1
|
Fritzsche S, Popp M, Spälter L, Bonakdar N, Vogel N, Castiglione K. Recycling the recyclers: strategies for the immobilisation of a PET-degrading cutinase. Bioprocess Biosyst Eng 2025; 48:605-619. [PMID: 39894813 PMCID: PMC11928388 DOI: 10.1007/s00449-025-03131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Enzymatic degradation of polyethylene terephthalate (PET) represents a sustainable approach to reducing plastic waste and protecting fossil resources. The cost efficiency of enzymatic PET degradation processes could be substantially improved by reusing the enzymes. However, conventional immobilisation strategies, such as binding to porous carriers, are challenging as the immobilised enzyme can only interact with the macromolecular solid PET substrate to a limited extent, thus reducing the degradation efficiency. To mitigate this challenge, this work compared different immobilisation strategies of the PET-degrading cutinase ICCGDAQI. Immobilisation approaches included enzyme fixation via linkers to carriers, the synthesis of cross-linked enzyme aggregates with different porosities, and immobilisation on stimulus-responsive polymers. The highest degradation efficiencies were obtained with the pH-responsive material Kollicoat®, where 80% of the initial enzyme activity could be recovered after immobilisation. Degradation of textile PET fibres by the cutinase-Kollicoat® immobilisate was investigated in batch reactions on a 1 L-scale. In three consecutive reaction cycles, the product yield of the released terephthalic acid exceeded 97% in less than 14 h. Even in the fifth cycle, 78% of the maximum yield was achieved in the same reaction time. An advantage of this process is the efficient pH-dependent recovery of the immobilisate after the reaction, which integrates seamlessly into the terephthalic acid recovery by lowering the pH after hydrolysis. This integration therefore not only simplifies the downstream processing, but also provides a cost-effective and resource-efficient solution for both enzyme reuse and product separation after PET degradation, making it a promising approach for industrial application.
Collapse
Affiliation(s)
- Stefanie Fritzsche
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Marcus Popp
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Lukas Spälter
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Natalie Bonakdar
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
2
|
Perli G, Olazabal I, Breloy L, Vollmer I, López-Gallego F, Sardon H. Toward a Circular Economy of Heteroatom Containing Plastics: A Focus on Heterogeneous Catalysis in Recycling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6429-6456. [PMID: 40029300 DOI: 10.1021/acs.langmuir.4c04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Plastics play a vital role in modern society, but their accumulation in landfills and the environment presents significant risks to ecosystems and human health. In addition, the discarding of plastic waste constitutes to a loss of valuable material. While the usual mechanical recycling method often results in reduced material quality, chemical recycling offers exciting opportunities to valorize plastic waste into compounds of interest. Its versatility leans on the broad horizon of chemical reactions applicable, such as hydrogenolysis, hydrolysis, alcoholysis, or aminolysis. The development of heterogeneous and supported organocatalysts has enormous potential to enhance the economic and industrial viability of these technologies, reducing the cost of the process and mitigating its global environmental impact. This review summarizes the challenges and opportunities of chemically recycling heteroatom-containing plastics through heterogeneous catalysis, covering widely used plastics such as polyesters (notably PET and PLA), BPA-polycarbonate (BPA-PC), polyurethane (PU), polyamide (PA), and polyether. It examines the potential and limitations of various solid catalysts, including clays, zeolites, and metal-organic frameworks as well as supported organocatalysts and immobilized enzymes (heterogeneous biocatalysts), for reactions that facilitate the recovery of high-value products. By reintroducing these high-value products into the economy as precursors, this approach supports a more sustainable lifecycle for plastics, aligning with the principles of a circular economy.
Collapse
Affiliation(s)
- Gabriel Perli
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Ion Olazabal
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Louise Breloy
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Ina Vollmer
- Inorganic Chemistry and Catalysis Group, Institute for Sustainable and Circular Chemistry, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE) - Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Yue J, Li Z, Liu X, Wu Z, Wang J, Tu M, Shi H, Fan D, Li Y. Green and Fast Synthesis of NiCo-MOF for Simultaneous Purification-Immobilization of Bienzyme to Catalyze the Synthesis of Ginsenoside Rh2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61725-61738. [PMID: 39475531 DOI: 10.1021/acsami.4c14661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Traditional metal-organic frameworks (MOFs) preparation is generally time-consuming, polluting, and lacking specificity for enzyme immobilization. This paper introduced a facile, rapid, and green method to produce three MOFs subsequently employed to purify and coimmobilize recombinant glycosyltransferase (UGT) and recombinant sucrose synthetase (SUSy) using histidine tag (His-tag) for the specific adsorption of Ni2+ and Co2+ from MOFs. This method simplified enzyme purification from crude extracts and enabled enzymes to be reused. The results demonstrated that NiCo-MOF exhibited a higher enzyme load (115.9 mg/g) than monometallic MOFs. Additionally, the NiCo-MOF@UGT&SUSy demonstrated excellent stability and efficiently produced the rare ginsenoside Rh2 by catalyzing a coupling reaction (95.6 μg/mL), solving the problem of the substrate cost of uridine diphosphate glucose (UDPG). The NiCo-MOF@UGT&SUSy retained 68.97% of the initial activity after 10 cycles. Finally, molecular docking studies elucidated the conversion mechanism of the target product Rh2. This technique is important in the industrialization of ginsenoside production and enzyme purification.
