1
|
Kashima K, Fujisaki T, Serrano-Luginbühl S, Khaydarov A, Kissner R, Ležaić AJ, Bajuk-Bogdanović D, Ćirić-Marjanović G, Schuler LD, Walde P. How experimental details matter. The case of a laccase-catalysed oligomerisation reaction. RSC Adv 2018; 8:33229-33242. [PMID: 35548148 PMCID: PMC9086443 DOI: 10.1039/c8ra05731a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/17/2018] [Indexed: 01/29/2023] Open
Abstract
The Trametes versicolor laccase (TvL)-catalysed oligomerisation of the aniline dimer p-aminodiphenylamine (PADPA) was investigated in an aqueous medium of pH = 3.5, containing 80–100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid. If run under optimal conditions, the reaction yields oligomeric products which resemble the emeraldine salt form of polyaniline (PANI-ES) in its polaron state, known to be the only oxidation state of linear PANI which is electrically conductive. The vesicles serve as “templates” for obtaining products with the desired PANI-ES-like features. For this complex, heterogeneous, vesicle-assisted, and enzyme-mediated reaction, in which dissolved dioxygen also takes part as a re-oxidant for TvL, small changes in the composition of the reaction mixture can have significant effects. Initial conditions may not only affect the kinetics of the reaction, but also the outcome, i.e., the product distribution once the reaction reaches its equilibrium state. While a change in the reaction temperature from T ≈ 25 to 5 °C mainly influenced the rate of reaction, increase in enzyme concentration and the presence of millimolar concentrations of chloride ions were found to have significant undesired effects on the outcome of the reaction. Chloride ions, which may originate from the preparation of the pH = 3.5 solution, inhibit TvL, such that higher TvL concentrations are required than without chloride to yield the same product distribution for the same reaction runtime as in the absence of chloride. With TvL concentrations much higher than the elaborated value, the products obtained clearly were different and over-oxidised. Thus, a change in the activity of the enzyme was found to have influence not only on kinetics but also led to a change in the final product distribution, molecular structure and electrical properties, which was a surprising find. The complementary analytical methods which we used in this work were in situ UV/vis/NIR, EPR, and Raman spectroscopy measurements, in combination with a detailed ex situ HPLC analysis and molecular dynamics simulations. With the results obtained, we would like to recall the often neglected or ignored fact that it is important to describe and pay attention to the experimental details, since this matters for being able to perform experiments in a reproducible way. A laccase-catalysed oligomerisation of p-aminodiphenylamine was investigated in an aqueous medium containing 80–100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid.![]()
Collapse
Affiliation(s)
- Keita Kashima
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
- Department of Materials Chemistry and Bioengineering
| | - Tomoyuki Fujisaki
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
- Department of Materials Chemistry and Bioengineering
| | | | | | - Reinhard Kissner
- Laboratory of Inorganic Chemistry
- Department of Chemistry and Applied Biosciences
- 8093 Zürich
- Switzerland
| | | | | | | | | | - Peter Walde
- Department of Materials
- ETH Zurich
- 8093 Zürich
- Switzerland
| |
Collapse
|
2
|
Junker K, Kissner R, Rakvin B, Guo Z, Willeke M, Busato S, Weber T, Walde P. The use of Trametes versicolor laccase for the polymerization of aniline in the presence of vesicles as templates. Enzyme Microb Technol 2014; 55:72-84. [DOI: 10.1016/j.enzmictec.2013.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/26/2013] [Accepted: 12/01/2013] [Indexed: 11/30/2022]
|
3
|
Affiliation(s)
- Dirk Benndorf
- Department of Bioprocess Engineering; Otto von Guericke University Magdeburg; Magdeburg Germany
| | - Udo Reichl
- Department of Bioprocess Engineering; Otto von Guericke University Magdeburg; Magdeburg Germany
- Department of Bioprocess Engineering; Max Planck Institute for Dynamics of Complex Technical Systems; Magdeburg Germany
| |
Collapse
|
4
|
Kumar GN, Srikumar K. Molecular and computational approaches to characterize thermostable laccase gene from two xerophytic plant species. Appl Biochem Biotechnol 2013; 172:1445-59. [PMID: 24218182 DOI: 10.1007/s12010-013-0611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/24/2013] [Indexed: 05/28/2023]
Abstract
Laccases are blue multicopper oxidases that carry out single electron transfers in the oxidation of phenols to quinones. In plants, they confer structural stability to the cell wall. Thermostable laccases were identified in xerophytes Cereus pterogonus and Opuntia vulgaris that could be used in biotechnology and industrial processes. Polyclonal anti-laccase antibodies were generated against purified laccase enzyme isoforms capable of 98-99% inhibition of the catalytic activity. Antibodies raised against lower molecular weight isoforms inhibited 70% of the catalytic activity of higher molecular forms. Only 20% inhibition was noted when assayed in reverse. A partial gene sequence of thermostable xerophytic laccase comprising 712 and 880 bp was identified employing cDNA as template. The nucleotide sequence was submitted to GenBank. The gene sequence was in silico translated into protein sequence and a 3-D structure was predicted using I-Tasser and Genesilico online servers that justified the experimental observations. Anti-laccase antibodies and nucleotide gene sequence of this thermostable plant laccase can be utilized for predicting laccase antigenic sequences and for cloning and expression of the thermostable eukaryotic laccase.
