1
|
Sayed M, Ismail M, Sivasubramanian A, Kawano R, Li C, Glaser SJ, Hatti-Kaul R. Gluconobacter oxydans DSM 50049 - an efficient biocatalyst for oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to 2,5-furandicarboxylic acid (FDCA). Microb Cell Fact 2025; 24:68. [PMID: 40108655 PMCID: PMC11924602 DOI: 10.1186/s12934-025-02689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND 2,5-Furandicarboxylic acid (FDCA) is a promising building block for biobased recyclable polymers and a platform for other potential biobased chemicals. The common route of its production is by oxidation of sugar-derived 5-hydroxymethylfurfural (HMF). Several reports on biocatalytic oxidation using whole microbial cells or enzymes have been reported, which offers potentially a greener alternative compared to the chemical process. HMF oxidases and aryl alcohol oxidases are the only enzymes able to catalyse the complete oxidation to FDCA, however at low concentrations and are subject to inhibition by the FFCA (5-formylfuran-2-carboxylic acid) intermediate. The present report presents a study on the oxidation of FFCA to FDCA using the obligately aerobic bacterium Gluconobacter oxydans and identification of the enzymes catalyzing the reaction. RESULTS Screening of three different strains showed G. oxydans DSM 50049 to possess the highest FFCA oxidation efficiency. Optimal reaction conditions for obtaining 100% conversion of 10 g/L (71 mM) FFCA to FDCA at 100% reaction yield were at pH 5, 30 °C and using 200 mg wwt /mL cells harvested at mild-exponential phase. In a reaction run at a 1 L scale using a total of 15 g/L (107 mM) FFCA supplied in a fed-batch mode, FDCA was obtained at a yield of 90% in 8.5 h. The product was recovered at 82% overall yield and 99% purity using a simple recovery process. Screening of several oxidoreductase enzymes from the gene sequences identified in the bacterial genome revealed two proteins annotated as membrane-bound aldehyde dehydrogenase (MALDH) and coniferyl aldehyde dehydrogenase (CALDH) to be the enzymes catalyzing the oxidization of FFCA. CONCLUSION The study shows G. oxydans DSM 50049 and its enzymes to be promising biocatalysts for use in the FDCA production process from biomass. The high reaction rate and yield motivate further studies on characterization of the identified enzymes exhibiting the FFCA oxidizing activity, which can be used to construct an enzyme cascade together e.g. with HMF oxidase or aryl alcohol oxidase for one-pot production of FDCA from 5-HMF.
Collapse
Affiliation(s)
- Mahmoud Sayed
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden.
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| | - Mohamed Ismail
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden
| | - Anirudh Sivasubramanian
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden
| | - Riko Kawano
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden
| | - Chengsi Li
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden
| | - Sara Jonsdottir Glaser
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Rajni Hatti-Kaul
- Biotechnology and Applied Microbiology, Department of Process and Life Science Engineering, Kemicentrum, Lund University, Lund, SE-22100, Sweden.
| |
Collapse
|
2
|
Effects of amino acid composition of yeast extract on the microbiota and aroma quality of fermented soy sauce. Food Chem 2022; 393:133289. [PMID: 35689918 DOI: 10.1016/j.foodchem.2022.133289] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
Abstract
Yeast extracts, of which amino acids are the main component, can be directly applied to improve the flavor of final soy sauce. In this study, the potential of commercial yeast extracts was explored from amino acid approach to enhance the flavor quality of soy sauce by shaping the core fermentation microbiota. Alkaline and neutral amino acids favored the competitive benefits of flavor-producing bacteria, while acidic amino acids promoted the stress resistance of the fermentation microbiota, especially the abundance of Lactobacillus, which increased to 18.03-23.78% and became the predominant microbiota. The mass ratio of neutral-nonpolar: neutral-polar: acidic: alkaline amino acids was 40: 18: 27: 15, which provided the optimal improvement of soy sauce aroma. The formulation and activated the metabolic pathways of 3-methyl-1-butyraldehyde, 3-methyl-1-butanol and 2-methyl-1-propanol through Leu and Ile, resulting in a 52.6% increase in malt-like aroma. This study provides a new idea for the regulation of soy sauce fermentation.