Collapse
Affiliation(s)
- Junsong Yue
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Zhiyan Li
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Xiaochen Liu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
- School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, Xi'an 710069, P. R. China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Jianwen Wang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Min Tu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Huaiqi Shi
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Daidi Fan
- School of Chemical Engineering, Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, Xi'an 710069, P. R. China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
4
|
Wang H, Qi X, Gao S, Kan G, Damdindorj L, An Y, Lu F. Characterization of a novel multifunctional β-glucosidase/xylanase/feruloyl esterase and its effects on improving the quality of Longjing tea. Food Chem 2024; 453:139637. [PMID: 38781897 DOI: 10.1016/j.foodchem.2024.139637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Herein, a novel multifunctional enzyme β-glucosidase/xylanase/feruloyl esterase (GXF) was constructed by fusion of β-glucosidase and bifunctional xylanase/feruloyl esterase. The activities of β-glucosidase, xylanase, feruloyl esterase and acetyl xylan esterase displayed by GXF were 67.18 %, 49.54 %, 38.92 % and 23.54 %, respectively, higher than that of the corresponding single functional enzymes. Moreover, the GXF performed better in enhancing aroma and quality of Longjing tea than the single functional enzymes and their mixtures. After treatment with GXF, the grassy and floral odors of tea infusion were significantly improved. Moreover, GXF treatment could improve concentrations of flavonoid aglycones of myricetin, kaempferol and quercetin by 68.1-, 81.42- and 77.39-fold, respectively. In addition, GXF could accelerate the release of reducing sugars, ferulic acid and xylo-oligosaccharides by 9.48-, 8.25- and 4.11-fold, respectively. This multifunctional enzyme may have potential applications in other fields such as food production and biomass degradation.
Collapse
Affiliation(s)
- Hongling Wang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Life Engineering, Shenyang Institute of Technology, Fushun, China.
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Guoshi Kan
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | | | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, China.
| |
Collapse
|
5
|
Feng J, Li H, Lu Y, Li R, Cavaco-Paulo A, Fu J. Non-ionic surfactant PEG: Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate. Int J Biol Macromol 2024; 273:133049. [PMID: 38857727 DOI: 10.1016/j.ijbiomac.2024.133049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
To enhance the enzymatic digestibility of polyethylene terephthalate (PET), which is highly oriented and crystallized, a polyethylene glycol (PEG) surfactant of varying molecular weights was utilized to improve the stability of mutant cutinase from Humicola insolens (HiC) and to increase the accessibility of the enzyme to the substrate. Leveraging the optimal conditions for HiC hydrolysis of PET, the introduction of 1 % w/v PEG significantly increased the yield of PET hydrolysis products. PEG600 was particularly effective, increasing the yield by 64.58 % compared to using HiC alone. Moreover, the mechanisms by which PEG600 and PEG6000 enhance enzyme digestion were extensively examined using circular dichroism and fluorescence spectroscopy. The results from CD and fluorescence analyses indicated that PEG alters the protein conformation, thereby affecting the catalytic effect of the enzyme. Moreover, PEG improved the affinity between HiC and PET by lowering the surface tension of the solution, substantially enhancing PET hydrolysis. This study suggests that PEG holds considerable promise as an enzyme protector, significantly aiding in the hydrophilic modification and degradation of PET in an environmentally friendly and sustainable manner.
Collapse
Affiliation(s)
- Jundan Feng
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Huimin Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Yuzheng Lu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; Mechanical Engineering College, Tarim University, Alar, Xinjiang, China
| | - Rong Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | | | - Jiajia Fu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China.
| |
Collapse
|
6
|
Zandieh M, Griffiths E, Waldie A, Li S, Honek J, Rezanezhad F, Van Cappellen P, Liu J. Catalytic and biocatalytic degradation of microplastics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230018. [PMID: 38939860 PMCID: PMC11189586 DOI: 10.1002/exp.20230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 06/29/2024]
Abstract
In recent years, there has been a surge in annual plastic production, which has contributed to growing environmental challenges, particularly in the form of microplastics. Effective management of plastic and microplastic waste has become a critical concern, necessitating innovative strategies to address its impact on ecosystems and human health. In this context, catalytic degradation of microplastics emerges as a pivotal approach that holds significant promise for mitigating the persistent effects of plastic pollution. In this article, we critically explored the current state of catalytic degradation of microplastics and discussed the definition of degradation, characterization methods for degradation products, and the criteria for standard sample preparation. Moreover, the significance and effectiveness of various catalytic entities, including enzymes, transition metal ions (for the Fenton reaction), nanozymes, and microorganisms are summarized. Finally, a few key issues and future perspectives regarding the catalytic degradation of microplastics are proposed.
