyclobacillus hesperidum. Enzyme Microb Technol 2020; 134:109480. [DOI: 10.1016/j.enzmictec.2019.109480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 11/23/2022]
|
9
|
Coconi Linares N, Dilokpimol A, Stålbrand H, Mäkelä MR, de Vries RP. Recombinant production and characterization of six novel GH27 and GH36 α-galactosidases from Penicillium subrubescens and their synergism with a commercial mannanase during the hydrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 295:122258. [PMID: 31639625 DOI: 10.1016/j.biortech.2019.122258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
α-Galactosidases are important industrial enzymes for hemicellulosic biomass degradation or modification. In this study, six novel extracellular α-galactosidases from Penicillium subrubescens were produced in Pichia pastoris and characterized. All α-galactosidases exhibited high affinity to pNPαGal, and only AglE was not active towards galacto-oligomers. Especially AglB and AglD released high amounts of galactose from guar gum, carob galactomannan and locust bean, but combining α-galactosidases with an endomannanase dramatically improved galactose release. Structural comparisons to other α-galactosidases and homology modelling showed high sequence similarities, albeit significant differences in mechanisms of productive binding, including discrimination between various galactosides. To our knowledge, this is the first study of such an extensive repertoire of extracellular fungal α-galactosidases, to demonstrate their potential for degradation of galactomannan-rich biomass. These findings contribute to understanding the differences within glycoside hydrolase families, to facilitate the development of new strategies to generate tailor-made enzymes for new industrial bioprocesses.
Collapse
Affiliation(s)
- Nancy Coconi Linares
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, S-221 00 Lund, Sweden
| | - Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Department of Microbiology, University of Helsinki, P.O. Box 56, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
10
|
Wang ZP, Zhang LL, Liu S, Liu XY, Yu XJ. Whole Conversion of Soybean Molasses into Isomaltulose and Ethanol by Combining Enzymatic Hydrolysis and Successive Selective Fermentations. Biomolecules 2019; 9:E353. [PMID: 31404957 PMCID: PMC6722743 DOI: 10.3390/biom9080353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 12/02/2022] Open
Abstract
Isomaltulose is mainly produced from sucrose by microbial fermentation, when the utilization of sucrose contributes a high production cost. To achieve a low-cost isomaltulose production, soy molasses was introduced as an alternative substrate. Firstly, α-galactosidase gene from Rhizomucor miehei was expressed in Yarrowia lipolytica, which then showed a galactosidase activity of 121.6 U/mL. Under the effects of the recombinant α-galactosidase, most of the raffinose-family oligosaccharides in soy molasses were hydrolyzed into sucrose. Then the soy molasses hydrolysate with high sucrose content (22.04%, w/w) was supplemented into the medium, with an isomaltulose production of 209.4 g/L, and the yield of 0.95 g/g. Finally, by virtue of the bioremoval process using Pichia stipitis, sugar byproducts in broth were transformed into ethanol at the end of fermentation, thus resulting in high isomaltulose purity (97.8%). The bioprocess employed in this study provides a novel strategy for low-cost and efficient isomaltulose production from soybean molasses.
Collapse
Affiliation(s)
- Zhi-Peng Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin-Lin Zhang
- College of Chemistry & Environmental Engineering, Shandong University of Science & Technology, Qingdao 266510, China
| | - Song Liu
- Development & Reform Bureau, West Coast New Area, Qingdao 266000, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, China.
