1
|
Grimée M, Taylor AR, White MT. Heterogeneous mosquito exposure increases Plasmodium vivax and Plasmodium falciparum co-infections: a modelling study. Proc Biol Sci 2024; 291:20242061. [PMID: 39626757 PMCID: PMC11614531 DOI: 10.1098/rspb.2024.2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/27/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024] Open
Abstract
In malaria-endemic regions, Plasmodium vivax and Plasmodium falciparum coexist and may interact. For instance, fevers induced by P. falciparum might activate dormant P. vivax parasites and concurrent radical cure of both species has been proposed to prevent relapses. Heterogeneous mosquito exposure may contribute to the dependence of both parasites. We conducted a literature review on their respective prevalence and that of co-infections. The data revealed a positive correlation between P. vivax and P. falciparum prevalence, and co-infection prevalences exceeding expectations assuming infections occur independently. We used the review data to fit a compartmental model of co-infections that features heterogenous mosquito exposure. The fit suggests that heterogeneous exposure sufficiently explains the observed departure from independence. Finally, we performed simulations under the model assessing the impact on P. vivax prevalence of the activation-by-fever hypothesis and the radical cure proposition. We demonstrated a moderate impact of allowing P. falciparum fevers to reactivate P. vivax and a substantial impact of treating P. falciparum cases with radical cure. Our model highlights dependence between P. falciparum and P. vivax and emphasizes the influence of heterogeneous mosquito exposure. This simple framework can inform the design of more complex models assessing integrated malaria control strategies in coendemic regions.
Collapse
Affiliation(s)
- Mathilde Grimée
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Aimee R. Taylor
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Michael T. White
- Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Abla N, Marrast AC, Jambert E, Richardson N, Duparc S, Almond L, Rowland Yeo K, Pan X, Tarning J, Zhao P, Culpepper J, Waitt C, Koldeweij C, Cole S, Butler AS, Khier S, Möhrle JJ, El Gaaloul M. Addressing health equity for breastfeeding women: primaquine for Plasmodium vivax radical cure. Malar J 2024; 23:287. [PMID: 39334094 PMCID: PMC11438061 DOI: 10.1186/s12936-024-05112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Plasmodium vivax malaria remains a global health challenge, with approximately 6.9 million estimated cases in 2022. The parasite has a dormant liver stage, the hypnozoite, which reactivates to cause repeated relapses over weeks, months, or years. These relapses erode patient health, contribute to the burden of malaria, and promote transmission. Radical cure to prevent relapses requires administration of an 8-aminoquinoline, either primaquine or tafenoquine. However, malaria treatment guidelines updated by the World Health Organization (WHO) in October 2023 restrict primaquine use for women breastfeeding children < 6 months of age, or women breastfeeding older children if their child is G6PD deficient or if the child's G6PD status is unknown. Primaquine restrictions assume that 8-aminoquinoline exposures in breast milk would be sufficient to cause haemolysis in the nursing infant should they be G6PD deficient. WHO recommendations for tafenoquine are awaited. Notably, the WHO recommends that infants are breastfed for the first 2 years of life, and exclusively until 6 months old. Repeated pregnancies, followed by extended breastfeeding leaves women in P. vivax endemic regions potentially vulnerable to relapses for many years. This puts women's health at risk, increases the malaria burden, and perpetuates transmission, hindering malaria control and elimination. The benefits of lifting restrictions on primaquine administration to breastfeeding women are significant, avoiding the adverse consequences of repeated episodes of acute malaria, such as severe anaemia. Recent data challenge the restriction of primaquine in breastfeeding women. Clinical pharmacokinetic data in breastfeeding infants ≥ 28 days old show that the exposure to primaquine is very low and less than 1% of the maternal exposure, indicating negligible risk to infants, irrespective of their G6PD status. Physiologically-based pharmacokinetic modelling complements the clinical data, predicting minimal primaquine exposure to infants and neonates via breast milk from early post-partum. This article summarizes the clinical and modelling evidence for a favourable benefit:risk evaluation of P. vivax radical cure with primaquine for breastfeeding women without the need for infant G6PD testing, supporting a change in policy. This adjustment to current treatment guidelines would support health equity in regard to effective interventions to protect women and their children, enhance malaria control strategies, and advance P. vivax elimination.