Collapse
Affiliation(s)
- Mohamad Zandieh
- Department of ChemistryUniversity of WaterlooWaterlooOntarioCanada
- Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
- Water InstituteUniversity of WaterlooWaterlooOntarioCanada
| | - Erin Griffiths
- Water InstituteUniversity of WaterlooWaterlooOntarioCanada
- Ecohydrology Research GroupDepartment of Earth and Environmental SciencesUniversity of WaterlooWaterlooOntarioCanada
| | - Alexander Waldie
- Department of ChemistryUniversity of WaterlooWaterlooOntarioCanada
- Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
- Water InstituteUniversity of WaterlooWaterlooOntarioCanada
| | - Shuhuan Li
- Water InstituteUniversity of WaterlooWaterlooOntarioCanada
- Ecohydrology Research GroupDepartment of Earth and Environmental SciencesUniversity of WaterlooWaterlooOntarioCanada
| | - John Honek
- Department of ChemistryUniversity of WaterlooWaterlooOntarioCanada
- Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
- Water InstituteUniversity of WaterlooWaterlooOntarioCanada
| | - Fereidoun Rezanezhad
- Water InstituteUniversity of WaterlooWaterlooOntarioCanada
- Ecohydrology Research GroupDepartment of Earth and Environmental SciencesUniversity of WaterlooWaterlooOntarioCanada
| | - Philippe Van Cappellen
- Water InstituteUniversity of WaterlooWaterlooOntarioCanada
- Ecohydrology Research GroupDepartment of Earth and Environmental SciencesUniversity of WaterlooWaterlooOntarioCanada
| | - Juewen Liu
- Department of ChemistryUniversity of WaterlooWaterlooOntarioCanada
- Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntarioCanada
- Water InstituteUniversity of WaterlooWaterlooOntarioCanada
| |
Collapse
|
7
|
Rahmati F, Sethi D, Shu W, Asgari Lajayer B, Mosaferi M, Thomson A, Price GW. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation. CHEMOSPHERE 2024; 355:141749. [PMID: 38521099 DOI: 10.1016/j.chemosphere.2024.141749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Plastic pollution has become a major global concern, posing numerous challenges for the environment and wildlife. Most conventional ways of plastics degradation are inefficient and cause great damage to ecosystems. The development of biodegradable plastics offers a promising solution for waste management. These plastics are designed to break down under various conditions, opening up new possibilities to mitigate the negative impact of traditional plastics. Microbes, including bacteria and fungi, play a crucial role in the degradation of bioplastics by producing and secreting extracellular enzymes, such as cutinase, lipases, and proteases. However, these microbial enzymes are sensitive to extreme environmental conditions, such as temperature and acidity, affecting their functions and stability. To address these challenges, scientists have employed protein engineering and immobilization techniques to enhance enzyme stability and predict protein structures. Strategies such as improving enzyme and substrate interaction, increasing enzyme thermostability, reinforcing the bonding between the active site of the enzyme and substrate, and refining enzyme activity are being utilized to boost enzyme immobilization and functionality. Recently, bioengineering through gene cloning and expression in potential microorganisms, has revolutionized the biodegradation of bioplastics. This review aimed to discuss the most recent protein engineering strategies for modifying bioplastic-degrading enzymes in terms of stability and functionality, including enzyme thermostability enhancement, reinforcing the substrate binding to the enzyme active site, refining with other enzymes, and improvement of enzyme surface and substrate action. Additionally, discovered bioplastic-degrading exoenzymes by metagenomics techniques were emphasized.
Collapse
Affiliation(s)
- Farzad Rahmati
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University (IAU), Qom 37185364, Iran
| | - Debadatta Sethi
- Sugarcane Research Station, Odisha University of Agriculture and Technology, Nayagarh, India
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | | | - Mohammad Mosaferi
- Health and Environment Research Center, Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Allan Thomson
- Perennia Food and Agriculture Corporation., 173 Dr. Bernie MacDonald Dr., Bible Hill, Truro, NS, B6L 2H5, Canada
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
8
|
Sui B, Wang T, Fang J, Hou Z, Shu T, Lu Z, Liu F, Zhu Y. Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes. Front Microbiol 2023; 14:1265139. [PMID: 37849919 PMCID: PMC10577388 DOI: 10.3389/fmicb.2023.1265139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Polyethylene terephthalate (PET) is a synthetic polymer in the polyester family. It is widely found in objects used daily, including packaging materials (such as bottles and containers), textiles (such as fibers), and even in the automotive and electronics industries. PET is known for its excellent mechanical properties, chemical resistance, and transparency. However, these features (e.g., high hydrophobicity and high molecular weight) also make PET highly resistant to degradation by wild-type microorganisms or physicochemical methods in nature, contributing to the accumulation of plastic waste in the environment. Therefore, accelerated PET recycling is becoming increasingly urgent to address the global environmental problem caused by plastic wastes and prevent plastic pollution. In addition to traditional physical cycling (e.g., pyrolysis, gasification) and chemical cycling (e.g., chemical depolymerization), biodegradation can be used, which involves breaking down organic materials into simpler compounds by microorganisms or PET-degrading enzymes. Lipases and cutinases are the two classes of enzymes that have been studied extensively for this purpose. Biodegradation of PET is an attractive approach for managing PET waste, as it can help reduce environmental pollution and promote a circular economy. During the past few years, great advances have been accomplished in PET biodegradation. In this review, current knowledge on cutinase-like PET hydrolases (such as TfCut2, Cut190, HiC, and LCC) was described in detail, including the structures, ligand-protein interactions, and rational protein engineering for improved PET-degrading performance. In particular, applications of the engineered catalysts were highlighted, such as improving the PET hydrolytic activity by constructing fusion proteins. The review is expected to provide novel insights for the biodegradation of complex polymers.
