1
|
Brandis D, Mollica G, Kurzbach D. R5 Peptides Constitute Condensed Phases with Liquid-Like Properties in Biomimetic Silica Capsules. J Phys Chem Lett 2025; 16:4326-4335. [PMID: 40267258 PMCID: PMC12051205 DOI: 10.1021/acs.jpclett.5c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/12/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Biomimetic silica-peptide nanocomposites are promising materials for applications in drug delivery and enzyme encapsulation due to their biocompatibility, tunable morphologies, and unique structural characteristics. However, the structural dynamics of the peptide scaffold remain largely elusive, impeding rational biomimetic materials design. This shortcoming is not the least due to a lack of methods that can access such heterogeneous systems with dynamics on a wide range of time scales. Among the most studied candidates are silica particles templated by the diatom-derived peptide R5, known for its ability to guide silica precipitation under mild, toxicologically friendly conditions, leading to silica capsules filled with a peptide scaffold. Here, we describe the structural dynamics of R5 within its self-assemblies and the silica particles it templates with a combination of advanced magnetic resonance methods, including 13C-direct detected NMR, site-directive spin-labeling EPR, and sensitivity-enhanced solid-state NMR. We provide evidence that R5 self-assemblies form condensed phases with liquid-like dynamics both before and after silica encapsulation. Our suite of methods allowed us to access R5/silica composites over a comprehensive range of time scales. These results demonstrate that R5 retains a remarkable degree of internal dynamics, with distinct regions of solid-like and liquid-like behavior even within the silica particles. Specifically, the peptide scaffold comprises three dynamic species: (i) solid-like at the peptide-silica interface, (ii) liquid-like mobility within the scaffold core, and (iii) intermediate dynamics at the boundary regions between core and interface species. Our findings rationalize the high mobility of guest molecules, such as drugs or enzyme substrates, within R5-silica nanoparticles, which is crucial for their functionality in controlled release and catalytic applications. This understanding paves the way for improved rational design considerations for advanced nanomaterials and expands our knowledge of biomimetic mineralization mechanisms. At the same time, the methodological approach can be useful for many types of peptide-guided biominerals, bridging fundamental biochemistry with biotechnological innovation.
Collapse
Affiliation(s)
- Dörte Brandis
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- University
of Vienna, Vienna Doctoral
School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | | | - Dennis Kurzbach
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
2
|
Zhao M, Zhou Z, Sherchan A, Yuan W, Xie X, Li M. An Innovative Delivery System of Oxygen-Releasing Nanospheres and Self-Healing Hydrogels Enhances the Therapeutic Effectiveness of Bone Marrow Mesenchymal Stem Cells for Chronic Limb-Threatening Ischemia. Int J Nanomedicine 2024; 19:12153-12170. [PMID: 39588255 PMCID: PMC11586498 DOI: 10.2147/ijn.s483541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024] Open
Abstract
Purpose Bone marrow mesenchymal stem cells (BMSCs) have emerged as promising candidate for postoperative therapeutics in chronic limb-threatening ischemia (CLTI). Nevertheless, their effectiveness is limited by their low survival rate and impaired functionality in the ischemic microenvironment. To overcome these challenges, we have devised an innovative delivery approach to support the utilization of BMSCs in CLTI therapy. Methods We synthesized oxygen-releasing nanospheres and self-healing hydrogels. The in vivo functionality of the hydrogel-nanosphere delivery system was evaluated via a multimodality animal live imaging system. A unilateral lower limb ischemia model was established in mice, and a delivery system loaded with BMSCs was administered. The experimental groups included normal mice, ischemic mice, ischemic mice treated with BMSCs in PBS, and ischemic mice treated with BMSCs in the delivery system. Blood perfusion was quantitatively measured via a laser doppler flowmeter (LDF). Immunofluorescence, Masson's trichrome staining, immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) were also used. Results For cell viability analysis 80 μg.mL-1 was considered the optimal concentration for cell survival. In vivo, 18 days after injection, the cell membrane fluorescence signal in the delivery system was significantly greater (5.65510±8.2268) p/s/cm²/sr than that in the other groups (p=0.043). Ischemic mice treated with BMSCs in the delivery system presented an improved limb salvage rate (0.926±0.12)% compared with that of ischemic mice treated with BMSCs in PBS (0.841±0.029)% at the 5th week after ischemia establishment (p=0.0033). Conclusion Our findings suggest that the survival time of BMSCs is prolonged in this innovative delivery system. The combination of nanospheres and hydrogels effectively restored vascular blood perfusion while exerting minimal toxicity on BMSCs. This novel approach combining oxygen-releasing nanospheres and self-healing hydrogels as a delivery system represents an advancement in enhancing the functionality of BMSCs to treat CLTI.
