1
|
Zhao YX, Li HP, Cheng LH, Li CX, Pan J, Xu JH. A High-Throughput Visual Screen for the Directed Evolution of Cβ-stereoselectivity of L-threonine Aldolase. Chembiochem 2024; 25:e202400637. [PMID: 39292512 DOI: 10.1002/cbic.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
L-Threonine aldolase (L-TA) is a pyridoxal phosphate-dependent enzyme that catalyzes the reversible condensation of glycine and aldehydes to form β-hydroxy-α-amino acids. The combination of directed evolution and efficient high-throughput screening methods is an effective strategy for enhancing the enzyme's catalytic performance. However, few feasible high-throughput methods exist for engineering the Cβ-stereoselectivity of L-TAs. Here, we present a novel method of screening for variants with improved Cβ-stereoselectivity; this method couples an L-threo-phenylserine dehydrogenase, which catalyzes the specific oxidation of L-threo-4-methylsulfonylphenylserine (L-threo-MTPS), with the concurrent synthesis of NADPH, which is easily detectable via 340-nm UV absorption. This enables the visual detection of L-threo-MTPS produced by L-TA through the measurement of generated NADPH. Using this method, we discover an L-TA variant with significantly higher diastereoselectivity, increasing from 0.98 % de (for the wild-type) to 71.9 % de.
Collapse
Affiliation(s)
- You-Xue Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Li-Hang Cheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
2
|
Chen Q, Wang J, Zhang S, Chen X, Hao J, Wu Q, Zhu D. Discovery and directed evolution of C-C bond formation enzymes for the biosynthesis of β-hydroxy-α-amino acids and derivatives. Crit Rev Biotechnol 2024; 44:1495-1514. [PMID: 38566472 DOI: 10.1080/07388551.2024.2332295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
β-Hydroxy-α-amino acids (β-HAAs) have extensive applications in the pharmaceutical, chemical synthesis, and food industries. The development of synthetic methodologies aimed at producing optically pure β-HAAs has been driven by practical applications. Among the various synthetic methods, biocatalytic asymmetric synthesis is considered a sustainable approach due to its capacity to generate two stereogenic centers from simple prochiral precursors in a single step. Therefore, extensive efforts have been made in recent years to search for effective enzymes which enable such biotransformation. This review provides an overview on the discovery and engineering of C-C bond formation enzymes for the biocatalytic synthesis of β-HAAs. We highlight examples where the use of threonine aldolases, threonine transaldolases, serine hydroxymethyltransferases, α-methylserine aldolases, α-methylserine hydroxymethyltransferases, and engineered alanine racemases facilitated the synthesis of β-HAAs. Additionally, we discuss the potential future advancements and persistent obstacles in the enzymatic synthesis of β-HAAs.
Collapse
Affiliation(s)
- Qijia Chen
- College of Food Science and Biology, University of Science and Technology, Shijiazhuang, China
| | - Jingmin Wang
- College of Food Science and Biology, University of Science and Technology, Shijiazhuang, China
| | - Sisi Zhang
- College of Food Science and Biology, University of Science and Technology, Shijiazhuang, China
| | - Xi Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jianxiong Hao
- College of Food Science and Biology, University of Science and Technology, Shijiazhuang, China
| | - Qiaqing Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dunming Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
3
|
Chen Q, Wang B, Pan L. Efficient expression of γ-glutamyl transpeptidase in Bacillus subtilis via CRISPR/Cas9n and its immobilization. Appl Microbiol Biotechnol 2024; 108:149. [PMID: 38240797 DOI: 10.1007/s00253-023-12889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
In this study, we successfully applied the strategy of combining tandem promoters and tandem signal peptides with overexpressing signal peptidase to efficiently express and produce γ-glutamyl peptidase (GGT) enzymes (BsGGT, BaGGT, and BlGGT) from Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus licheniformis in Bacillus subtilis ATCC6051Δ5. In order to avoid the problem of instability caused by duplicated strong promoters, we assembled tandem promoters of different homologous genes from different species. To achieve resistance marker-free enzyme in the food industry, we first removed the replication origin and corresponding resistance marker of Escherichia coli from the expression vector. The plasmid was then transformed into the B. subtilis host, and the Kan resistance gene in the expression plasmid was directly edited and silenced using the CRISPR/Cas9n-AID base editing system. As a result, a recombinant protein expression carrier without resistance markers was constructed, and the enzyme activity of the BlGGT strain during shake flask fermentation can reach 53.65 U/mL. The recombinant BlGGT was immobilized with epoxy resin and maintained 82.8% enzyme activity after repeated use for 10 times and 87.36% enzyme activity after storage at 4 °C for 2 months. The immobilized BlGGT enzyme was used for the continuous synthesis of theanine with a conversion rate of 65.38%. These results indicated that our approach was a promising solution for improving enzyme production efficiency and achieving safe production of enzyme preparations in the food industry. KEY POINTS: • Efficient expression of recombinant proteins by a combination of dual promoter and dual signal peptide. • Construction of small vectors without resistance markers in B. subtilis using CRISPR/Cas9n-AID editing system. • The process of immobilizing BlGGT with epoxy resin was optimized.