Collapse
Affiliation(s)
- Beibei Sui
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Jingxiang Fang
- Rizhao Administration for Market Regulation, Rizhao, Shandong, China
| | - Zuoxuan Hou
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Ting Shu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Zhenhua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Youshuang Zhu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
9
|
Ayinla ZA, Ademakinwa AN, Agboola FK. Comparative modelling, molecular docking and immobilization studies on Rhizopus oryzae lipase: evaluation of potentials for fatty acid methyl esters synthesis. J Biomol Struct Dyn 2023; 41:7235-7247. [PMID: 36082604 DOI: 10.1080/07391102.2022.2119279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 10/14/2022]
Abstract
Elucidation of lipase-substrate interactions will guide the proper industrial use and applicability of the enzyme. The aim of this study was to predict the 3 D structure of Rhizopus oryzae ZAC3 (RoZAC3) lipase, study its interactions with some natural substrates and evaluate the feasibility of fatty acid methyl esters (FAME) production by the immobilized lipase. Protein identification of RoZAC3 lipase was carried out using LC-MS/MS. The 3 D structure of the lipase was built using homology modelling and natural substrates such as tributyrin, tripalmitin and triolein were docked to the optimized 3 D model for investigation of enzyme-ligand interactions. RoZAC3 lipase, immobilized by adsorption on Lewatit VP OC 1600 was applied in the synthesis of fatty acid methyl esters (FAME). From the phylogenetic analysis, it was observed that RoZAC3 lipase was closely related (48%) to Rhizopus javanicus lipase (Q7M4U7). The predicted 3 D model was validated using the SWISS model validation server. Ramachandran and ERRAT plots were used to assess the amino acid environment and overall quality of the model. From the docking studies, the values of the binding energies obtained for tributyrin, tripalmitin and triolein were - 5.37, -5.27 and -5.77 respectively. At an enzyme:immobilization support ratio of 50 mg/g, transesterification reaction duration of 18 h and a temperature of 40 oC, the conversion reached above 80%. The molecular docking studies provided information on the interaction/modifications between the RoZAC3 lipase and triacylglycerols that can be exploited for numerous applications. The immobilized lipase could serve in hydro-esterification reactions adaptable for biodiesel production.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zainab Adenike Ayinla
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | | - Femi Kayode Agboola
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
10
|
Enzymatic hydrolysis of poly(butylene adipate-co-terephthalate) by Fusarium solani cutinase. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
11
|
Won SJ, Yim JH, Kim HK. Synthesis of Short-Chain Alkyl Butyrate through Esterification Reaction Using Immobilized Rhodococcus Cutinase and Analysis of Substrate Specificity through Molecular Docking. J Microbiol Biotechnol 2023; 33:268-276. [PMID: 36524336 PMCID: PMC9998203 DOI: 10.4014/jmb.2211.11022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Alkyl butyrate with fruity flavor is known as an important additive in the food industry. We synthesized various alkyl butyrates from various fatty alcohol and butyric acid using immobilized Rhodococcus cutinase (Rcut). Esterification reaction was performed in a non-aqueous system including heptane, isooctane, hexane, and cyclohexane. As a result of performing the alkyl butyrate synthesis reaction using alcohols of various chain lengths, it was found that the preference for the alcohol substrate had the following order: C6 > C4 > C8 > C10 > C2. Through molecular docking analysis, it was found that the greater the hydrophobicity of alcohol, the higher the accessibility to the active site of the enzyme. However, since the number of torsions increased as the chain length increased, it became difficult for the hydroxyl oxygen of the alcohol to access the γO of serine at the enzyme active site. These molecular docking results were consistent with substrate preference results of the Rcut enzyme. The Rcut maintained the synthesis efficiency at least for 5 days in isooctane solvent. We synthesized as much as 452 mM butyl butyrate by adding 100 mM substrate daily for 5 days and performing the reaction. These results show that Rcut is an efficient enzyme for producing alkyl butyrate used in the food industry.
Collapse
Affiliation(s)
- Seok-Jae Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Joung Han Yim
- Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Hyung Kwoun Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
12
|
Karakurt V, Samsa CG. Immobilization of protease on chitosan–silica gel beads for high detergent and surfactant stability and high tolerance against metallic ions and organic solvents. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
13
|
Tang KHD, Lock SSM, Yap PS, Cheah KW, Chan YH, Yiin CL, Ku AZE, Loy ACM, Chin BLF, Chai YH. Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154868. [PMID: 35358520 DOI: 10.1016/j.scitotenv.2022.154868] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Environmental prevalence of microplastics has prompted the development of novel methods for their removal, one of which involves immobilization of microplastics-degrading enzymes. Various materials including nanomaterials have been studied for this purpose but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This article reviewed more than 100 peer-reviewed scholarly papers to elucidate the latest advances in the novel application of immobilized enzyme/microorganism complexes for microplastics degradation, its feasibility and future prospects. This review shows that metal nanoparticle-enzyme complexes improve biodegradation of microplastics in most studies through creating photogenerated radicals to facilitate polymer oxidation, accelerating growth of bacterial consortia for biodegradation, anchoring enzymes and improving their stability, and absorbing water for hydrolysis. In a study, the antimicrobial property of nanoparticles retarded the growth of microorganisms, hence biodegradation. Carbon particle-enzyme complexes enable enzymes to be immobilized on carbon-based support or matrix through covalent bonding, adsorption, entrapment, encapsulation, and a combination of the mechanisms, facilitated by formation of cross-links between enzymes. These complexes were shown to improve microplastics-degrading efficiency and recyclability of enzymes. Other emerging nanoparticles and/or enzymatic technologies are fusion of enzymes with hydrophobins, polymer binding module, peptide and novel nanoparticles. Nonetheless, the enzymes in the complexes present a limiting factor due to limited understanding of the degradation mechanisms. Besides, there is a lack of studies on the degradation of polypropylene and polyvinyl chloride. Genetic bioengineering and metagenomics could provide breakthrough in this area. This review highlights the optimism of using immobilized enzymes/microorganisms to increase the efficiency of microplastics degradation but optimization of enzymatic or microbial activities and synthesis of immobilized enzymes/microorganisms are crucial to overcome the barriers to their wide application.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Environmental Science Program, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China.