Collapse
Affiliation(s)
- Moyan Zhao
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Zixuan Zhou
- Key Laboratory of Advanced Civil Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People’s Republic of China
| | - Amir Sherchan
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
| | - Weizhong Yuan
- Key Laboratory of Advanced Civil Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People’s Republic of China
| | - Xiaoyun Xie
- Department of Intervention and Vascular Surgery, Shanghai Tenth People’s Hospital, Shanghai, 200092, People’s Republic of China
| | - Maoquan Li
- Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200092, People’s Republic of China
- Department of Intervention and Vascular Surgery, Shanghai Tenth People’s Hospital, Shanghai, 200092, People’s Republic of China
| |
Collapse
|
3
|
Zmyslia M, Capper MJ, Grimmeisen M, Sartory K, Deuringer B, Abdelsalam M, Shen K, Jung M, Sippl W, Koch HG, Kaul L, Süss R, Köhnke J, Jessen-Trefzer C. A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor. RSC Chem Biol 2024:d4cb00127c. [PMID: 39508026 PMCID: PMC11532998 DOI: 10.1039/d4cb00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Nitroreductases are important enzymes for a variety of applications, including cancer therapy and bioremediation. They often require encapsulation to improve stability and activity. We focus on genetically encoded encapsulation of nitroreductases within protein capsids, like encapsulins. Our study showcases the encapsulation of nitroreductase NfsB as functional dimers within encapsulins, which enhances protein activity and stability in diverse conditions. Mutations within the pore region are beneficial for activity of the encapsulated enzyme, potentially by increasing diffusion rates. Cryogenic electron microscopy reveals the overall architecture of the encapsulated dimeric NfsB within the nanoreactor environment and identifies multiple pore states in the shell. These findings highlight the potential of encapsulins as versatile tools for enhancing enzyme performance across various fields.
Collapse
Affiliation(s)
- Mariia Zmyslia
- Institute of Organic Chemistry, University of Freiburg 79104 Freiburg im Breisgau Germany
| | | | - Michael Grimmeisen
- Institute of Organic Chemistry, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Kerstin Sartory
- Institute of Organic Chemistry, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Benedikt Deuringer
- Institute of Pharmaceutical Science, Pharmaceutical Technology and Biopharmacy, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg 06120 Halle/Saale Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria Egypt
| | - Kaiwei Shen
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Chemical Epigenetics Group, University of Freiburg 79104 Freiburg im Breisgau Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Schänzlestrasse 18 79104 Freiburg im Breisgau Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Martin-Luther University of Halle-Wittenberg 06120 Halle/Saale Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Laurine Kaul
- Institute of Pharmaceutical Science, Pharmaceutical Technology and Biopharmacy, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Regine Süss
- Institute of Pharmaceutical Science, Pharmaceutical Technology and Biopharmacy, University of Freiburg 79104 Freiburg im Breisgau Germany
| | - Jesko Köhnke
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
- Institute of Food Chemistry, Leibniz University Hannover 30167 Hannover Germany
| | - Claudia Jessen-Trefzer
- Institute of Organic Chemistry, University of Freiburg 79104 Freiburg im Breisgau Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg Schänzlestrasse 18 79104 Freiburg im Breisgau Germany
| |
Collapse
|
4
|
Shi Y, Tang J, Yan W, Liu Y, Liu Y, Chen H, Yang C, Liu C, Liang R. Novel pH- and thermal-responsive oleogel capsules: Featuring an oleogel core and ultrathin calcium-alginate shell. Food Chem 2024; 454:139663. [PMID: 38797103 DOI: 10.1016/j.foodchem.2024.139663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
Oleogels have been explored as a new lipid-based delivery system, however, their insolubility and unsuitable shape severely limit their application in food systems. Herein, core-shell oleogel capsules with high monodispersity (coefficient variation (CV) < 5%)) were prepared via gravity-assisted co-flowing microfluidic device and simply air-drying. The oleogel capsules with oleogel core and ultrathin calcium-alginate shell were prepared. Oleogel capsules maintained their original shape at pH = 2.0 but swelled rapidly at pH = 6.8 and 7.4. The swelling ratio of shell can be adjusted by inner fluid flow rate (Qin). Notably, the core with beeswax (BW) crystal network, effectively improved the stability performances and also could provide thermal response. Finally, the oleogel capsules demonstrated excellent sustained release and UV protection of lipophilic bioactives. This work sheds light on development of novel oleogel capsules, making them ideal candidates for smart food encapsulation applications.
Collapse
Affiliation(s)
- Yumeng Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiayi Tang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wenyu Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yan Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yuchun Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Huan Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chunhuan Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Rong Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
How SC, Hsieh CJ, Yu CY. Entrapment of Cyanase from Thermomyces lanuginosus Using Biomimetic Silica and Its Application for Cyanate Bioremediation. Polymers (Basel) 2024; 16:2594. [PMID: 39339058 PMCID: PMC11435769 DOI: 10.3390/polym16182594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Cyanate, a toxic product from the chemical oxidation treatment of highly toxic cyanide, can be converted to harmless ammonia and carbon dioxide by cyanase (EC 4.2.1.104). Cyanase from Thermomyces lanuginosus was entrapped in biomimetic silica to improve stability and reusability. After entrapment, the enzyme's activity increased by two-fold, and the residual activity after 30-min of incubation at 60 °C also increased by two-fold, compared to the free enzyme. After being stored at room temperature for 28 days, the entrapped cyanase retained 79% of the initial activity, while the free form retained 61%. The immobilized cyanase was successfully applied to cyanate detoxification; the co-entrapment of carbonic anhydrase from Sulfurihydrogenibium azorense decreased the amount of bicarbonate necessary for cyanate detoxification by 50%. The cyanate degradation retained 53% of the initial value after the co-entrapped cyanate and carbonic anhydrase were reused five times.