Collapse
Affiliation(s)
- Qianlin Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Bourkaib MC, Guiavarc’h Y, Chevalot I, Delaunay S, Gleize J, Ghanbaja J, Valsaque F, Berrada N, Desforges A, Vigolo B. Non-covalent and covalent immobilization of Candida antarctica lipase B on chemically modified multiwalled carbon nanotubes for a green acylation process in supercritical CO2. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.08.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Covalent immobilization of recombinant Citrobacter koseri transaminase onto epoxy resins for consecutive asymmetric synthesis of L-phosphinothricin. Bioprocess Biosyst Eng 2020; 43:1599-1607. [DOI: 10.1007/s00449-020-02351-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/11/2020] [Indexed: 12/16/2022]
|
6
|
Reichardt C, Utgenannt S, Stahmann KP, Klepel O, Barig S. Highly stable adsorptive and covalent immobilization of Thermomyces lanuginosus lipase on tailor-made porous carbon material. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Barig S, Utgenannt S, Heine A, Reichardt C, Klepel O, Schnitzlein K, Stahmann KP. Poröses Kohlenstoffmaterial zur Immobilisierung von Lipase - Vergleichende Messungen mit Methacryl-Beads. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201650198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Threonine aldolases: perspectives in engineering and screening the enzymes with enhanced substrate and stereo specificities. Appl Microbiol Biotechnol 2016; 100:2579-90. [PMID: 26810201 PMCID: PMC4761611 DOI: 10.1007/s00253-015-7218-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022]
Abstract
Threonine aldolases have emerged as a powerful tool for asymmetric carbon-carbon bond formation. These enzymes catalyse the unnatural aldol condensation of different aldehydes and glycine to produce highly valuable β-hydroxy-α-amino acids with complete stereocontrol at the α-carbon and moderate specificity at the β-carbon. A range of microbial threonine aldolases has been recently recombinantly produced by several groups and their biochemical properties were characterized. Numerous studies have been conducted to improve the reaction protocols to enable higher conversions and investigate the substrate scope of enzymes. However, the application of threonine aldolases in organic synthesis is still limited due to often moderate yields and low diastereoselectivities obtained in the aldol reaction. This review briefly summarizes the screening techniques recently applied to discover novel threonine aldolases as well as enzyme engineering and mutagenesis studies which were accomplished to improve the catalytic activity and substrate specificity. Additionally, the results from new investigations on threonine aldolases including crystal structure determinations and structural-functional characterization are reviewed.
Collapse
|
9
|
Parvulescu V, Popa A, Paun G, Ene R, Davidescu CM, Ilia G. Effect of polymer support functionalization on enzyme immobilization and catalytic activity. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-0715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two enzymes, laccase and peroxidase, were immobilized on chloromethylated styrene-divinylbenzene copolymers supports functionalized with phosphonates ((RO)2PO) or mixed ammonium and phosphonium groups (N+R3Cl–, P+Ph3Cl–). Phosphonates groups and quaternary ammonium salts were grafted on the “gel-type” copolymer by Michaelis–Becker polymer analogue reaction. Mixed polymer-supported ammonium and phosphonium salts were obtained by transquaternization of the ammonium groups to phosphonium group. The degrees of functionalization for obtained polymers were relatively high ensuring a sufficient concentration of active centers per unit mass of the copolymer. The obtained materials were characterized by thermal analysis, FTIR spectroscopy and SEM microscopy. The effects of OR1 and R2 radicals from phosphonate and respectively ammonium groups, as well as those of glutaraldehyde utilization on the immobilization yield and the catalytic properties of the supported enzymes were indicated. The activity of enzymes increased after immobilization and high immobilization yield was obtained for all the samples. The higher interaction of enzymes with support was indicated for mixed ammonium and phosphonium functions. A higher catalytic activity was obtained for peroxidase in oxidation of phenol and laccase in oxidation of anisole. The low effect of glutaraldehyde on enzyme activity reveals the strong interaction of enzyme with the polymer support, respectively with the functional groups.
Collapse
|