| | - Serene Sow Mun Lock
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Kin Wai Cheah
- Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Yi Herng Chan
- PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia
| | - Andrian Zi En Ku
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Kota Samarahan 94300, Sarawak, Malaysia
| | - Adrian Chun Minh Loy
- Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Yee Ho Chai
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| |
Collapse
|
14
|
Zhang Y, Gao S, Qi X, Zhu S, Xu S, Liang Y, Kong F, Yang S, Wang R, Wang Y, An Y. Novel biocatalytic strategy of levan: His-ELP-intein-tagged protein purification and biomimetic mineralization. Carbohydr Polym 2022; 288:119398. [DOI: 10.1016/j.carbpol.2022.119398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 01/13/2023]
|
15
|
Temporiti MEE, Nicola L, Nielsen E, Tosi S. Fungal Enzymes Involved in Plastics Biodegradation. Microorganisms 2022; 10:1180. [PMID: 35744698 PMCID: PMC9230134 DOI: 10.3390/microorganisms10061180] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Plastic pollution is a growing environmental problem, in part due to the extremely stable and durable nature of this polymer. As recycling does not provide a complete solution, research has been focusing on alternative ways of degrading plastic. Fungi provide a wide array of enzymes specialized in the degradation of recalcitrant substances and are very promising candidates in the field of plastic degradation. This review examines the present literature for different fungal enzymes involved in plastic degradation, describing their characteristics, efficacy and biotechnological applications. Fungal laccases and peroxidases, generally used by fungi to degrade lignin, show good results in degrading polyethylene (PE) and polyvinyl chloride (PVC), while esterases such as cutinases and lipases were successfully used to degrade polyethylene terephthalate (PET) and polyurethane (PUR). Good results were also obtained on PUR by fungal proteases and ureases. All these enzymes were isolated from many different fungi, from both Basidiomycetes and Ascomycetes, and have shown remarkable efficiency in plastic biodegradation under laboratory conditions. Therefore, future research should focus on the interactions between the genes, proteins, metabolites and environmental conditions involved in the processes. Further steps such as the improvement in catalytic efficiency and genetic engineering could lead these enzymes to become biotechnological applications in the field of plastic degradation.
Collapse
Affiliation(s)
- Marta Elisabetta Eleonora Temporiti
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Lidia Nicola
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| | - Erik Nielsen
- Department of Biology and Biotechnology, Università degli Studi di Pavia, Via Ferrata 9, 27100 Pavia, Italy;
| | - Solveig Tosi
- Laboratory of Mycology, Department of Earth and Environmental Sciences, Università degli Studi di Pavia, Via S. Epifanio 14, 27100 Pavia, Italy; (L.N.); (S.T.)
| |
Collapse
|
16
|
Waltmann C, Mills CE, Wang J, Qiao B, Torkelson JM, Tullman-Ercek D, de la Cruz MO. Functional enzyme-polymer complexes. Proc Natl Acad Sci U S A 2022; 119:e2119509119. [PMID: 35312375 PMCID: PMC9060439 DOI: 10.1073/pnas.2119509119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/21/2022] [Indexed: 01/23/2023] Open
Abstract
SignificanceThe use of biological enzyme catalysts could have huge ramifications for chemical industries. However, these enzymes are often inactive in nonbiological conditions, such as high temperatures, present in industrial settings. Here, we show that the enzyme PETase (polyethylene terephthalate [PET]), with potential application in plastic recycling, is stabilized at elevated temperature through complexation with random copolymers. We demonstrate this through simulations and experiments on different types of substrates. Our simulations also provide strategies for designing more enzymatically active complexes by altering polymer composition and enzyme charge distribution.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Carolyn E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Jeremy Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - John M. Torkelson
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
17
|
Ahmaditabatabaei S, Kyazze G, Iqbal HMN, Keshavarz T. Fungal Enzymes as Catalytic Tools for Polyethylene Terephthalate (PET) Degradation. J Fungi (Basel) 2021; 7:931. [PMID: 34829219 PMCID: PMC8625934 DOI: 10.3390/jof7110931] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 02/05/2023] Open
Abstract
The ubiquitous persistence of plastic waste in diverse forms and different environmental matrices is one of the main challenges that modern societies are facing at present. The exponential utilization and recalcitrance of synthetic plastics, including polyethylene terephthalate (PET), results in their extensive accumulation, which is a significant threat to the ecosystem. The growing amount of plastic waste ending up in landfills and oceans is alarming due to its possible adverse effects on biota. Thus, there is an urgent need to mitigate plastic waste to tackle the environmental crisis of plastic pollution. With regards to PET, there is a plethora of literature on the transportation route, ingestion, environmental fate, amount, and the adverse ecological and human health effects. Several studies have described the deployment of various microbial enzymes with much focus on bacterial-enzyme mediated removal and remediation of PET. However, there is a lack of consolidated studies on the exploitation of fungal enzymes for PET degradation. Herein, an effort has been made to cover this literature gap by spotlighting the fungi and their unique enzymes, e.g., esterases, lipases, and cutinases. These fungal enzymes have emerged as candidates for the development of biocatalytic PET degradation processes. The first half of this review is focused on fungal biocatalysts involved in the degradation of PET. The latter half explains three main aspects: (1) catalytic mechanism of PET hydrolysis in the presence of cutinases as a model fungal enzyme, (2) limitations hindering enzymatic PET biodegradation, and (3) strategies for enhancement of enzymatic PET biodegradation.