Collapse
Affiliation(s)
- Su-Chun How
- Department of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei 104, Taiwan
| | - Chia-Jung Hsieh
- Department of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei 104, Taiwan
| | - Chi-Yang Yu
- Department of Chemical Engineering and Biotechnology, Tatung University, No. 40, Sec. 3, Zhongshan N. Rd., Taipei 104, Taiwan
| |
Collapse
|
6
|
Mustafa YL, Balestri A, Huang X, Palivan C. Redefining drug therapy: innovative approaches using catalytic compartments. Expert Opin Drug Deliv 2024; 21:1395-1413. [PMID: 39259136 DOI: 10.1080/17425247.2024.2403476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Rapid excretion of drug derivatives often results in short drug half-lives, necessitating frequent administrations. Catalytic compartments, also known as nano- and microreactors, offer a solution by providing confined environments for in situ production of therapeutic agents. Inspired by natural compartments, polymer-based catalytic compartments have been developed to improve reaction efficiency and enable site-specific therapeutic applications. AREAS COVERED Polymer-based compartments provide stability, permeability control, and responsiveness to stimuli, making them ideal for generating localized compounds/signals. These sophisticated systems, engineered to carry active compounds and enable selective molecular release, represent a significant advancement in pharmaceutical research. They mimic cellular functions, creating controlled catalytic environments for bio-relevant processes. This review explores the latest advancements in synthetic catalytic compartments, focusing on design approaches, building blocks, active molecules, and key bio-applications. EXPERT OPINION Catalytic compartments hold transformative potential in precision medicine by improving therapeutic outcomes through precise, on-site production of therapeutic agents. While promising, challenges like scalable manufacturing, biodegradability, and regulatory hurdles must be addressed to realize their full potential. Addressing these will be crucial for their successful application in healthcare.
Collapse
Affiliation(s)
| | - Arianna Balestri
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Xinan Huang
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, Basel, Switzerland
- National Centre of Competence in Research-Molecular Systems Engineering, Basel, Switzerland
| |
Collapse
|
7
|
Kozak F, Brandis D, Pötzl C, Epasto LM, Reichinger D, Obrist D, Peterlik H, Polyansky A, Zagrovic B, Daus F, Geyer A, Becker CFW, Kurzbach D. An Atomistic View on the Mechanism of Diatom Peptide-Guided Biomimetic Silica Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401239. [PMID: 38874418 PMCID: PMC11321707 DOI: 10.1002/advs.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Deciphering nature's remarkable way of encoding functions in its biominerals holds the potential to enable the rational development of nature-inspired materials with tailored properties. However, the complex processes that convert solution-state precursors into solid biomaterials remain largely unknown. In this study, an unconventional approach is presented to characterize these precursors for the diatom-derived peptides R5 and synthetic Silaffin-1A1 (synSil-1A1). These molecules can form defined supramolecular assemblies in solution, which act as templates for solid silica structures. Using a tailored structural biology toolbox, the structure-function relationships of these self-assemblies are unveiled. NMR-derived constraints are employed to enable a recently developed fractal-cluster formalism and then reveal the architecture of the peptide assemblies in atomistic detail. Finally, by monitoring the self-assembly activities during silica formation at simultaneous high temporal and residue resolution using real-time spectroscopy, the mechanism is elucidated underlying template-driven silica formation. Thus, it is demonstrated how to exercise morphology control over bioinorganic solids by manipulating the template architectures. It is found that the morphology of the templates is translated into the shape of bioinorganic particles via a mechanism that includes silica nucleation on the solution-state complexes' surfaces followed by complete surface coating and particle precipitation.