Collapse
|
3
|
Zhu J, Yan L, Xu X, Zhang Y, Shi J, Jiang C, Shao D. Strategies to enhance the production of pinoresinol and its glucosides by endophytic fungus (Phomopsis sp. XP-8) isolated from Tu-chung bark. AMB Express 2018; 8:55. [PMID: 29658051 PMCID: PMC5899966 DOI: 10.1186/s13568-018-0584-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022] Open
Abstract
To improve the production yield of (+)-pinoresinol (Pin), (+)-pinoresinol monoglucoside (PMG), and (+)-pinoresinol diglucoside (PDG), different methods were conducted, including co-culture with resveratrol-producing Alternaria sp. MG1 spores and addition of Tu-chung in a medium at the start of cultivation, ultrasound treatment (40 kHZ, 10 min) on 5-day culture, and addition of ethanol and sodium butyrate on Day 3, followed by cultivation for an additional period of 2 days. At the end of the cultivation period (5 days), the liquid phase was collected for product analysis. Cells were collected for the determination of gene expression levels and then used in bioconversion using resting cells for another period of 2 days. The liquid phase was measured to determine the output of the target products and the expression levels of the key genes related to the biosynthesis of these compounds. Consequently, co-culture with Alternaria MG1 and addition of Tu-chung bark in the medium efficiently increased Pin, PMG, and PDG production yield in the biosynthesis systems using potato dextrose broth medium and resting cells of Phomopsis sp. XP-8. The key genes related to the biosynthesis of these compounds were significantly upregulated. However, in the majority of cases, the addition of ethanol and sodium butyrate, and ultrasound treatment decreased the production yield of Pin, PMG, and PDG. The change in production yield was not consistently accompanied by a change in gene expression.
Collapse
Affiliation(s)
- Jing Zhu
- School of Food Sciences, Xinyang Agriculture and Forestry University, 1 North Perimeter Road, Xinyang, 464000 Henan China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Lu Yan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Yan Zhang
- College of Food, Shihezi University, Road Beisi, Shihezi, 832003 Xinjiang China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi’an, 710072 Shaanxi China
| |
Collapse
|
4
|
|
5
|
Drotaverine Hydrochloride Degradation Using Cyst-like Dormant Cells of Rhodococcus ruber. Curr Microbiol 2014; 70:307-14. [DOI: 10.1007/s00284-014-0718-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
|
6
|
|
7
|
Zhang J, Shi J, Liu Y. Bioconversion of resveratrol using resting cells of non-genetically modifiedAlternariasp. Biotechnol Appl Biochem 2013; 60:236-43. [DOI: 10.1002/bab.1060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/31/2012] [Indexed: 01/25/2023]
Affiliation(s)
- Jinhua Zhang
- College of Food Science and Engineering; Northwest A&F University; Yangling; Shaanxi Province; People's Republic of China
| | - Junling Shi
- College of Food Science and Engineering; Northwest A&F University; Yangling; Shaanxi Province; People's Republic of China
| | - Yanlin Liu
- College of Enology; Northwest A&F University; Yangling; Shaanxi Province; People's Republic of China
| |
Collapse
|
8
|
Arifin AA, Don MM, Uzir MH. Baker's yeast mediated biotransformation of geraniol into citronellol using a continuous-closed-gas-loop bioreactor (CCGLB) system. Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases. Biodegradation 2011; 22:1227-37. [PMID: 21526389 DOI: 10.1007/s10532-011-9477-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
Abstract
Lignocellulosic biomass is usually converted to hydrolysates, which consist of sugars and sugar derivatives, such as furfural. Before yeast ferments sugars to ethanol, it reduces toxic furfural to non-inhibitory furfuryl alcohol in a prolonged lag phase. Bioreduction of furfural may shorten the lag phase. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase (FurX) at the expense of ethanol (Li et al. 2011). The mechanism of the ethanol-dependent reduction of furfural by FurX and three homologous alcohol dehydrogenases was investigated. The reduction consisted of two individual reactions: ethanol-dependent reduction of NAD(+) to NADH and then NADH-dependent reduction of furfural to furfuryl alcohol. The kinetic parameters of the coupled reaction and the individual reactions were determined for the four enzymes. The data indicated that limited NADH was released in the coupled reaction. The enzymes had high affinities for NADH (e.g., K ( d ) of 0.043 μM for the FurX-NADH complex) and relatively low affinities for NAD(+) (e.g., K ( d ) of 87 μM for FurX-NAD(+)). The kinetic data suggest that the four enzymes are efficient "furfural reductases" with either ethanol or NADH as the reducing power. The standard free energy change (ΔG°') for ethanol-dependent reduction of furfural was determined to be -1.1 kJ mol(-1). The physiological benefit for ethanol-dependent reduction of furfural is likely to replace toxic and recalcitrant furfural with less toxic and more biodegradable acetaldehyde.
Collapse
|