1
|
Horemans S, Pitoulias M, Holland A, Pateau E, Lechaplais C, Ekaterina D, Perret A, Soultanas P, Janniere L. Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication. BMC Biol 2022; 20:87. [PMID: 35418203 PMCID: PMC9009071 DOI: 10.1186/s12915-022-01278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background In all living organisms, DNA replication is exquisitely regulated in a wide range of growth conditions to achieve timely and accurate genome duplication prior to cell division. Failures in this regulation cause DNA damage with potentially disastrous consequences for cell viability and human health, including cancer. To cope with these threats, cells tightly control replication initiation using well-known mechanisms. They also couple DNA synthesis to nutrient richness and growth rate through a poorly understood process thought to involve central carbon metabolism. One such process may involve the cross-species conserved pyruvate kinase (PykA) which catalyzes the last reaction of glycolysis. Here we have investigated the role of PykA in regulating DNA replication in the model system Bacillus subtilis. Results On analysing mutants of the catalytic (Cat) and C-terminal (PEPut) domains of B. subtilis PykA we found replication phenotypes in conditions where PykA is dispensable for growth. These phenotypes are independent from the effect of mutations on PykA catalytic activity and are not associated with significant changes in the metabolome. PEPut operates as a nutrient-dependent inhibitor of initiation while Cat acts as a stimulator of replication fork speed. Disruption of either PEPut or Cat replication function dramatically impacted the cell cycle and replication timing even in cells fully proficient in known replication control functions. In vitro, PykA modulates activities of enzymes essential for replication initiation and elongation via functional interactions. Additional experiments showed that PEPut regulates PykA activity and that Cat and PEPut determinants important for PykA catalytic activity regulation are also important for PykA-driven replication functions. Conclusions We infer from our findings that PykA typifies a new family of cross-species replication control regulators that drive the metabolic control of replication through a mechanism involving regulatory determinants of PykA catalytic activity. As disruption of PykA replication functions causes dramatic replication defects, we suggest that dysfunctions in this new family of universal replication regulators may pave the path to genetic instability and carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01278-3.
Collapse
Affiliation(s)
- Steff Horemans
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Matthaios Pitoulias
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Alexandria Holland
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Emilie Pateau
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Christophe Lechaplais
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Dariy Ekaterina
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France
| | - Panos Soultanas
- Biodiscovery Institute, School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Laurent Janniere
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, 91057, Evry, France.
| |
Collapse
|
2
|
Xavier JC, Gerhards RE, Wimmer JLE, Brueckner J, Tria FDK, Martin WF. The metabolic network of the last bacterial common ancestor. Commun Biol 2021; 4:413. [PMID: 33772086 PMCID: PMC7997952 DOI: 10.1038/s42003-021-01918-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/26/2021] [Indexed: 02/03/2023] Open
Abstract
Bacteria are the most abundant cells on Earth. They are generally regarded as ancient, but due to striking diversity in their metabolic capacities and widespread lateral gene transfer, the physiology of the first bacteria is unknown. From 1089 reference genomes of bacterial anaerobes, we identified 146 protein families that trace to the last bacterial common ancestor, LBCA, and form the conserved predicted core of its metabolic network, which requires only nine genes to encompass all universal metabolites. Our results indicate that LBCA performed gluconeogenesis towards cell wall synthesis, and had numerous RNA modifications and multifunctional enzymes that permitted life with low gene content. In accordance with recent findings for LUCA and LACA, analyses of thousands of individual gene trees indicate that LBCA was rod-shaped and the first lineage to diverge from the ancestral bacterial stem was most similar to modern Clostridia, followed by other autotrophs that harbor the acetyl-CoA pathway.