Collapse
Affiliation(s)
- Fanny Kozak
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dörte Brandis
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Ludovica M. Epasto
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Daniela Reichinger
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dominik Obrist
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Herwig Peterlik
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5Vienna1090Austria
| | - Anton Polyansky
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Bojan Zagrovic
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Fabian Daus
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Armin Geyer
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Christian FW Becker
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| |
Collapse
|
8
|
Oliveira RN, Carvalhinho-Lopes PS, Carvalho CPF, Hirata RYS, Vaz SH, Sebastião AM, Armada-Moreira A, Rosário BA, Lemes JA, Soares-Silva B, de Andrade JS, Santos JR, Ribeiro AM, Viana MB. Neuroprotective effects of platinum nanoparticle-based microreactors in bicuculline-induced seizures. Behav Brain Res 2024; 465:114956. [PMID: 38479475 DOI: 10.1016/j.bbr.2024.114956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Epilepsy designates a group of chronic brain disorders, characterized by the recurrence of hypersynchronous, repetitive activity, of neuronal clusters. Epileptic seizures are the hallmark of epilepsy. The primary goal of epilepsy treatment is to eliminate seizures with minimal side effects. Nevertheless, approximately 30% of patients do not respond to the available drugs. An imbalance between excitatory/inhibitory neurotransmission, that leads to excitotoxicity, seizures, and cell death, has been proposed as an important mechanism regarding epileptogenesis. Recently, it has been shown that microreactors composed of platinum nanoparticles (Pt-NP) and glutamate dehydrogenase possess in vitro and in vivo activity against excitotoxicity. This study investigates the in vivo effects of these microreactors in an animal model of epilepsy induced by the administration of the GABAergic antagonist bicuculline. Male Wistar rats were administered intracerebroventricularly (i.c.v.) with the microreactors or saline and, five days later, injected with bicuculline or saline. Seizure severity was evaluated in an open field. Thirty min after behavioral measurements, animals were euthanized, and their brains processed for neurodegeneration evaluation and for neurogenesis. Treatment with the microreactors significantly increased the time taken for the onset of seizures and for the first tonic-clonic seizure, when compared to the bicuculline group that did not receive the microreactor. The administration of the microreactors also increased the time spent in total exploration and grooming. Treatment with the microreactors decreased bicuculline-induced neurodegeneration and increased neurogenesis in the dorsal and ventral hippocampus. These observations suggest that treatment with Pt-NP-based microreactors attenuates the behavioral and neurobiological consequences of epileptiform seizure activity.
Collapse
Affiliation(s)
- Roberto N Oliveira
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Patrícia S Carvalhinho-Lopes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Carolina P F Carvalho
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Rafael Y S Hirata
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, Lisboa 1649-028, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz MB, Lisboa 1649-028, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, Lisboa 1649-028, Portugal
| | - Adam Armada-Moreira
- Neuronal Dynamics Laboratory, Scuola Internazionale Superiore di Studi Avanzati, via Bonomea, Trieste 265 - 34136, Italy
| | - Bárbara A Rosário
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Jéssica A Lemes
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Beatriz Soares-Silva
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - José S de Andrade
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - José Ronaldo Santos
- Departamento de Biociências, Universidade Federal de Sergipe, Rua Cláudio Batista, s/n, Cidade Nova Aracaju, Aracaju, Sergipe 49060-108, Brazil
| | - Alessandra M Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil
| | - Milena B Viana
- Departamento de Biociências, Universidade Federal de São Paulo (UNIFESP), Rua Silva Jardim, 136, Santos, São Paulo 11015-020, Brazil.
| |
Collapse
|
9
|
Yang E, Dong H, Khongkomolsakul W, Dadmohammadi Y, Abbaspourrad A. Improving the thermal stability of phytase using core-shell hydrogel beads. Food Chem X 2024; 21:101082. [PMID: 38162037 PMCID: PMC10753051 DOI: 10.1016/j.fochx.2023.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
A core-shell hydrogel bead system was designed to maintain the catalytic activity of phytase and protect its enzymatic functionality from heat treatment. The designed structure consists of a chitosan-phytase complex core and an alginate-carrageenan hydrogel shell. The core-shell hydrogel was optimized to improve phytase encapsulation efficiency and increase the thermal stability of the encapsulated phytase. After heat treatment, encapsulated phytase retained ∼ 70 % of its catalytic activity and the same secondary structure of free phytase. Fourier transform infrared spectroscopy indicated strong intermolecular interactions between chitosan and phytase in the core, but little interaction between the core and the alginate and κ-carrageenan shell, this supports the structural and functional stability of the phytase. Differential scanning calorimetry confirmed that the designed core-shell structure had a higher melting point. Encapsulating phytase in a core-shell hydrogel bead can enhance the thermal stability of phytase, which broadens the potential applications for phytase delivery.
Collapse
Affiliation(s)
- Eunhye Yang
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Hongmin Dong
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Waritsara Khongkomolsakul
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| |
Collapse
|
10
|
Shinde YD, Chowdhury C. Potential utility of bacterial protein nanoreactor for sustainable in-situ biocatalysis in wide range of bioprocess conditions. Enzyme Microb Technol 2024; 173:110354. [PMID: 37988973 DOI: 10.1016/j.enzmictec.2023.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles that natively encapsulates the enzymes, substrates, and cofactors within a protein shell. They optimize the reaction rates by enriching the substrate in the vicinity of enzymes to increase the yields of the product and mitigate the outward diffusion of the toxic or volatile intermediates. The shell protein subunits of MCP shell are selectively permeable and have specialized pores for the selective inward diffusion of substrates and products release. Given their attributes, MCPs have been recently explored as potential candidates as subcellular nano-bioreactor for the enhanced production of industrially important molecules by exercising pathway encapsulation. In the current study, MCPs have been shown to sustain enzyme activity for extended periods, emphasizing their durability against a range of physical challenges such as temperature, pH and organic solvents. The significance of an intact shell in conferring maximum protection is highlighted by analyzing the differences in enzyme activities inside the intact and broken shell. Moreover, a minimal synthetic shell was designed with recruitment of a heterologous enzyme cargo to demonstrate the improved durability of the enzyme. The encapsulated enzyme was shown to be more stable than its free counterpart under the aforementioned conditions. Bacterial MCP-mediated encapsulation can serve as a potential strategy to shield the enzymes used under extreme conditions by maintaining the internal microenvironment and enhancing their cycle life, thereby opening new means for stabilizing, and reutilizing the enzymes in several bioprocess industries.