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
11
|
Characterization of a high performance α-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk. Int J Biol Macromol 2019; 131:1138-1146. [DOI: 10.1016/j.ijbiomac.2019.04.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
|
12
|
A protease-resistant α-galactosidase characterized by relatively acid pH tolerance from the Shitake Mushroom Lentinula edodes. Int J Biol Macromol 2019; 128:324-330. [DOI: 10.1016/j.ijbiomac.2019.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/24/2018] [Accepted: 01/11/2019] [Indexed: 11/18/2022]
|
13
|
Gürkök S, Ögel ZB. TRANSGALACTOSYLATION FOR GALACTOOLIGOSACCHARIDE SYNTHESIS USING PURIFIED AND CHARACTERIZED RECOMBINANT α-GALACTOSIDASE FROM Aspergillus fumigatus IMI 385708 OVEREXPRESSED IN Aspergillus sojae. ACTA ACUST UNITED AC 2019. [DOI: 10.3153/fh19007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Liu Y, Yang S, Yan Q, Liu J, Jiang Z. High-level expression of a novel protease-resistant α-galactosidase from Thielavia terrestris. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Characterization of a novel GH36 α-galactosidase from Bacillus megaterium and its application in degradation of raffinose family oligosaccharides. Int J Biol Macromol 2018; 108:98-104. [DOI: 10.1016/j.ijbiomac.2017.11.154] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/31/2017] [Accepted: 11/25/2017] [Indexed: 11/21/2022]
|
16
|
Thermus thermophilus as source of thermozymes for biotechnological applications: homologous expression and biochemical characterization of an α-galactosidase. Microb Cell Fact 2017; 16:28. [PMID: 28193276 PMCID: PMC5307791 DOI: 10.1186/s12934-017-0638-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/25/2017] [Indexed: 11/17/2022] Open
Abstract
Background The genus Thermus, which has been considered for a long time as a fruitful source of biotechnological relevant enzymes, has emerged more recently as suitable host to overproduce thermozymes. Among these, α-galactosidases are widely used in several industrial bioprocesses that require high working temperatures and for which thermostable variants offer considerable advantages over their thermolabile counterparts. Results Thermus thermophilus HB27 strain was used for the homologous expression of the TTP0072 gene encoding for an α-galactosidase (TtGalA). Interestingly, a soluble and active histidine-tagged enzyme was produced in larger amounts (5 mg/L) in this thermophilic host than in Escherichia coli (0.5 mg/L). The purified recombinant enzyme showed an optimal activity at 90 °C and retained more than 40% of activity over a broad range of pH (from 5 to 8). Conclusions TtGalA is among the most thermoactive and thermostable α-galactosidases discovered so far, thus pointing to T. thermophilus as cell factory for the recombinant production of biocatalysts active at temperature values over 90 °C. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0638-4) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Hu Y, Tian G, Zhao L, Wang H, Ng TB. A protease-resistant α-galactosidase from Pleurotus djamor with broad pH stability and good hydrolytic activity toward raffinose family oligosaccharides. Int J Biol Macromol 2017; 94:122-130. [DOI: 10.1016/j.ijbiomac.2016.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 09/28/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022]
|
18
|
Improving the Secretory Expression of an -Galactosidase from Aspergillus niger in Pichia pastoris. PLoS One 2016; 11:e0161529. [PMID: 27548309 PMCID: PMC4993465 DOI: 10.1371/journal.pone.0161529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/08/2016] [Indexed: 11/21/2022] Open
Abstract
α-Galactosidases are broadly used in feed, food, chemical, pulp, and pharmaceutical industries. However, there lacks a satisfactory microbial cell factory that is able to produce α-galactosidases efficiently and cost-effectively to date, which prevents these important enzymes from greater application. In this study, the secretory expression of an Aspergillus niger α-galactosidase (AGA) in Pichia pastoris was systematically investigated. Through codon optimization, signal peptide replacement, comparative selection of host strain, and saturation mutagenesis of the P1’ residue of Kex2 protease cleavage site for efficient signal peptide removal, a mutant P. pastoris KM71H (Muts) strain of AGA-I with the specific P1’ site substitution (Glu to Ile) demonstrated remarkable extracellular α-galactosidase activity of 1299 U/ml upon a 72 h methanol induction in 2.0 L fermenter. The engineered yeast strain AGA-I demonstrated approximately 12-fold higher extracellular activity compared to the initial P. pastoris strain. To the best of our knowledge, this represents the highest yield and productivity of a secreted α-galactosidase in P. pastoris, thus holding great potential for industrial application.