Collapse
Affiliation(s)
- Joana C Xavier
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Rebecca E Gerhards
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Jessica L E Wimmer
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Julia Brueckner
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - Fernando D K Tria
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| | - William F Martin
- Institute for Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| |
Collapse
|
3
|
Fehlau M, Kaspar F, Hellendahl KF, Schollmeyer J, Neubauer P, Wagner A. Modular Enzymatic Cascade Synthesis of Nucleotides Using a (d)ATP Regeneration System. Front Bioeng Biotechnol 2020; 8:854. [PMID: 32903716 PMCID: PMC7438870 DOI: 10.3389/fbioe.2020.00854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Nucleoside-5'-triphosphates (NTPs) and their analogs are building blocks of DNA and are important compounds in both pharmaceutical and molecular biology applications. Currently, commercially available base or sugar modified NTPs are mainly synthesized chemically. Since the chemical production of NTPs is time-consuming and generally inefficient, alternative approaches are under development. Here we present a simple, efficient and generalizable enzymatic synthesis method for the conversion of nucleosides to NTPs. Our one-pot method is modular, applicable to a wide range of natural and modified nucleotide products and accesses NTPs directly from cheap nucleoside precursors. Nucleoside kinases, nucleoside monophosphate (NMP) kinases and a nucleoside diphosphate (NDP) kinase were applied as biocatalysts. Enzymes with different substrate specificities were combined to produce derivatives of adenosine and cytidine triphosphate with conversions of 4 to 26%. The implementation of a (deoxy)ATP recycling system resulted in a significant increase in the conversion to all NTP products, furnishing 4 different NTPs in quantitative conversion. Natural (deoxy)NTPs were synthesized with 60 to >99% conversion and sugar- and base-modified NTPs were produced with 69 to >99% and 27 to 75% conversion, respectively. The presented method is suitable for the efficient synthesis of a wide range of natural and modified NTPs in a sustainable one-pot process.
Collapse
Affiliation(s)
- Maryke Fehlau
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Berlin, Germany.,BioNukleo GmbH, Berlin, Germany
| | - Felix Kaspar
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Berlin, Germany.,BioNukleo GmbH, Berlin, Germany
| | - Katja F Hellendahl
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Berlin, Germany
| | - Julia Schollmeyer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Berlin, Germany.,BioNukleo GmbH, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Berlin, Germany
| | - Anke Wagner
- Chair of Bioprocess Engineering, Institute of Biotechnology, Faculty III Process Sciences, Technische Universität Berlin, Berlin, Germany.,BioNukleo GmbH, Berlin, Germany
| |
Collapse
|
4
|
Abstract
Isoprenoids comprise a large class of chemicals of significant interest due to their diverse properties. Biological production of isoprenoids is considered to be the most efficient way for their large-scale production. Isoprenoid biosynthesis has thus far been dependent on pathways inextricably linked to glucose metabolism. These pathways suffer from inherent limitations due to their length, complex regulation, and extensive cofactor requirements. Here, we present a synthetic isoprenoid pathway that aims to overcome these limitations. This isopentenol utilization pathway (IUP) can produce isopentenyl diphosphate or dimethylallyl diphosphate, the main precursors to isoprenoid synthesis, through sequential phosphorylation of isopentenol isomers isoprenol or prenol. After identifying suitable enzymes and constructing the pathway, we attempted to probe the limits of the IUP for producing various isoprenoid downstream products. The IUP flux exceeded the capacity of almost all downstream pathways tested and was competitive with the highest isoprenoid fluxes reported.