Collapse
Affiliation(s)
- Yashodhara D Shinde
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India
| | - Chiranjit Chowdhury
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, MH 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India.
| |
Collapse
|
11
|
Fraile-Gutiérrez I, Iglesias S, Acosta N, Revuelta J. Chitosan-based oral hydrogel formulations of β-galactosidase to improve enzyme supplementation therapy for lactose intolerance. Int J Biol Macromol 2024; 255:127755. [PMID: 37935291 DOI: 10.1016/j.ijbiomac.2023.127755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
β-Galactosidase supplementation plays an important role in the life of people with lactose intolerance. However, these formulations are rendered ineffective by the low pH and pepsin in the stomach and pancreatic proteases in the intestine. Therefore, it is necessary to develop oral transport systems for carrying this enzyme in the active form up to the intestine, where the lactose digestion occurs. In this research, a new hydrogel was developed that could potentially be used for enzyme supplement therapy. In this regard, the chitosan-based β-Gal formulations described in the manuscript are an alternative long-acting preparation to the so far available preparations that allow for enzyme protection and mucosal targeting. These hydrogels were prepared from chitosan and polyethylene glycol and contained a covalently immobilized β-galactosidase from Aspergillus oryzae. The β-galactosidase in the hydrogel was protected from degradation in a gastric medium at a pH of 2.5 and retained 75 % of its original activity under subsequent intestinal conditions. In the case of a simulated gastric fluid with a pH of 1.5, a copolymer containing methacrylic acid functional groups was sufficient to protect the hybrid hydrogel from the extremely acidic pH. In addition, the surface of the hydrogel was chemically modified with thiol and amidine groups, which increased the binding to intestinal mucin by 20 % compared with the unmodified hydrogel. These results represent a promising approach for oral transport as a reservoir for β-galactosidase in the small intestine to reduce the symptoms of hypolactasia.
Collapse
Affiliation(s)
- Isabel Fraile-Gutiérrez
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; Infiqus, S.L. Instituto de Estudios Biofuncionales - UCM, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Susana Iglesias
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Niuris Acosta
- Infiqus, S.L. Instituto de Estudios Biofuncionales - UCM, Paseo Juan XXIII 1, 28040 Madrid, Spain; Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain.
| | - Julia Revuelta
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
12
|
Huang LL, Chua ZQ, Buchowiecki K, Raju CM, Urban PL. Hydrogel-enzyme micropatch array format for chemical mapping: A proof of concept. Biosens Bioelectron 2023; 239:115599. [PMID: 37611447 DOI: 10.1016/j.bios.2023.115599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Conventional sensing methods report on concentrations of analytes in a single point of sampled medium or provide an average value. However, distributions of substances on surfaces of sampled objects often exhibit intricate inhomogeneities. In order to obtain snapshots of the chemical distributions on surfaces, we have developed enzyme-loaded hydrogel arrays (5 × 5 and 10 × 10). The acrylic 10 × 10 array base contains 100 holes, which are filled with agarose hydrogel containing assay enzymes and substrates. Such arrays can be exposed to the analyzed surfaces to collect minute amounts of analytes. Following a brief incubation, they are subsequently visualized in a custom-built array reader device. The reader incorporates a light-emitting diode-based light source, miniature camera, and Raspberry Pi single-board computer. Two Python programs capture and analyze the images of the array to extract pixel saturation values corresponding to individual hydrogel micropatches. The method has been thoroughly optimized for mapping of glucose and lactic acid. The optimized parameters were: contact time, agarose concentration, substrate concentration, enzyme concentration ratio, and enzyme concentration. The array biosensor was further tested by mapping glucose distribution in fruit/vegetable cross-sections (apple, guava, and cucumber) and lactic acid distribution in cheese. We think that this new hydrogel-based chemical mapping method can find applications in studies related to food science, plant physiology, clinical chemistry, and forensics; wherever the distributions of analytes on the tested surfaces need to be assessed.