Collapse
|
19
|
Guo Y, Song Y, Qiu Y, Shao X, Wang H, Song Y. Purification of thermostable α-galactosidase from Irpex lacteus and its use for hydrolysis of oligosaccharides. J Basic Microbiol 2016; 56:448-58. [PMID: 26946959 DOI: 10.1002/jobm.201500668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
A monomeric α-galactosidase (ILGI) from the mushroom Irpex lacteus was purified 94.19-fold to electrophoretic homogeneity. ILGI exhibited a specific activity of 18.36 U mg(-1) and demonstrated a molecular mass of 60 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). ILGI was optimally active at 80 °C and pH 5.0, and it was stable over a temperature range of 4-70 °C and a wide pH range of 2.0-12.0. ILGI was completely inactivated by Ag(+) and Hg(2+) ions and N-bromosuccinimide (NBS). Moreover, ILGI exhibited good resistance to proteases. Galactose acted as a noncompetitive inhibitor with Ki and Kis of 3.34 and 0.29 mM, respectively. The α-galactosidase presented a broad substrate specificity, which included p-nitrophenyl α-D-galactopyranoside (pNPGal), melibiose, stachyose, and raffinose with Km values of 1.27, 3.24, 7.1, and 22.12 mM, correspondingly. ILGI exhibited efficient and complete hydrolysis to raffinose and stachyose. The aforementioned features of this enzyme suggest its potential value in food and feed industries.
Collapse
Affiliation(s)
- Yajie Guo
- College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yi Song
- School of Public Health, Peking University, Beijing, P.R. China
| | - Yi Qiu
- College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Xiaoming Shao
- Beijing key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, P.R. China
| | - Hexiang Wang
- College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Yuan Song
- College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
20
|
Yang D, Tian G, Du F, Zhao Y, Zhao L, Wang H, Ng TB. A Fungal Alpha-Galactosidase from Pseudobalsamia microspora Capable of Degrading Raffinose Family Oligosaccharides. Appl Biochem Biotechnol 2015; 176:2157-69. [DOI: 10.1007/s12010-015-1705-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 06/08/2015] [Indexed: 10/23/2022]
|
21
|
Chen Z, Yan Q, Jiang Z, Liu Y, Li Y. High-level expression of a novel α-galactosidase gene from Rhizomucor miehei in Pichia pastoris and characterization of the recombinant enyzme. Protein Expr Purif 2015; 110:107-14. [DOI: 10.1016/j.pep.2015.02.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/16/2022]
|
22
|
Synthesis of galactosyl glycerol from guar gum by transglycosylation of α-galactosidase from Aspergillus sp. MK14. Food Chem 2015; 172:150-4. [DOI: 10.1016/j.foodchem.2014.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/11/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022]
|
23
|
Malgas S, van Dyk SJ, Pletschke BI. β-Mannanase (Man26A) and α-galactosidase (Aga27A) synergism – A key factor for the hydrolysis of galactomannan substrates. Enzyme Microb Technol 2015; 70:1-8. [DOI: 10.1016/j.enzmictec.2014.12.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/08/2014] [Accepted: 12/14/2014] [Indexed: 11/29/2022]
|
24
|
Wang H, Shi P, Luo H, Huang H, Yang P, Yao B. A thermophilic α-galactosidase from Neosartorya fischeri P1 with high specific activity, broad substrate specificity and significant hydrolysis ability of soymilk. BIORESOURCE TECHNOLOGY 2014; 153:361-364. [PMID: 24360500 DOI: 10.1016/j.biortech.2013.11.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 06/03/2023]
Abstract