Collapse
Affiliation(s)
- Seyedehazita Ahmaditabatabaei
- School of Life sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK; (S.A.); (G.K.)
| | - Godfrey Kyazze
- School of Life sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK; (S.A.); (G.K.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico;
| | - Tajalli Keshavarz
- School of Life sciences, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK; (S.A.); (G.K.)
| |
Collapse
|
18
|
Improved synthesis of the antifungal isobutyl o-coumarate catalyzed by the Aspergillus terreus type B feruloyl esterase. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Immobilization and Biochemical Characterization of Keratinase 2S1 onto Magnetic Cross-Linked Enzyme Aggregates and its Application on the Hydrolysis of Keratin Waste. Catal Letters 2021. [DOI: 10.1007/s10562-021-03833-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Kawai F. Emerging Strategies in Polyethylene Terephthalate Hydrolase Research for Biorecycling. CHEMSUSCHEM 2021; 14:4115-4122. [PMID: 33949146 DOI: 10.1002/cssc.202100740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/02/2021] [Indexed: 06/12/2023]
Abstract
The research on polyethylene terephthalate (PET) hydrolyzing enzymes started in 2005; several studies are now nearing the objective of their application in biorecycling of PET, which is an urgent environmental issue. The thermostability of PET hydrolases must be higher than 70 °C, which has already been established by several thermophilic cutinases, as higher thermostability results in higher activity. Additionally, pretreatment of waste PET to more enzyme-attackable forms is necessary for PET biorecycling. This Minireview summarizes research on enzymatic PET hydrolysis from two viewpoints: 1) improvement of PET hydrolases by focusing on their thermostabilities by mutation of enzyme genes, their expression in several hosts, and their modifications; and 2) processing of waste PET to readily biodegradable forms. Finally, the outlook of PET biorecycling is described.
Collapse
Affiliation(s)
- Fusako Kawai
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
21
|
Abstract
Cutinases (EC 3.1.1.74) are serin esterases that belong to the α/β hydrolases superfamily and present in the Ser-His-Asp catalytic triad. They show characteristics between esterases and lipases. These enzymes hydrolyze esters and triacylglycerols and catalyze esterification and transesterification reactions. Cutinases are synthesize by plant pathogenic fungi, but some bacteria and plants have been found to produce cutinases as well. In nature they facilitate a pathogen’s invasion by hydrolyzing the cuticle that protects plants, but can be also used for saprophytic fungi as a way to nourish themselves. Cutinases can hydrolyze a wide range of substrates like esters, polyesters, triacylglycerols and waxes and that makes this enzyme very attractive for industrial purposes. This work discusses techniques of industrial interest such as immobilization and purification, as well as some of the most important uses of cutinases in industries.
Collapse
|
22
|
Immobilization of Fusarium solani Cutinase onto Magnetic Genipin-Crosslinked Chitosan Beads. Catalysts 2021. [DOI: 10.3390/catal11101158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genipin was used as a crosslinking agent to prepare magnetic genipin-crosslinked chitosan beads, which were then used as a carrier for immobilizing recombinant cutinase from Fusarium solani (FSC) to obtain immobilized FSC. The optimal temperature for the immobilized FSC was 55 °C, which was 5 °C higher than that of the free enzyme, whereas its optimal pH was increased from 8.0 to 9.0; this indicates that the immobilized FSC had improved pH and thermal stability. After repeated use for 10 cycles, the activity of the immobilized FSC remained at more than 50%; after being stored at 4 °C for 30 days, its activity was still approximately 88%. We also found that the Km of the immobilized FSC was higher than that of the free enzyme. These results indicate that the performance of FSC was improved after immobilization, which is an important basis for the subsequent application of FSC in industrial production.