Collapse
Affiliation(s)
- Li-Li Huang
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Zi Qing Chua
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Krzysztof Buchowiecki
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Chamarthi Maheswar Raju
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 300044, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 300044, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 300044, Taiwan.
| |
Collapse
|
13
|
Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology 2023; 21:400. [PMID: 37907972 PMCID: PMC10617118 DOI: 10.1186/s12951-023-02158-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Biological Science and Technology Department, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
14
|
Weng Y, Yang G, Li Y, Xu L, Chen X, Song H, Zhao CX. Alginate-based materials for enzyme encapsulation. Adv Colloid Interface Sci 2023; 318:102957. [PMID: 37392664 DOI: 10.1016/j.cis.2023.102957] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023]
Abstract
Enzymes are widely used in industry due to their high efficiency and selectivity. However, their low stability during certain industrial processes can result in a significant loss of catalytic activity. Encapsulation is a promising technique that can stabilize enzymes by protecting them from environmental stresses such as extreme temperature and pH, mechanical force, organic solvents, and proteases. Alginate and alginate-based materials have emerged as effective carriers for enzyme encapsulation due to their biocompatibility, biodegradability, and ability to form gel beads through ionic gelation. This review presents various alginate-based encapsulation systems for enzyme stabilization and explores their applications in different industries. We discuss the preparation methods of alginate encapsulated enzymes and analyze the release mechanisms of enzymes from alginate materials. Additionally, we summarize the characterization techniques used for enzyme-alginate composites. This review provides insights into the use of alginate encapsulation as a means of stabilizing enzymes and highlights the potential benefits for various industrial applications.
Collapse
Affiliation(s)
- Yilun Weng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangze Yang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yang Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Letao Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
15
|
Guitton-Spassky T, Junge F, Singh AK, Schade B, Achazi K, Maglione M, Sigrist S, Rashmi R, Haag R. Fluorinated dendritic amphiphiles, their stomatosome aggregates and application in enzyme encapsulation. NANOSCALE 2023; 15:7781-7791. [PMID: 37016756 DOI: 10.1039/d3nr00493g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Enzymes are more selective and efficient than synthetic catalysts but are limited by difficult recycling. This is overcome by immobilisation, namely through encapsulation, with the main drawback of this method being slow diffusion of products and reactants, resulting in effectively lowered enzyme activity. Fluorinated dendritic amphiphiles were reported to self-assemble into regularly perforated bilayer vesicles, so-called "stomatosomes". It was proposed that they could be promising novel reaction vessels due to their increased porosity while retaining larger biomolecules at the same time. Amphiphiles were synthesised and their aggregation was analysed by cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) in buffered conditions necessary for enzyme encapsulation. Urease and albumin were encapsulated using the thin-film hydration method and investigated by confocal and time-gated stimulated emission depletion microscopy (gSTED). Their release was then used to probe the selective retention of cargo by stomatosomes. Free and encapsulated enzyme activity were compared and their capacity to be reused was evaluated using the Berthelot method. Urease was successfully encapsulated, did not leak out at room temperature, and showed better activity in perforated vesicles than in closed vesicles without perforations. Encapsulated enzyme could be reused with retained activity over 8 cycles using centrifugation, while free enzyme had to be filtrated. These results show that stomatosomes may be used in enzyme immobilisation applications and present advantages over closed vesicles or free enzyme.
Collapse
Affiliation(s)
- Tiffany Guitton-Spassky
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| | - Florian Junge
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| | - Abhishek Kumar Singh
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| | - Boris Schade
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin, 14195 Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| | - Marta Maglione
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
- Institute for Biology, Freie Universität Berlin, Takustraße 6, Berlin, 14195 Germany
| | - Stephan Sigrist
- Institute for Biology, Freie Universität Berlin, Takustraße 6, Berlin, 14195 Germany
| | - Rashmi Rashmi
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195 Germany.
| |
Collapse
|
16
|
Strobl J, Kozak F, Kamalov M, Reichinger D, Kurzbach D, Becker CFW. Understanding Self-Assembly of Silica-Precipitating Peptides to Control Silica Particle Morphology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207586. [PMID: 36509953 PMCID: PMC11475327 DOI: 10.1002/adma.202207586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The most advanced materials are those found in nature. These evolutionary optimized substances provide highest efficiencies, e.g., in harvesting solar energy or providing extreme stability, and are intrinsically biocompatible. However, the mimicry of biological materials is limited to a few successful applications since there is still a lack of the tools to recreate natural materials. Herein, such means are provided based on a peptide library derived from the silaffin protein R5 that enables rational biomimetic materials design. It is now evident that biomaterials do not form via mechanisms observed in vitro. Instead, the material's function and morphology are predetermined by precursors that self-assemble in solution, often from a combination of protein and salts. These assemblies act as templates for biomaterials. The RRIL peptides used here are a small part of the silica-precipitation machinery in diatoms. By connecting RRIL motifs via varying central bi- or trifunctional residues, a library of stereoisomers is generated, which allows characterization of different template structures in the presence of phosphate ions by combining residue-resolved real-time NMR spectroscopy and molecular dynamics (MD) simulations. Understanding these templates in atomistic detail, the morphology of silica particles is controlled via manipulation of the template precursors.