Collapse
|
5
|
Matsuura MF, Shaw RW, Moses JD, Kim HJ, Kim MJ, Kim MS, Hoshika S, Karalkar N, Benner SA. Assays To Detect the Formation of Triphosphates of Unnatural Nucleotides: Application to Escherichia coli Nucleoside Diphosphate Kinase. ACS Synth Biol 2016; 5:234-40. [PMID: 26829203 DOI: 10.1021/acssynbio.5b00172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One frontier in synthetic biology seeks to move artificially expanded genetic information systems (AEGIS) into natural living cells and to arrange the metabolism of those cells to allow them to replicate plasmids built from these unnatural genetic systems. In addition to requiring polymerases that replicate AEGIS oligonucleotides, such cells require metabolic pathways that biosynthesize the triphosphates of AEGIS nucleosides, the substrates for those polymerases. Such pathways generally require nucleoside and nucleotide kinases to phosphorylate AEGIS nucleosides and nucleotides on the path to these triphosphates. Thus, constructing such pathways focuses on engineering natural nucleoside and nucleotide kinases, which often do not accept the unnatural AEGIS biosynthetic intermediates. This, in turn, requires assays that allow the enzyme engineer to follow the kinase reaction, assays that are easily confused by ATPase and other spurious activities that might arise through "site-directed damage" of the natural kinases being engineered. This article introduces three assays that can detect the formation of both natural and unnatural deoxyribonucleoside triphosphates, assessing their value as polymerase substrates at the same time as monitoring the progress of kinase engineering. Here, we focus on two complementary AEGIS nucleoside diphosphates, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribofuranosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one. These assays provide new ways to detect the formation of unnatural deoxyribonucleoside triphosphates in vitro and to confirm their incorporation into DNA. Thus, these assays can be used with other unnatural nucleotides.
Collapse
Affiliation(s)
- Mariko F. Matsuura
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
| | - Ryan W. Shaw
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Jennifer D. Moses
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Hyo-Joong Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Myong-Jung Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Myong-Sang Kim
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Nilesh Karalkar
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
17, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
6
|
An enzyme-coupled continuous spectrophotometric assay for glycogen synthases. Mol Biol Rep 2011; 39:585-91. [PMID: 21584701 DOI: 10.1007/s11033-011-0774-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
The metabolic pathways leading to the synthesis of bacterial glycogen involve the action of several enzymes, among which glycogen synthase (GS) catalyzes the elongation of the α-1,4-glucan. GS from Agrobacterium tumefaciens uses preferentially ADPGlc, although UDPGlc can also be used as glycosyl donor with less efficiency. We present here a continuous spectrophotometric assay for the determination of GS activity using ADP- or UDPGlc. When ADPGlc was used as the substrate, the production of ADP is coupled to NADH oxidation via pyruvate kinase (PK) and lactate dehydrogenase (LDH). With UDPGlc as substrate, UDP was converted to ADP via adenylate kinase and subsequent coupling to PK and LDH reactions. Using this assay, we determined the kinetic parameters of GS and compared them with those obtained with the classical radiochemical method. For this purpose, we improved the expression procedure of A. tumefaciens GS using Escherichia coli BL21(DE3)-RIL cells. This assay allows the continuous monitoring of glycosyltransferase activity using ADPGlc or UDPGlc as sugar-nucleotide donors.
Collapse
|
7
|
Heinemann M, Sauer U. Systems biology of microbial metabolism. Curr Opin Microbiol 2010; 13:337-43. [PMID: 20219420 DOI: 10.1016/j.mib.2010.02.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 02/13/2010] [Indexed: 12/20/2022]
Abstract
One current challenge in metabolic systems biology is to map out the regulation networks that control metabolism. From progress in this area, we conclude that non-transcriptional mechanisms (e.g. metabolite-protein interactions and protein phosphorylation) are highly relevant in actually controlling metabolic function. Furthermore, recent results highlight more functions of enzymes and metabolites than currently appreciated in genome-scale metabolic reconstructions, thereby adding another level of complexity. Combining experimental analyses and modeling efforts we are also beginning to understand how metabolic behavior emerges. Particularly, we recognize that metabolism is not simply a dull workhorse process but rather takes very active control of itself and other cellular processes, rendering true system-level understanding of metabolism possibly more difficult than for other cellular systems.
Collapse
Affiliation(s)
- Matthias Heinemann
- ETH Zurich, Institute of Molecular Systems Biology, Wolfgang-Pauli-Str. 16, 8093 Zurich, Switzerland.
| | | |
Collapse
|