1
|
Tsui JLH, Zhang M, Sambaturu P, Busch-Moreno S, Suchard MA, Pybus OG, Flaxman S, Semenova E, Kraemer MUG. Toward optimal disease surveillance with graph-based active learning. Proc Natl Acad Sci U S A 2024; 121:e2412424121. [PMID: 39700149 DOI: 10.1073/pnas.2412424121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Tracking the spread of emerging pathogens is critical to the design of timely and effective public health responses. Policymakers face the challenge of allocating finite resources for testing and surveillance across locations, with the goal of maximizing the information obtained about the underlying trends in prevalence and incidence. We model this decision-making process as an iterative node classification problem on an undirected and unweighted graph, in which nodes represent locations and edges represent movement of infectious agents among them. To begin, a single node is randomly selected for testing and determined to be either infected or uninfected. Test feedback is then used to update estimates of the probability of unobserved nodes being infected and to inform the selection of nodes for testing at the next iterations, until certain test budget is exhausted. Using this framework, we evaluate and compare the performance of previously developed active learning policies for node selection, including Node Entropy and Bayesian Active Learning by Disagreement. We explore the performance of these policies under different outbreak scenarios using simulated outbreaks on both synthetic and empirical networks. Further, we propose a policy that considers the distance-weighted average entropy of infection predictions among neighbors of each candidate node. Our proposed policy outperforms existing ones in most outbreak scenarios given small test budgets, highlighting the need to consider an exploration-exploitation trade-off in policy design. Our findings could inform the design of cost-effective surveillance strategies for emerging and endemic pathogens and reduce uncertainties associated with early risk assessments in resource-constrained situations.
Collapse
Affiliation(s)
- Joseph L-H Tsui
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Mengyan Zhang
- Department of Computer Science, University of Oxford, Oxford OX1 3QG, United Kingdom
| | - Prathyush Sambaturu
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Simon Busch-Moreno
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Marc A Suchard
- Department of Biostatistics, University of California, Los Angeles, CA 90095
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield AL9 7TA, United Kingdom
| | - Seth Flaxman
- Department of Computer Science, University of Oxford, Oxford OX1 3QG, United Kingdom
| | - Elizaveta Semenova
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London SW7 2AZ, United Kingdom
| | - Moritz U G Kraemer
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
2
|
Delussu F, Tizzoni M, Gauvin L. The limits of human mobility traces to predict the spread of COVID-19: A transfer entropy approach. PNAS NEXUS 2023; 2:pgad302. [PMID: 37811338 PMCID: PMC10558401 DOI: 10.1093/pnasnexus/pgad302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/17/2023] [Indexed: 10/10/2023]
Abstract
Mobile phone data have been widely used to model the spread of COVID-19; however, quantifying and comparing their predictive value across different settings is challenging. Their quality is affected by various factors and their relationship with epidemiological indicators varies over time. Here, we adopt a model-free approach based on transfer entropy to quantify the relationship between mobile phone-derived mobility metrics and COVID-19 cases and deaths in more than 200 European subnational regions. Using multiple data sources over a one-year period, we found that past knowledge of mobility does not systematically provide statistically significant information on COVID-19 spread. Our approach allows us to determine the best metric for predicting disease incidence in a particular location, at different spatial scales. Additionally, we identify geographic and demographic factors, such as users' coverage and commuting patterns, that explain the (non)observed relationship between mobility and epidemic patterns. Our work provides epidemiologists and public health officials with a general-not limited to COVID-19-framework to evaluate the usefulness of human mobility data in responding to epidemics.
Collapse
Affiliation(s)
- Federico Delussu
- ISI Foundation, via Chisola 5, 10126 Torino, Italy
- Department of Applied Mathematics and Computer Science, DTU, Richard Petersens Plads, DK-2800 Copenhagen, Denmark
| | - Michele Tizzoni
- ISI Foundation, via Chisola 5, 10126 Torino, Italy
- Department of Sociology and Social Research, University of Trento, via Verdi 26, I-38122 Trento, Italy
| | - Laetitia Gauvin
- ISI Foundation, via Chisola 5, 10126 Torino, Italy
- UMR 215 PRODIG, Institute for Research on Sustainable Development - IRD, 5 cours des Humanités, F-93 322 Aubervilliers Cedex, France
| |
Collapse
|
3
|
Wardle J, Bhatia S, Kraemer MUG, Nouvellet P, Cori A. Gaps in mobility data and implications for modelling epidemic spread: A scoping review and simulation study. Epidemics 2023; 42:100666. [PMID: 36689876 DOI: 10.1016/j.epidem.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Reliable estimates of human mobility are important for understanding the spatial spread of infectious diseases and the effective targeting of control measures. However, when modelling infectious disease dynamics, data on human mobility at an appropriate temporal or spatial resolution are not always available, leading to the common use of model-derived mobility proxies. In this study we reviewed the different data sources and mobility models that have been used to characterise human movement in Africa. We then conducted a simulation study to better understand the implications of using human mobility proxies when predicting the spatial spread and dynamics of infectious diseases. We found major gaps in the availability of empirical measures of human mobility in Africa, leading to mobility proxies being used in place of data. Empirical data on subnational mobility were only available for 17/54 countries, and in most instances, these data characterised long-term movement patterns, which were unsuitable for modelling the spread of pathogens with short generation times (time between infection of a case and their infector). Results from our simulation study demonstrated that using mobility proxies can have a substantial impact on the predicted epidemic dynamics, with complex and non-intuitive biases. In particular, the predicted times and order of epidemic invasion, and the time of epidemic peak in different locations can be underestimated or overestimated, depending on the types of proxies used and the country of interest. Our work underscores the need for regularly updated empirical measures of population movement within and between countries to aid the prevention and control of infectious disease outbreaks. At the same time, there is a need to establish an evidence base to help understand which types of mobility data are most appropriate for describing the spread of emerging infectious diseases in different settings.