Collapse
Affiliation(s)
- Johannes Strobl
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Fanny Kozak
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Meder Kamalov
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Daniela Reichinger
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dennis Kurzbach
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Christian FW Becker
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| |
Collapse
|
17
|
Kim Y, Oh KT, Youn YS, Lee ES. pH-Sensitive Twin Liposomes Containing Quercetin and Laccase for Tumor Therapy. Biomacromolecules 2022; 23:3688-3697. [PMID: 35977087 DOI: 10.1021/acs.biomac.2c00571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, functional twin liposomes (TLs) were designed by linking avidin-anchored single liposomes and biotin-anchored single liposomes via avidin-biotin interactions. Here, we first punched a hole on the liposome surface using the liposome magnetoporation method to prepare functional single liposomes, which were used for safely encapsulating quercetin (QER, as a model prodrug) or laccase (LAC, as a bioactive enzyme) inside the liposomes without the use of organic solvents; the pores were then plugged by pH-sensitive glycol chitosan grafted with 3-diethylaminopropylamine (GDEAP) and avidin (or biotin). As a result, single liposomes with QER and biotin-GDEAP were efficiently coupled with other liposomes with LAC and avidin-GDEAP. We demonstrated that the TLs could accelerate QER and LAC release at acidic pH (6.8), improving the LAC-mediated oxidization of QER and significantly elevating tumor cell death, suggesting that this strategy can be used as an efficient method for the programmed action of prodrugs.
Collapse
Affiliation(s)
- Yoonyoung Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.,Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
18
|
Zhang H, Feng M, Fang Y, Wu Y, Liu Y, Zhao Y, Xu J. Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry. Crit Rev Food Sci Nutr 2022; 63:11044-11062. [PMID: 35694766 DOI: 10.1080/10408398.2022.2086851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enzymes are readily inactivated in harsh micro-environment due to changes in pH, temperature, and ionic strength. Developing suitable and feasible techniques for stabilizing enzymes in food sector is critical for preventing them from degradation. This review provides an overview on chitosan (CS)-based enzymes encapsulation techniques, enzyme release mechanisms, and their applications in food industry. The challenges and future prospects of CS-based enzymes encapsulation were also discussed. CS-based encapsulation techniques including ionotropic gelation, emulsification, spray drying, layer-by-layer self-assembly, hydrogels, and films have been studied to improve the encapsulation efficacy (EE), heat, acid and base stability of enzymes for their applications in food, agricultural, and medical industries. The smart delivery design, new delivery system development, and in vivo releasing mechanisms of enzymes using CS-based encapsulation techniques have also been evaluated in laboratory level studies. The CS-based encapsulation techniques in commercial products should be further improved for broadening their application fields. In conclusion, CS-based encapsulation techniques may provide a promising approach to improve EE and bioavailability of enzymes applied in food industry.HighlightsEnzymes play a critical role in food industries but susceptible to inactivation.Chitosan-based materials could be used to maintain the enzyme activity.Releasing mechanisms of enzymes from encapsulators were outlined.Applications of encapsulated enzymes in food fields was discussed.
Collapse
Affiliation(s)
- Hongcai Zhang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yapeng Fang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jianxiong Xu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| |
Collapse
|
19
|
Moulahoum H, Ghorbanizamani F, Guler Celik E, Timur S. Nano-Scaled Materials and Polymer Integration in Biosensing Tools. BIOSENSORS 2022; 12:301. [PMID: 35624602 PMCID: PMC9139048 DOI: 10.3390/bios12050301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
The evolution of biosensors and diagnostic devices has been thriving in its ability to provide reliable tools with simplified operation steps. These evolutions have paved the way for further advances in sensing materials, strategies, and device structures. Polymeric composite materials can be formed into nanostructures and networks of different types, including hydrogels, vesicles, dendrimers, molecularly imprinted polymers (MIP), etc. Due to their biocompatibility, flexibility, and low prices, they are promising tools for future lab-on-chip devices as both manufacturing materials and immobilization surfaces. Polymers can also allow the construction of scaffold materials and 3D structures that further elevate the sensing capabilities of traditional 2D biosensors. This review discusses the latest developments in nano-scaled materials and synthesis techniques for polymer structures and their integration into sensing applications by highlighting their various structural advantages in producing highly sensitive tools that rival bench-top instruments. The developments in material design open a new door for decentralized medicine and public protection that allows effective onsite and point-of-care diagnostics.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Faezeh Ghorbanizamani
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
| | - Emine Guler Celik
- Bioengineering Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey;
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, Bornova, 35100 Izmir, Turkey; (H.M.); (F.G.)
