1
|
Ding MQ, Ding J, Zhang ZR, Li MX, Cui CH, Pang JW, Xing DF, Ren NQ, Wu WM, Yang SS. Biodegradation of various grades of polyethylene microplastics by Tenebrio molitor and Tenebrio obscurus larvae: Effects on their physiology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120832. [PMID: 38599089 DOI: 10.1016/j.jenvman.2024.120832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 μm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.
Collapse
Affiliation(s)
- Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Zhi-Rong Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Mei-Xi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chen-Hao Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing, 100089, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, CA, 94305, USA
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
2
|
Erkanli ME, El-Halabi K, Kim JR. Exploring the diversity of β-glucosidase: Classification, catalytic mechanism, molecular characteristics, kinetic models, and applications. Enzyme Microb Technol 2024; 173:110363. [PMID: 38041879 DOI: 10.1016/j.enzmictec.2023.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
High-value chemicals and energy-related products can be produced from biomass. Biorefinery technology offers a sustainable and cost-effective method for this high-value conversion. β-glucosidase is one of the key enzymes in biorefinery processes, catalyzing the production of glucose from aryl-glycosides and cello-oligosaccharides via the hydrolysis of β-glycosidic bonds. Although β-glucosidase plays a critical catalytic role in the utilization of cellulosic biomass, its efficacy is often limited by substrate or product inhibitions, low thermostability, and/or insufficient catalytic activity. To provide a detailed overview of β-glucosidases and their benefits in certain desired applications, we collected and summarized extensive information from literature and public databases, covering β-glucosidases in different glycosidase hydrolase families and biological kingdoms. These β-glucosidases show differences in amino acid sequence, which are translated into varying degrees of the molecular properties critical in enzymatic applications. This review describes studies on the diversity of β-glucosidases related to the classification, catalytic mechanisms, key molecular characteristics, kinetics models, and applications, and highlights several β-glucosidases displaying high stability, activity, and resistance to glucose inhibition suitable for desired biotechnological applications.
Collapse
Affiliation(s)
- Mehmet Emre Erkanli
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Khalid El-Halabi
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY 11201, United States.
| |
Collapse
|
3
|
Xue C, Li L, Guo C, Gao Y, Yang C, Deng X, Li X, Tai P, Sun L. Understanding the role of graphene oxide in affecting PAHs biodegradation by microorganisms: An integrated analysis using 16SrRNA, metatranscriptomic, and metabolomic approaches. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131811. [PMID: 37307733 DOI: 10.1016/j.jhazmat.2023.131811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO)-promoted microbial degradation technology is considered an important strategy to eliminate polycyclic aromatic hydrocarbons (PAHs) in the environment; however, the mechanism by which GO affects microbial degradation of PAHs has not been fully studied. Thus, this study aimed to analyze the effect of GO-microbial interaction on PAHs degradation at the microbial community structure, community gene expression, and metabolic levels using multi-omics combined technology. We treated PAHs-contaminated soil samples with different concentrations of GO and analyzed the soil samples for microbial diversity after 14 and 28 days. After a short exposure, GO reduced the diversity of soil microbial community but increased potential degrading microbial abundance, promoting PAHs biodegradation. This promotion effect was further influenced by the GO concentration. In a short period of time, GO upregulated the expression of genes involved in microbial movement (flagellar assembly), bacterial chemotaxis, two-component system, and phosphotransferase system in the soil microbial community and increased the probability of microbial contact with PAHs. Biosynthesis of amino acids and carbon metabolism of microorganisms were accelerated, thereby increasing the degradation of PAHs. With the extension of time, the degradation of PAHs stagnated, which may be due to the weakened stimulation of GO on microorganisms. The results showed that screening specific degrading microorganisms, increasing the contact area between microorganisms and PAHs, and prolonging the stimulation of GO on microorganisms were important means to improve the biodegradation efficiency of PAHs in soil. This study elucidates how GO affects microbial PAHs degradation and provides important insights for the application of GO-assisted microbial degradation technology.
Collapse
Affiliation(s)
- Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingmei Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yingmei Gao
- Shenyang Agricultural University, Shenyang 110016, China
| | - Caixia Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Deng
- Yunnan Institute of Eco-environmental Science, Kunming, Yunnan 650034, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Lab of Eco-restoration of Reginal Contaminated Environmental, Shenyang University, Ministry of Education, Shenyang 110044, China.