Collapse
Affiliation(s)
- Gali Nirmal Kumar
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | | |
Collapse
|
5
|
Loginov DS, Vavilova EA, Savinova ОS, Abyanova AR, Chulkin AM, Vasina DV, Zherdev AV, Koroleva OV. Immunoassays of fungal laccases for screening of natural enzymes and control of recombinant enzyme production. Biotechnol Appl Biochem 2013; 61:230-6. [PMID: 24112404 DOI: 10.1002/bab.1160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/23/2013] [Indexed: 11/07/2022]
Abstract
Because of the wide application of laccases in different biotechnological processes and intense studies of the enzymes from different sources, the development of efficient techniques for monitoring laccase level is a task of significant importance. Enzyme-linked immunosorbent assay (ELISA) and Western blotting techniques were developed to control total content and isoform composition of laccases, including their recombinant preparations. Because glycosylated and nonglycosylated forms have different structures and sets of epitopes, two kinds of polyclonal antibodies were obtained and applied. The first antibody recognized the native (glycosylated) laccase purified from Trametes hirsuta and the second one reacted with recombinant (nonglycosylated) laccase expressed in Escherichia coli. Titers of the antibodies were analyzed by indirect ELISA with laccases isolated from several strains of basidiomycetes. The obtained cross-reactivity data for both antibodies demonstrated a correspondence with sequence homology of the laccases. The antibodies raised against recombinant (nonglycosylated) laccase had higher titers and thus were preferable for screening of recombinant laccase in cultural media. Thus, optimal antibody preparations were selected for screening of laccase-producing strains, and the control of recombinant enzymes and the efficiency of their use in immunochemical control of laccase levels were confirmed.
Collapse
Affiliation(s)
- Dmitry S Loginov
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Davey ML, Heimdal R, Ohlson M, Kauserud H. Host- and tissue-specificity of moss-associated Galerina and Mycena determined from amplicon pyrosequencing data. FUNGAL ECOL 2013. [DOI: 10.1016/j.funeco.2013.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Tang S, Chan WWM, Fletcher KE, Seifert J, Liang X, Löffler FE, Edwards EA, Adrian L. Functional characterization of reductive dehalogenases by using blue native polyacrylamide gel electrophoresis. Appl Environ Microbiol 2013; 79:974-81. [PMID: 23204411 PMCID: PMC3568550 DOI: 10.1128/aem.01873-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/13/2012] [Indexed: 11/20/2022] Open
Abstract
Dehalococcoides mccartyi strains are obligate organohalide-respiring bacteria harboring multiple distinct reductive dehalogenase (RDase) genes within their genomes. A major challenge is to identify substrates for the enzymes encoded by these RDase genes. We demonstrate an approach that involves blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzyme activity assays with gel slices and subsequent identification of proteins in gel slices using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). RDase expression was investigated in cultures of Dehalococcoides mccartyi strain BAV1 and in the KB-1 consortium growing on chlorinated ethenes and 1,2-dichloroethane. In cultures of strain BAV1, BvcA was the only RDase detected, revealing that this enzyme catalyzes the dechlorination not only of vinyl chloride, but also of all dichloroethene isomers and 1,2-dichloroethane. In cultures of consortium KB-1, five distinct Dehalococcoides RDases and one Geobacter RDase were expressed under the conditions tested. Three of the five RDases included orthologs to the previously identified chlorinated ethene-dechlorinating enzymes VcrA, BvcA, and TceA. This study revealed substrate promiscuity for these three enzymes and provides a path forward to further explore the largely unknown RDase protein family.