- Central Research Testing and Analysis Laboratory Research and Application Center, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
20
|
Korpidou M, Maffeis V, Dinu IA, Schoenenberger CA, Meier WP, Palivan CG. Inverting glucuronidation of hymecromone in situ by catalytic nanocompartments. J Mater Chem B 2022; 10:3916-3926. [PMID: 35485215 DOI: 10.1039/d2tb00243d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glucuronidation is a metabolic pathway that inactivates many drugs including hymecromone. Adverse effects of glucuronide metabolites include a reduction of half-life circulation times and rapid elimination from the body. Herein, we developed synthetic catalytic nanocompartments able to cleave the glucuronide moiety from the metabolized form of hymecromone in order to convert it to the active drug. By shielding enzymes from their surroundings, catalytic nanocompartments favor prolonged activity and lower immunogenicity as key aspects to improve the therapeutic solution. The catalytic nanocompartments (CNCs) consist of self-assembled poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) diblock copolymer polymersomes encapsulating β-glucuronidase. Insertion of melittin in the synthetic membrane of these polymersomes provided pores for the diffusion of the hydrophilic hymecromone-glucuronide conjugate to the compartment inside where the encapsulated β-glucuronidase catalyzed its conversion to hymecromone. Our system successfully produced hymecromone from its glucuronide conjugate in both phosphate buffered solution and cell culture medium. CNCs were non-cytotoxic when incubated with HepG2 cells. After being taken up by cells, CNCs produced the drug in situ over 24 hours. Such catalytic platforms, which locally revert a drug metabolite into its active form, open new avenues in the design of therapeutics that aim at prolonging the residence time of a drug.
Collapse
Affiliation(s)
- Maria Korpidou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland.
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058, Basel, Switzerland. .,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058, Basel, Switzerland
| |
Collapse
|
21
|
Bagal-Kestwal DR, Chiang BH. Tamarindus indica seed-shell nanoparticles‑silver nanoparticles-Ceratonia silique bean gum composite for copper-micro mesh grid electrode fabrication and its application for glucose detection in artificial salivary samples. Int J Biol Macromol 2021; 189:993-1007. [PMID: 34455001 DOI: 10.1016/j.ijbiomac.2021.08.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022]
Abstract
This study used a new approach to fabricate a glucose detection system based on nano-engineered biomaterials. The fabrication steps included strategic synthesis, integration and stabilization of biological and metal nanoparticles in superabsorbent hydrogel gum matrix. The design of the high-performance electrochemical biosensor platform includes copper-micro mesh grid electrode modified with polymer phase comprising of silver nanoparticles surface coroneted with Ceratonia silique locust bean gum (LBG), Tamarindus indica seed-shell nanoparticles and glucose oxidase (GOx). Fundamental assessment of catalytic properties of the nanobiocomposite films on copper grid probe were performed by cyclic voltammetry, amperometry, differential pulse voltammetry. Probes showed good repeatability, reproducibility, selectivity, and long-term stability. The GOx was well-immobilized and stabilized by C. siliqua nano-matrix, with 85% and 98% activity retention when stored at different condiions for 6 month and 3 months, respectively. The fabricated grid-platform exhibited linear response in a wide range of glucose concentration, with detection limit of 1.0 nM (S/N = 3) and sensitivity 38.7 mA nM-1 cm-2. The bionanomaterial-based sensor was successfully applied for ultra-low glucose detection in artificial salivary samples. The designed sensor, perhaps with further modifications, has potential for the next generation of sensing platform in various biological fluids especially for non-invasive glucose detection for diabetic patients.
Collapse
Affiliation(s)
- Dipali R Bagal-Kestwal
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, section 4, Taipei, Taiwan, ROC.
| | - Been-Huang Chiang
- Institute of Food Science and Technology, National Taiwan University, No.1, Roosevelt Road, section 4, Taipei, Taiwan, ROC.
| |
Collapse
|
22
|
Bialas F, Becker CFW. Biomimetic Silica Encapsulation of Lipid Nanodiscs and β-Sheet-Stabilized Diacylglycerol Kinase. Bioconjug Chem 2021; 32:1742-1752. [PMID: 34288667 PMCID: PMC8382255 DOI: 10.1021/acs.bioconjchem.1c00260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/08/2021] [Indexed: 12/21/2022]
Abstract
Integral membrane proteins (IMPs) comprise highly important classes of proteins such as transporters, sensors, and channels, but their investigation and biotechnological application are complicated by the difficulty to stabilize them in solution. We set out to develop a biomimetic procedure to encapsulate functional integral membrane proteins in silica to facilitate their handling under otherwise detrimental conditions and thereby extend their applicability. To this end, we designed and expressed new fusion constructs of the membrane scaffold protein MSP with silica-precipitating peptides based on the R5 sequence from the diatom Cylindrotheca fusiformis. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) revealed that membrane lipid nanodiscs surrounded by our MSP variants fused to an R5 peptide, so-called nanodiscs, were formed. Exposing them to silicic acid led to silica-encapsulated nanodiscs, a new material for stabilizing membrane structures and a first step toward incorporating membrane proteins in such structures. In an alternative approach, four fusion constructs based on the amphiphilic β-sheet peptide BP-1 and the R5 peptide were generated and successfully employed toward silica encapsulation of functional diacylglycerol kinase (DGK). Silica-encapsulated DGK was significantly more stable against protease exposure and incubation with simulated gastric fluid (SGF) and intestinal fluid (SIF).
Collapse
Affiliation(s)
- Friedrich Bialas
- Institute of Biological Chemistry,
Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Christian F. W. Becker
- Institute of Biological Chemistry,
Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|