Collapse
|
23
|
Teng C, Tang H, Li X, Zhu Y, Fan G, Yang R. Production of xylo-oligosaccharides using a Streptomyces rochei xylanase immobilized on Eudragit S-100. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1964483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Huihua Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yunping Zhu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Guangsen Fan
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Ran Yang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
24
|
Samak NA, Jia Y, Sharshar MM, Mu T, Yang M, Peh S, Xing J. Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. ENVIRONMENT INTERNATIONAL 2020; 145:106144. [PMID: 32987219 DOI: 10.1016/j.envint.2020.106144] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 05/21/2023]
Abstract
The massive waste of poly(ethylene terephthalate) (PET) that ends up in the landfills and oceans and needs hundreds of years for degradation has attracted global concern. The poor stability and productivity of the available PET biocatalysts hinder their industrial applications. Active PET biocatalysts can provide a promising avenue for PET bioconversion and recycling. Therefore, there is an urgent need to develop new strategies that could enhance the stability, catalytic activity, solubility, productivity, and re-usability of these PET biocatalysts under harsh conditions such as high temperatures, pH, and salinity. This has raised great attention in using bioengineering strategies to improve PET biocatalysts' robustness and catalytic behavior. Herein, historical and forecasting data of plastic production and disposal were critically reviewed. Challenges facing the PET degradation process and available strategies that could be used to solve them were critically highlighted and summarized. In this review, we also discussed the recent progress in enzyme bioengineering approaches used for discovering new PET biocatalysts, elucidating the degradation mechanism, and improving the catalytic performance, solubility, and productivity, critically assess their strength and weakness and highlighting the gaps of the available data. Discovery of more potential PET hydrolases and studying their molecular mechanism extensively via solving their crystal structure will widen this research area to move forward the industrial application. A deeper knowledge of PET molecular and degradation mechanisms will give great insight into the future identification of related enzymes. The reported bioengineering strategies during this review could be used to reduce PET crystallinity and to increase the operational temperature of PET hydrolyzing enzymes.
Collapse
Affiliation(s)
- Nadia A Samak
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China; Processes Design and Development Department, Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt
| | - Yunpu Jia
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Moustafa M Sharshar
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Tingzhen Mu
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Maohua Yang
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Sumit Peh
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
25
|
Maurya A, Bhattacharya A, Khare SK. Enzymatic Remediation of Polyethylene Terephthalate (PET)-Based Polymers for Effective Management of Plastic Wastes: An Overview. Front Bioeng Biotechnol 2020; 8:602325. [PMID: 33330434 PMCID: PMC7710609 DOI: 10.3389/fbioe.2020.602325] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Globally, plastic-based pollution is now recognized as one of the serious threats to the environment. Among different plastics, polyethylene terephthalate (PET) occupies a pivotal place, its excess presence as a waste is a major environmental concern. Mechanical, thermal, and chemical-based treatments are generally used to manage PET pollution. However, these methods are usually expensive or generate secondary pollutants. Hence, there is a need for a cost-effective and environment-friendly method for efficient management of PET-based plastic wastes. Considering this, enzymatic treatment or recycling is one of the important methods to curb PET pollution. In this regard, PET hydrolases have been explored for the treatment of PET wastes. These enzymes act on PET and end its breakdown into monomeric units and subsequently results in loss of weight. However, various factors, specifically PET crystallinity, temperature, and pH, are known to affect this enzymatic process. For effective hydrolysis of PET, high temperature is required, which facilitates easy accessibility of substrate (PET) to enzymes. However, to function at this high temperature, there is a requirement of thermostable enzymes. The thermostability could be enhanced using glycosylation, immobilization, and enzyme engineering. Furthermore, the use of surfactants, additives such as Ca2+, Mg2+, and hydrophobins (cysteine-rich proteins), has also been reported to enhance the enzymatic PET hydrolysis through facilitating easy accessibility of PET polymers. The present review encompasses a brief overview of the use of enzymes toward the management of PET wastes. Various methods affecting the treatment process and different constraints arising thereof are also systematically highlighted in the review.
Collapse
Affiliation(s)
- Ankita Maurya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
26
|
Gururaj P, Khushbu S, Monisha B, Selvakumar N, Chakravarthy M, Gautam P, Nandhini Devi G. Production, purification and application of Cutinase in enzymatic scouring of cotton fabric isolated from Acinetobacter baumannii AU10. Prep Biochem Biotechnol 2020; 51:550-561. [PMID: 33108946 DOI: 10.1080/10826068.2020.1836655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Conventional cotton scouring in the textile industry using alkali results in huge environmental impact which can be overcome by using enzymes. Pectinase along with cutinase gives enhanced bioscouring results. Cutin was extracted from tomato peels and was used as substrate in the microbial media. The strain isolated from tomato peel was identified as Acinetobacter baumannii AU10 by 16S rDNA sequencing. The cutinase production was optimized by Placket-Burman and Response Surface Methodology (RSM) and the maximum production of 82.75 U/mL obtained at sucrose 6.68% (w/v), gelatin 2.74 g/L at a temperature of 35.93 °C. Cutinase was purified by ammonium sulfate precipitation, hydrophobic interaction chromatography and ion exchange chromatography with a recovery of 25.6% and specific activity of 38030 U/mg. The confirmation test for the purity of cutinase was analyzed by RP-HPLC. The molecular mass of cutinase was determined as 28.9 kDa by SDS-PAGE technique. Scanning electron microscopic analysis showed a rough and open primary wall surface on the cutinase bioscoured fabric which confirmed its activity on cutin present in the cotton fabric. Additionally, the cutinase-bioscoured samples showed better absorbency than the untreated samples. Therefore, enzymatic scouring increases wetting capacity of scoured cotton and also helps to reduce environmental pollution.