Collapse
Affiliation(s)
- Shuiquan Tang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Winnie W. M. Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Kelly E. Fletcher
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jana Seifert
- Helmholtz Centre for Environmental Research—UFZ, Department of Proteomics, Leipzig, Germany
| | - Xiaoming Liang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Frank E. Löffler
- Department of Microbiology and Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Elizabeth A. Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research—UFZ, Department of Isotope Biogeochemistry, Leipzig, Germany
| |
Collapse
|
8
|
von Bergen M, Eidner A, Schmidt F, Murugaiyan J, Wirth H, Binder H, Maier T, Roesler U. Identification of harmless and pathogenic algae of the genus Prototheca by MALDI-MS. Proteomics Clin Appl 2012; 3:774-84. [PMID: 21136986 DOI: 10.1002/prca.200780138] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The only plants infectious for mammals, green algae from the genus Prototheca, are often overseen or mistaken for yeast in clinical diagnosis. To improve this diagnostical gap, a method was developed for fast and reliable identification of Prototheca. A collection of all currently recognized Prototheca species, most represented by several strains, were submitted to a simple extraction by 70% formic acid and ACN; the extracts were analyzed by means of MALDI-MS. Most of the peaks were found in the range from 4 to 20 kDa and showed a high reproducibility, not in absolute intensities, but in their peak pattern. The selection of measured peaks is mostly due to the technique of ionization in MALDI-MS, because proteins in the range up to 200 kDa were detected using gel electrophoresis. Some of the proteins were identified by peptide mass fingerprinting and MS(2) analysis and turned out to be ribosomal proteins or other highly abundant proteins such as ubiquitin. For the preparation of a heatmap, the intensities of the peaks were plotted and a cluster analysis was performed. From the peak-lists, a principal component analysis was conducted and a dendrogram was built. This dendrogram, based on MALDI spectra, was in fairly good agreement with a dendrogram based on sequence information from 18S DNA. As a result, pathogenic and nonpathogenic species from the genus Prototheca can be identified, with possible consequences for clinical diagnostics by MALDI-typing.
Collapse
Affiliation(s)
- Martin von Bergen
- Department of Proteomics, UFZ - Helmholtz-Centre for Environmental Research, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Molecular and phenotypic characterization of Sebacina vermifera strains associated with orchids, and the description of Piriformospora williamsii sp. nov. Fungal Biol 2011; 116:204-13. [PMID: 22289766 DOI: 10.1016/j.funbio.2011.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 11/21/2022]
Abstract
Sebacinales was described in 2004 and is currently recognized as the earliest diverging lineage of mycorrhizal Basidiomycota. In addition, recent research has demonstrated that no other known fungal order harbours a broader spectrum of mycorrhizal types. Yet because of the character poor morphology of these inconspicuous fungi, a reliable systematic framework for Sebacinales is still out of reach. In order to increase the body of comparative data on Sebacinales, we followed a polyphasic approach using a sampling of seven diverse Sebacinales strains, including several isolates of Australian orchid mycorrhizae, Piriformospora indica, and a multinucleate rhizoctonia isolated from a pot culture of Glomus fasciculatum (Williams 1985) with clover. We performed molecular phylogenetic analyses from candidate barcoding regions [rDNA: internal transcribed spacer (ITS)1-5.8-ITS2, 28S; translation elongation factor 1-α (TEF)], enzymatic profiling, genome size estimation by quantitative polymerase chain reaction (PCR), and karyotype analysis using pulsed field gel electrophoresis. Here, we report significant differences in the physiological and molecular parameters inferred from these morphologically very similar strains. Particularly, our results indicate that intron sequences of the TEF gene are useful markers for Sebacinales at the species level. As a first taxonomic consequence, we describe Piriformospora williamsii as a new member of the so far monotypic genus Piriformospora and show that this genus contains still undescribed species that were recently discovered as endophytes of field-collected specimens of Anthyllis, Medicago, and Lolium in Germany.
Collapse
|
10
|
Biochemical and molecular genetic characterisation of a novel laccase produced by the aquatic ascomycete Phoma sp. UHH 5-1-03. Appl Microbiol Biotechnol 2009; 84:1095-105. [PMID: 19455326 DOI: 10.1007/s00253-009-2028-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
A laccase from the aquatic ascomycete Phoma sp. UHH 5-1-03 (DSM 22425) was purified upon hydrophobic interaction and size exclusion chromatography (SEC). Mass spectrometric analysis of the laccase monomer yielded a molecular mass of 75.6 kDa. The enzyme possesses an unusual alkaline isoelectric point above 8.3. The Phoma sp. laccase undergoes pH-dependent dimerisation, with the dimer ( approximately 150 kDa, as assessed by SEC) predominating in a pH range of 5.0 to 8.0. The enzyme oxidises common laccase substrates still at pH 7.0 and 8.0 and is remarkably stable at these pH values. The laccase is active at high concentrations of various organic solvents, all together indicating a considerable biotechnological potential. One laccase gene (lac1) identified at the genomic DNA level and transcribed in laccase-producing cultures was completely sequenced. The deduced molecular mass of the hypothetical protein and the predicted isoelectric point of 8.1 well agree with experimentally determined data. Tryptic peptides of electrophoretically separated laccase bands were analysed by nano-liquid chromatography-tandem mass spectrometry. By using the nucleotide sequence of lac1 as a template, eight different peptides were identified and yielded an overall sequence coverage of about 18%, thus confirming the link between lac1 and the expressed laccase protein.
Collapse
|