| |
Collapse
|
4
|
Zhang Y, Cui R, Shi G, Dai Y, Dong J, Wu Q, Zhang H, Dai J. Dioxin-like polychlorinated biphenyl 126 (PCB126) disrupts gut microbiota-host metabolic dysfunction in mice via aryl hydrocarbon receptor activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113448. [PMID: 35367886 DOI: 10.1016/j.ecoenv.2022.113448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 05/15/2023]
Abstract
Exposure to environmental pollutants, including dioxin-like pollutants, can cause numerous health issues. A common exposure route to pollutants is through contaminated foods, and thus the gastrointestinal system and gut microbiota are often exposed to high amounts of pollutants. Multiple studies have focused on the imbalance in intestinal microbiota composition caused by dioxin-like pollutants. Here, we examined the effects of polychlorinated biphenyl 126 (PCB126) on the composition and functions of gut microbes through metagenomic sequencing, and explored the correlations between microflora dysbiosis and aryl hydrocarbon receptor (AHR) signaling. Adult male wild-type and Ahr-/- mice with a C57BL/6 background were weekly exposed to 50 μg/kg body weight of PCB126 for 8 weeks. Results showed that PCB126 had the opposite effect on gut microbiota composition and diversity in the wild-type and Ahr-/- mice. Functional prediction found that PCB126 exposure mainly altered carbon metabolism and signal regulatory pathways in wild-type mice but impacted DNA replication and lipopolysaccharide biosynthesis in Ahr-/- mice. In wild-type mice, PCB126 exposure induced liver injury, decreased serum lipid content, and delayed gastrointestinal motility, which were significantly correlated to several specific bacterial taxa, such as Helicobacter. Following AHR knockout, however, the holistic effects of PCB126 on the host were lessened or abolished. These results suggest that PCB126 may disrupt host metabolism and gut microbiota dynamics via AHR activation. Overall, our findings provide new insight into the complex interactions between host metabolism and gut microbiota, which may contribute to grouped assessment of environmental pollutants in the future.
Collapse
Affiliation(s)
- Yaran Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohui Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yi Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Wu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Saleh Zada N, Belduz AO, Güler HI, Khan A, Sahinkaya M, Kaçıran A, Ay H, Badshah M, Shah AA, Khan S. Cloning, expression, biochemical characterization, and molecular docking studies of a novel glucose tolerant β-glucosidase from Saccharomonospora sp. NB11. Enzyme Microb Technol 2021; 148:109799. [PMID: 34116753 DOI: 10.1016/j.enzmictec.2021.109799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/10/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
Most of the presently known β-glucosidases are sensitive to end-product inhibition by glucose, restricting their potential use in many industrial applications. Identification of novel glucose tolerant β-glucosidase can prove a pivotal solution to eliminate end-product inhibition and enhance the overall lignocellulosic saccharification process. In this study, a novel gene encoding β-glucosidase BglNB11 of 1405bp was identified in the genome of Saccharomonospora sp. NB11 and was successfully cloned and heterologously expressed in E. coli BL21 (DE3).The presence of conserved amino acids; NEPW and TENG indicated that BglNB11 belonged to GH1 β-glucosidases. The recombinant enzyme was purified using a Ni-NTA column, with the molecular mass of 51 kDa, using SDS-PAGE analysis. BglNB11 showed optimum activity at 40 °C and pH 7 and did not require any tested co-factors for activation. The kinetic values, Km, Vmax, kcat, and kcat/Km of purified enzyme were 0.4037 mM, 5735.8 μmol/min/mg, 5042.16 s-1 and 12487.71 s-1 mM-1, respectively. The enzyme was not inhibited by glucose to a concentration of 4 M but was slightly stimulated in the presence of glucose. Molecular docking of BglNB11 with glucose suggested that the relative binding position of glucose in the active site channel might be responsible for modulating end product tolerance and stimulation. β-glucosidase from BglNB11 is an excellent enzyme with high catalytic efficiency and enhanced glucose tolerance compared to many known glucose tolerant β-glucosidases. These unique properties of BglNB11 make it a prime candidate to be utilized in many biotechnological applications.
Collapse
Affiliation(s)
- Numan Saleh Zada
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ali Osman Belduz
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Halil Ibrahim Güler
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Anum Khan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Miray Sahinkaya
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Arife Kaçıran
- Department of Molecular Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Hilal Ay
- Department of Molecular Biology and Genetics, Faculty of Sciences and Arts, Ondokuz Mayis University, Samsun, Turkey
| | - Malik Badshah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samiullah Khan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
6
|
Bioprospection of Enzymes and Microorganisms in Insects to Improve Second-Generation Ethanol Production. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
7
|
Liu N, Li H, Chevrette MG, Zhang L, Cao L, Zhou H, Zhou X, Zhou Z, Pope PB, Currie CR, Huang Y, Wang Q. Functional metagenomics reveals abundant polysaccharide-degrading gene clusters and cellobiose utilization pathways within gut microbiota of a wood-feeding higher termite. THE ISME JOURNAL 2019; 13:104-117. [PMID: 30116044 PMCID: PMC6298952 DOI: 10.1038/s41396-018-0255-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022]
Abstract