Collapse
Affiliation(s)
- Jack Wardle
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK
| | - Sangeeta Bhatia
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK
| | | | - Pierre Nouvellet
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK; School of Life Sciences, University of Sussex, Brighton, UK
| | - Anne Cori
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, UK.
| |
Collapse
|
4
|
Pan-Ngum W, Clapham H, Dawa J, Pulliam JRC. Epidemic SI COVID-19 modeling in LMICs: Accompanying commentary. Epidemics 2022; 41:100651. [PMID: 36400691 PMCID: PMC9621610 DOI: 10.1016/j.epidem.2022.100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Wirichada Pan-Ngum
- Mahidol-Oxford Tropical Medicine Research Unit (MORU) and Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore.
| | - Jeanette Dawa
- Center for Epidemiological Analysis (CEMA) University of Nairobi, Nairobi, Kenya; Washington State University - Global Health Kenya, Nairobi, Kenya.
| | - Juliet R C Pulliam
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch Central, Stellenbosch 7600, South Africa.
| |
Collapse
|
5
|
Hatami F, Chen S, Paul R, Thill JC. Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192315771. [PMID: 36497846 PMCID: PMC9736132 DOI: 10.3390/ijerph192315771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 05/09/2023]
Abstract
The global COVID-19 pandemic has taken a heavy toll on health, social, and economic costs since the end of 2019. Predicting the spread of a pandemic is essential to developing effective intervention policies. Since the beginning of this pandemic, many models have been developed to predict its pathways. However, the majority of these models assume homogeneous dynamics over the geographic space, while the pandemic exhibits substantial spatial heterogeneity. In addition, spatial interaction among territorial entities and variations in their magnitude impact the pandemic dynamics. In this study, we used a spatial extension of the SEIR-type epidemiological model to simulate and predict the 4-week number of COVID-19 cases in the Charlotte-Concord-Gastonia Metropolitan Statistical Area (MSA), USA. We incorporated a variety of covariates, including mobility, pharmaceutical, and non-pharmaceutical interventions, demographics, and weather data to improve the model's predictive performance. We predicted the number of COVID-19 cases for up to four weeks in the 10 counties of the studied MSA simultaneously over the time period 29 March 2020 to 13 March 2021, and compared the results with the reported number of cases using the root-mean-squared error (RMSE) metric. Our results highlight the importance of spatial heterogeneity and spatial interactions among locations in COVID-19 pandemic modeling.
Collapse
Affiliation(s)
- Faizeh Hatami
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Shi Chen
- Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Rajib Paul
- Department of Public Health Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jean-Claude Thill
- Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- School of Data Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Correspondence:
| |
Collapse
|
6
|
Manlove K, Wilber M, White L, Bastille‐Rousseau G, Yang A, Gilbertson MLJ, Craft ME, Cross PC, Wittemyer G, Pepin KM. Defining an epidemiological landscape that connects movement ecology to pathogen transmission and pace‐of‐life. Ecol Lett 2022; 25:1760-1782. [DOI: 10.1111/ele.14032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022]
Affiliation(s)
- Kezia Manlove
- Department of Wildland Resources and Ecology Center Utah State University Logan Utah USA
| | - Mark Wilber
- Department of Forestry, Wildlife, and Fisheries University of Tennessee Institute of Agriculture Knoxville Tennessee USA
| | - Lauren White
- National Socio‐Environmental Synthesis Center University of Maryland Annapolis Maryland USA
| | | | - Anni Yang
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado USA
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center Fort Collins Colorado USA
- Department of Geography and Environmental Sustainability University of Oklahoma Norman Oklahoma USA
| | - Marie L. J. Gilbertson
- Department of Veterinary Population Medicine University of Minnesota St. Paul Minnesota USA
- Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology University of Wisconsin–Madison Madison Wisconsin USA
| | - Meggan E. Craft
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota USA
| | - Paul C. Cross
- U.S. Geological Survey Northern Rocky Mountain Science Center Bozeman Montana USA
| | - George Wittemyer
- Department of Fish, Wildlife, and Conservation Biology Colorado State University Fort Collins Colorado USA
| | - Kim M. Pepin
- National Wildlife Research Center, United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services National Wildlife Research Center Fort Collins Colorado USA
| |
Collapse
|