An extracellular α-galactosidase (Gal27A) with high specific activity of 423Umg(-1) was identified in thermophilic Neosartorya fischeri P1. Its coding gene (1680bp) was cloned and functionally expressed in Pichia pastoris. Sequence analysis indicated that deduced Gal27A contains a catalytic domain of glycoside hydrolase family 27. The native and recombinant enzymes shared some similar properties, such as pH optima at 4.5, temperature optima at 60-70°C, resistance to most chemicals and saccharides, and great abilities to degrade raffinose and stachyose in soymilk. Considering the high yield (3.1gL(-1)) in P. pastoris, recombinant rGal27A is more favorable for industrial applications. This is the first report on purification and gene cloning of Neosartorya α-galactosidase.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Peilong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
25
|
Katrolia P, Rajashekhara E, Yan Q, Jiang Z. Biotechnological potential of microbial α-galactosidases. Crit Rev Biotechnol 2013; 34:307-17. [DOI: 10.3109/07388551.2013.794124] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Directed Evolution of Penicillium janczewskii zalesk α-Galactosidase Toward Enhanced Activity and Expression in Pichia pastoris. Appl Biochem Biotechnol 2012; 168:638-50. [DOI: 10.1007/s12010-012-9806-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 07/11/2012] [Indexed: 02/02/2023]
|
27
|
Katrolia P, Jia H, Yan Q, Song S, Jiang Z, Xu H. Characterization of a protease-resistant α-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides. BIORESOURCE TECHNOLOGY 2012; 110:578-586. [PMID: 22349190 DOI: 10.1016/j.biortech.2012.01.144] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/21/2012] [Accepted: 01/24/2012] [Indexed: 05/31/2023]
Abstract
The α-galactosidase gene, RmGal36, from Rhizomucor miehei was cloned and expressed in Escherichia coli. The gene has an open reading frame of 2256bp encoding 751 amino acid residues. RmGal36 was optimally active at pH 4.5 and 60°C, but is stable between pH 4.5 and 10.0 and at a temperature of up to 55°C for 30min retaining more than 80% of its relative activity. It displayed remarkable resistance to proteases and its activity was not inhibited by galactose concentrations of 100mM. The relative specificity of RmGal36 towards various substrates is in the order of p-nitrophenyl α-galactopyranoside>melibiose>stachyose>raffinose, with a K(m) of 0.36, 16.9, 27.6, and 47.9mM, respectively. The enzyme completely hydrolyzed raffinose and stachyose present in soybeans and kidney beans at 50°C within 60min. These features make RmGal36 useful in the food and feed industries and in processing of beet-sugar.
Collapse
Affiliation(s)
- Priti Katrolia
- Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
28
|
Ferreira JG, Reis AP, Guimarães VM, Falkoski DL, Fialho LDS, de Rezende ST. Purification and characterization of Aspergillus terreus α-galactosidases and their use for hydrolysis of soymilk oligosaccharides. Appl Biochem Biotechnol 2011; 164:1111-25. [PMID: 21331589 DOI: 10.1007/s12010-011-9198-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
α-Galactosidases has the potential to hydrolyze α-1-6 linkages in raffinose family oligosaccharides (RFO). Aspergillus terreus cells cultivated on wheat bran produced three extracellular forms of α-galactosidases (E1, E2, and E3). E1 and E2 α-galactosidases presented maximal activities at pH 5, while E3 α-galactosidase was more active at pH 5.5. The E1 and E2 enzymes showed stability for 6 h at pH 4-7. Maximal activities were determined at 60, 55, and 50 °C, for E1, E2, and E3 α-galactosidase, respectively. E2 α-galactosidase retained 90% of its initial activity after 70 h at 50 °C. The enzymes hydrolyzed ρNPGal, melibiose, raffinose and stachyose, and E1 and E2 enzymes were able to hydrolyze guar gum and locust bean gum substrates. E1 and E3 α-galactosidases were completely inhibited by Hg²⁺, Ag⁺, and Cu²⁺. The treatment of RFO present in soy milk with the enzymes showed that E1 α-galactosidase reduced the stachyose content to zero after 12 h of reaction, while E2 promoted total hydrolysis of raffinose. The complete removal of the oligosaccharides in soy milk could be reached by synergistic action of both enzymes.