Collapse
Affiliation(s)
- P Gururaj
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - S Khushbu
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - B Monisha
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - N Selvakumar
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - M Chakravarthy
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - P Gautam
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| | - G Nandhini Devi
- Centre for Food Technology, Department of Biotechnology, Anna University, Chennai, India
| |
Collapse
|
27
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
28
|
Embedding inulin fructotransferase from Arthrobacter aurescens into novel curdlan-based mesoporous silica microspheres for efficient production of Difructose Anhydride III. Food Chem 2019; 299:125128. [DOI: 10.1016/j.foodchem.2019.125128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
|
29
|
Muley AB, Chaudhari SA, Bankar SB, Singhal RS. Stabilization of cutinase by covalent attachment on magnetic nanoparticles and improvement of its catalytic activity by ultrasonication. ULTRASONICS SONOCHEMISTRY 2019; 55:174-185. [PMID: 30852153 DOI: 10.1016/j.ultsonch.2019.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
This paper reports on stabilization of serine cutinase activity by immobilizing it through cross linking with glutaraldehyde on magnetic nanoparticles (Fe-NPs) and intensification of catalytic activity by ultrasonic treatment. The optimum parameters were cross linking with 10.52 mM glutaraldehyde for 90 min using 1:2 (w/w) ratio of enzyme:Fe-NPs. The characterization of cutinase-Fe-NPs was done by different instrumental analysis. Ultrasonic power showed a beneficial effect on the activity of free and immobilized cutinase at 5.76 and 7.63 W, respectively, after 12 min. Immobilization and ultrasonic treatment led to increments in kinetic parameters (Km and Vmax) along with noticeable changes in the secondary structural fractions of cutinase. Cutinase-Fe-NPs showed augmented pH (4-8) and thermal stability (40-60 °C). Considerably higher thermal inactivation kinetic constants (kd, t1/2 and D-value) and thermodynamic constants (Ed, ΔH°, ΔG° and ΔS°) highlighted superior thermostability of cutinase-Fe-NPs. Cutinase-Fe-NPs and ultrasound treated cutinase-Fe-NPs retained 61.88% and 38.76% activity during 21-day storage, and 82.82 and 80.69% activity after fifth reusability cycle, respectively.
Collapse
Affiliation(s)
- Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Sandeep A Chaudhari
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India; Department of Bioprocess and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Helsinki, Finland
| | - Sandip B Bankar
- Department of Bioprocess and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Helsinki, Finland
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
30
|
Abstract
Cutinases are α/β hydrolases, and their role in nature is the degradation of cutin. Such enzymes are usually produced by phytopathogenic microorganisms in order to penetrate their hosts. The first focused studies on cutinases started around 50 years ago. Since then, numerous cutinases have been isolated and characterized, aiming at the elucidation of their structure–function relations. Our deeper understanding of cutinases determines the applications by which they could be utilized; from food processing and detergents, to ester synthesis and polymerizations. However, cutinases are mainly efficient in the degradation of polyesters, a natural function. Therefore, these enzymes have been successfully applied for the biodegradation of plastics, as well as for the delicate superficial hydrolysis of polymeric materials prior to their functionalization. Even though research on this family of enzymes essentially began five decades ago, they are still involved in many reports; novel enzymes are being discovered, and new fields of applications arise, leading to numerous related publications per year. Perhaps the future of cutinases lies in their evolved descendants, such as polyesterases, and particularly PETases. The present article reviews the biochemical and structural characteristics of cutinases and cutinase-like hydrolases, and their applications in the field of bioremediation and biocatalysis.
Collapse
|
31
|
Efficient Physisorption of Candida Antarctica Lipase B on Polypropylene Beads and Application for Polyester Synthesis. Catalysts 2018. [DOI: 10.3390/catal8090369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the present work, Candida antarctica lipase B (CaLB) was adsorbed onto polypropylene beads using different reaction conditions, in order to investigate their influence on the immobilization process and the enzyme activity of the preparations in polymerization reactions. In general, lower salt concentrations were more favorable for the binding of enzyme to the carrier. Polymerisation of dimethyl adipate (DMA) and 1,4-butanediol (BDO) was investigated in thin-film systems at 70 °C and at both atmosphere pressure (1000 mbar) and 70 mbar. Conversion rates and molecular masses of the reaction products were compared with reactions catalyzed by CaLB in its commercially available form, known as Novozym 435 (CaLB immobilized on macroporous acrylic resin). The best results according to molecular weight and monomer conversion after 24 h reaction time were obtained with CaLB immobilized in 0.1 M Na2HPO4\NaH2PO4 buffer at pH 8, producing polyesters with 4 kDa at conversion rates of 96% under low pressure conditions. The stability of this preparation was studied in a simulated continuous polymerization process at 70 °C, 70 mbar for 4 h reaction time. The data of this continuous polymerizations show that the preparation produces lower molecular weights at lower conversion rates, but is comparable to the commercial enzyme concerning stability for 10 cycles. However, after 24 h reaction time, using our optimum preparation, higher molecular weight polyesters (4 kDa versus 3.1 kDa) were obtained when compared to Novozym 435.
Collapse
|
32
|
Su A, Tyrikos-Ergas T, Shirke AN, Zou Y, Dooley AL, Pavlidis IV, Gross RA. Revealing Cutinases’ Capabilities as Enantioselective Catalysts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- An Su
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Theodore Tyrikos-Ergas
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Abhijit N. Shirke
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Yi Zou
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Abigail L. Dooley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ioannis V. Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|