Plant cell-wall polysaccharides constitute the most abundant but recalcitrant organic carbon source in nature. Microbes residing in the digestive tract of herbivorous bilaterians are particularly efficient at depolymerizing polysaccharides into fermentable sugars and play a significant support role towards their host's lifestyle. Here, we combine large-scale functional screening of fosmid libraries, shotgun sequencing, and biochemical assays to interrogate the gut microbiota of the wood-feeding "higher" termite Globitermes brachycerastes. A number of putative polysaccharide utilization gene clusters were identified with multiple fibrolytic genes. Our large-scale functional screening of 50,000 fosmid clones resulted in 464 clones demonstrating plant polysaccharide-degrading activities, including 267 endoglucanase-, 24 exoglucanase-, 72 β-glucosidase-, and 101 endoxylanase-positive clones. We sequenced 173 functionally active clones and identified ~219 genes encoding putative carbohydrate-active enzymes (CAZymes) targeting cellulose, hemicellulose and pectin. Further analyses revealed that 68 of 154 contigs encode one or more CAZyme, which includes 35 examples of putative saccharolytic operons, suggesting that clustering of CAZymes is common in termite gut microbial inhabitants. Biochemical characterization of a representative xylanase cluster demonstrated that constituent enzymes exhibited complementary physicochemical properties and saccharolytic capabilities. Furthermore, diverse cellobiose-metabolizing enzymes include β-glucosidases, cellobiose phosphorylases, and phopho-6-β-glucosidases were identified and functionally verified, indicating that the termite gut micro-ecosystem utilizes diverse metabolic pathways to interconnect hydrolysis and central metabolism. Collectively, these results provide an in-depth view of the adaptation and digestive strategies employed by gut microbiota within this tiny-yet-efficient host-associated ecosystem.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongjie Li
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Marc G Chevrette
- Department Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Lei Zhang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lin Cao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haokui Zhou
- Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, USA
| | - Zhihua Zhou
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Cameron R Currie
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA
- Department Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Qian Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Characterization of cold adapted and ethanol tolerant β-glucosidase from Bacillus cellulosilyticus and its application for directed hydrolysis of cellobiose to ethanol. Int J Biol Macromol 2018; 109:872-879. [DOI: 10.1016/j.ijbiomac.2017.11.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
|
9
|
Dibutyl phthalate alters the metabolic pathways of microbes in black soils. Sci Rep 2018; 8:2605. [PMID: 29422490 PMCID: PMC5805725 DOI: 10.1038/s41598-018-21030-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
Dibutyl phthalate (DBP) is well known as a high-priority pollutant. This study explored the impacts of DBP on the metabolic pathways of microbes in black soils in the short term (20 days). The results showed that the microbial communities were changed in black soils with DBP. In nitrogen cycling, the abundances of the genes were elevated by DBP. DBP contamination facilitated 3'-phosphoadenosine-5'-phosphosulfate (PAPS) formation, and the gene flux of sulfate metabolism was increased. The total abundances of ABC transporters and the gene abundances of the monosaccharide-transporting ATPases MalK and MsmK were increased by DBP. The total abundance of two-component system (TCS) genes and the gene abundances of malate dehydrogenase, histidine kinase and citryl-CoA lyase were increased after DBP contamination. The total abundance of phosphotransferase system (PTS) genes and the gene abundances of phosphotransferase, Crr and BglF were raised by DBP. The increased gene abundances of ABC transporters, TCS and PTS could be the reasons for the acceleration of nitrogen, carbon and sulfate metabolism. The degrading-genes of DBP were increased markedly in soil exposed to DBP. In summary, DBP contamination altered the microbial community and enhanced the gene abundances of the carbon, nitrogen and sulfur metabolism in black soils in the short term.
Collapse
|
10
|
Berini F, Casciello C, Marcone GL, Marinelli F. Metagenomics: novel enzymes from non-culturable microbes. FEMS Microbiol Lett 2017; 364:4329276. [DOI: 10.1093/femsle/fnx211] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 01/02/2023] Open
|
11
|
Zhang S, Huang J, Hu R, Guo G, Shang X, Wu J. Characterization of a new multifunctional beta-glucosidase from Musca domestica. Biotechnol Lett 2017; 39:1219-1227. [DOI: 10.1007/s10529-017-2351-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/05/2017] [Indexed: 01/31/2023]
|
12
|
DeCastro ME, Rodríguez-Belmonte E, González-Siso MI. Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes. Front Microbiol 2016; 7:1521. [PMID: 27729905 PMCID: PMC5037290 DOI: 10.3389/fmicb.2016.01521] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Microbial populations living in environments with temperatures above 50°C (thermophiles) have been widely studied, increasing our knowledge in the composition and function of these ecological communities. Since these populations express a broad number of heat-resistant enzymes (thermozymes), they also represent an important source for novel biocatalysts that can be potentially used in industrial processes. The integrated study of the whole-community DNA from an environment, known as metagenomics, coupled with the development of next generation sequencing (NGS) technologies, has allowed the generation of large amounts of data from thermophiles. In this review, we summarize the main approaches commonly utilized for assessing the taxonomic and functional diversity of thermophiles through metagenomics, including several bioinformatics tools and some metagenome-derived methods to isolate their thermozymes.
Collapse
Affiliation(s)
- María-Eugenia DeCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - Esther Rodríguez-Belmonte
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña A Coruña, Spain
| |
Collapse
|