Collapse
Affiliation(s)
- Joana Gasperazzo Ferreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, 36.570-000 Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Fredslund F, Hachem MA, Larsen RJ, Sørensen PG, Coutinho PM, Lo Leggio L, Svensson B. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J Mol Biol 2011; 412:466-80. [PMID: 21827767 DOI: 10.1016/j.jmb.2011.07.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022]
Abstract
Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of α-galactosidases (α-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of α-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-Å-resolution crystallographic complex with α-d-galactose at substrate binding subsite -1 was determined. LaMel36A has a large N-terminal twisted β-sandwich domain, connected by a long α-helix to the catalytic (β/α)(8)-barrel domain, and a C-terminal β-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima α-Gal (TmGal36A) reveals that O2 of α-d-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36.
Collapse
Affiliation(s)
- Folmer Fredslund
- Department of Systems Biology, Enzyme and Protein Chemistry, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Cloning and functional expression of α-galactosidase cDNA from Penicillium janczewskii zaleski. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0014-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Cao Y, Yuan T, Shi P, Luo H, Li N, Meng K, Bai Y, Yang P, Zhou Z, Zhang Z, Yao B. Properties of a novel α-galactosidase from Streptomyces sp. S27 and its potential for soybean processing. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2010.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Zhou J, Shi P, Huang H, Cao Y, Meng K, Yang P, Zhang R, Chen X, Yao B. A new α-galactosidase from symbiotic Flavobacterium sp. TN17 reveals four residues essential for α-galactosidase activity of gastrointestinal bacteria. Appl Microbiol Biotechnol 2010; 88:1297-309. [DOI: 10.1007/s00253-010-2809-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/06/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
|
34
|
Nakai H, Baumann MJ, Petersen BO, Westphal Y, Hachem MA, Dilokpimol A, Duus JØ, Schols HA, Svensson B. Aspergillus nidulans alpha-galactosidase of glycoside hydrolase family 36 catalyses the formation of alpha-galacto-oligosaccharides by transglycosylation. FEBS J 2010; 277:3538-51. [PMID: 20681989 DOI: 10.1111/j.1742-4658.2010.07763.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The alpha-galactosidase from Aspergillus nidulans (AglC) belongs to a phylogenetic cluster containing eukaryotic alpha-galactosidases and alpha-galacto-oligosaccharide synthases of glycoside hydrolase family 36 (GH36). The recombinant AglC, produced in high yield (0.65 g.L(-1) culture) as His-tag fusion in Escherichia coli, catalysed efficient transglycosylation with alpha-(1-->6) regioselectivity from 40 mm 4-nitrophenol alpha-d-galactopyranoside, melibiose or raffinose, resulting in a 37-74% yield of 4-nitrophenol alpha-D-Galp-(1-->6)-D-Galp, alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp and alpha-D-Galp-(1-->6)-alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->beta2)-d-Fruf (stachyose), respectively. Furthermore, among 10 monosaccharide acceptor candidates (400 mm) and the donor 4-nitrophenol alpha-D-galactopyranoside (40 mm), alpha-(1-->6) linked galactodisaccharides were also obtained with galactose, glucose and mannose in high yields of 39-58%. AglC did not transglycosylate monosaccharides without the 6-hydroxymethyl group, i.e. xylose, L-arabinose, L-fucose and L-rhamnose, or with axial 3-OH, i.e. gulose, allose, altrose and L-rhamnose. Structural modelling using Thermotoga maritima GH36 alpha-galactosidase as the template and superimposition of melibiose from the complex with human GH27 alpha-galactosidase supported that recognition at subsite +1 in AglC presumably requires a hydrogen bond between 3-OH and Trp358 and a hydrophobic environment around the C-6 hydroxymethyl group. In addition, successful transglycosylation of eight of 10 disaccharides (400 mm), except xylobiose and arabinobiose, indicated broad specificity for interaction with the +2 subsite. AglC thus transferred alpha-galactosyl to 6-OH of the terminal residue in the alpha-linked melibiose, maltose, trehalose, sucrose and turanose in 6-46% yield and the beta-linked lactose, lactulose and cellobiose in 28-38% yield. The product structures were identified using NMR and ESI-MS and five of the 13 identified products were novel, i.e. alpha-D-Galp-(1-->6)-D-Manp; alpha-D-Galp-(1-->6)-beta-D-Glcp-(1-->4)-D-Glcp; alpha-D-Galp-(1-->6)-beta-D-Galp-(1-->4)-D-Fruf; alpha-D-Galp-(1-->6)-D-Glcp-(alpha1-->alpha1)-D-Glcp; and alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->3)-D-Fruf.