Collapse
Affiliation(s)
- Nada Abla
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland.
| | - Anne Claire Marrast
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Elodie Jambert
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | | | - Stephan Duparc
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Lisa Almond
- Certara Predictive Technologies, Simcyp Division, Sheffield, UK
| | | | - Xian Pan
- Certara Predictive Technologies, Simcyp Division, Sheffield, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Ping Zhao
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Catriona Waitt
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Charlotte Koldeweij
- Division of Pharmacology Toxicology, Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Susan Cole
- Medicines and Healthcare products Regulatory Agency (MHRA), 10 South Colonnade, London, UK
| | - Andrew S Butler
- Medicines and Healthcare products Regulatory Agency (MHRA), 10 South Colonnade, London, UK
| | - Sonia Khier
- Pharmacokinetic and Modelling Department, School of Pharmacy, IMAG, CNRS, INRIA, UMR 5149, University of Montpellier, Montpellier, France
| | - Jörg J Möhrle
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Myriam El Gaaloul
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| |
Collapse
|
3
|
Anwar MN, Smith L, Devine A, Mehra S, Walker CR, Ivory E, Conway E, Mueller I, McCaw JM, Flegg JA, Hickson RI. Mathematical models of Plasmodium vivax transmission: A scoping review. PLoS Comput Biol 2024; 20:e1011931. [PMID: 38483975 PMCID: PMC10965096 DOI: 10.1371/journal.pcbi.1011931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/26/2024] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Plasmodium vivax is one of the most geographically widespread malaria parasites in the world, primarily found across South-East Asia, Latin America, and parts of Africa. One of the significant characteristics of the P. vivax parasite is its ability to remain dormant in the human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse infections). Mathematical modelling approaches have been widely applied to understand P. vivax dynamics and predict the impact of intervention outcomes. Models that capture P. vivax dynamics differ from those that capture P. falciparum dynamics, as they must account for relapses caused by the activation of hypnozoites. In this article, we provide a scoping review of mathematical models that capture P. vivax transmission dynamics published between January 1988 and May 2023. The primary objective of this work is to provide a comprehensive summary of the mathematical models and techniques used to model P. vivax dynamics. In doing so, we aim to assist researchers working on mathematical epidemiology, disease transmission, and other aspects of P. vivax malaria by highlighting best practices in currently published models and highlighting where further model development is required. We categorise P. vivax models according to whether a deterministic or agent-based approach was used. We provide an overview of the different strategies used to incorporate the parasite's biology, use of multiple scales (within-host and population-level), superinfection, immunity, and treatment interventions. In most of the published literature, the rationale for different modelling approaches was driven by the research question at hand. Some models focus on the parasites' complicated biology, while others incorporate simplified assumptions to avoid model complexity. Overall, the existing literature on mathematical models for P. vivax encompasses various aspects of the parasite's dynamics. We recommend that future research should focus on refining how key aspects of P. vivax dynamics are modelled, including spatial heterogeneity in exposure risk and heterogeneity in susceptibility to infection, the accumulation of hypnozoite variation, the interaction between P. falciparum and P. vivax, acquisition of immunity, and recovery under superinfection.
Collapse
Affiliation(s)
- Md Nurul Anwar
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Department of Mathematics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Lauren Smith
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Angela Devine
- Division of Global and Tropical Health, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Health Economics Unit, Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Somya Mehra
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Camelia R. Walker
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Elizabeth Ivory
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Eamon Conway
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - James M. McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Jennifer A. Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - Roslyn I. Hickson
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
- Commonwealth Scientific and Industrial Research Organisation, Townsville, Australia
| |
Collapse
|