Collapse
Affiliation(s)
- Hiroyuki Nakai
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Svastits-Dücső L, Nguyen QD, Lefler DD, Rezessy-Szabó JM. Effects of galactomannan as carbon source on production of α-galactosidase by Thermomyces lanuginosus: Fermentation, purification and partial characterisation. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Gene Cloning, Overexpression, and Characterization of a Xylanase from Penicillium sp. CGMCC 1669. Appl Biochem Biotechnol 2009; 162:1-12. [DOI: 10.1007/s12010-009-8719-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
|
37
|
A novel protease-resistant α-galactosidase with high hydrolytic activity from Gibberella sp. F75: gene cloning, expression, and enzymatic characterization. Appl Microbiol Biotechnol 2009; 83:875-84. [DOI: 10.1007/s00253-009-1939-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 02/12/2009] [Accepted: 03/01/2009] [Indexed: 10/21/2022]
|
38
|
Liu X, Meng K, Wang Y, Shi P, Yuan T, Yang P, Luo H, Bai Y, Yao B. Gene cloning, expression and characterization of an α-galactosidase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0057-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Dhananjay SK, Mulimani VH. Three-phase partitioning of alpha-galactosidase from fermented media of Aspergillus oryzae and comparison with conventional purification techniques. J Ind Microbiol Biotechnol 2008; 36:123-8. [PMID: 18846399 DOI: 10.1007/s10295-008-0479-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 09/17/2008] [Indexed: 11/26/2022]
Abstract
Simple, attractive and versatile technique, three-phase partitioning (TPP) was used to purify alpha-galactosidase from fermented media of Aspergillus oryzae. The various conditions required for attaining efficient purification of the alpha-galactosidase fractions were optimized. The addition of n-butanol, t-butanol, and isopropanol in the presence of ammonium sulfate pushes the protein out of the solution to form an interfacial precipitate layer between the lower aqueous and upper organic layers. The single step of three-phase partitioning, by saturating final concentration of ammonium sulfate (60%) with 1:1 t-butanol, gave activity recovery of 92% with 12-fold purification at second phase of TPP. The final purified enzyme after TPP showed considerable purification on SDS-PAGE with a molecular weight of 64 kDa. The enzyme after TPP showed improved activity in organic solvents. Results are compared with conventional established processes for the purification of alpha-galactosidase produced by Aspergillus oryzae and overall the proposed TPP technique resulted in 70% reduction of purification cost compared to conventional chromatographic protocols.
Collapse
Affiliation(s)
- S K Dhananjay
- Department of Biochemistry, Gulbarga University, Gulbarga, Karnataka, 585106, India.
| | | |
Collapse
|
40
|
Cao Y, Yang P, Shi P, Wang Y, Luo H, Meng K, Zhang Z, Wu N, Yao B, Fan Y. Purification and characterization of a novel protease-resistant α-galactosidase from Rhizopus sp. F78 ACCC 30795. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Molecular cloning and characterization of a novel α-galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|