1
|
Kwon E, Blank G, Starkey S, Chapman C, Lategan C, Shulha H, Kitchin V, Silverberg S, Sauvé L, Sadarangani M. Child Transmission of SARS-CoV-2 Throughout the Pandemic: An Updated Systematic Review and Meta-Analysis. Pediatr Infect Dis J 2025:00006454-990000000-01201. [PMID: 39889734 DOI: 10.1097/inf.0000000000004733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
BACKGROUND This systematic review sought to characterize child-to-child and child-to-adult transmission of severe acute respiratory coronavirus 2 (SARS-CoV-2). METHODS A systematic review was conducted from April 1, 2021, to December 15, 2023, to estimate secondary attack rates (SARs) and secondary infections per index case (case rate) from index cases up to age 20 years. SAR and case rate were analyzed based on age, setting, country and variant prevalence. Meta-analysis was conducted on the SAR data. RESULTS Eighty-six studies were included, representing 33,674 index cases. The total pooled SAR was 0.11 (95% CI: 0.07-0.16); 0.05 (95% CI: 0.03-0.10) for child-to-child transmission and 0.15 (95% CI: 0.07-0.30) for child-to-adult transmission. Pooled SAR in households was 0.28 (95% CI: 0.24-0.34) and was 0.02 (95% CI: 0.01-0.04) in schools. CONCLUSIONS The role of children in SARS-CoV-2 transmission is small, particularly in schools. This work can help inform policies that effectively reduce transmission while minimizing adverse effects on children.
Collapse
Affiliation(s)
- Eugene Kwon
- From the Department of Pediatrics, BC Children's Hospital, Vancouver, British Colombia, Canada
| | - Gabriel Blank
- From the Department of Pediatrics, BC Children's Hospital, Vancouver, British Colombia, Canada
- University of British Columbia Library, Vancouver, British Colombia, Canada
| | - Samantha Starkey
- Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cassidy Chapman
- University of British Columbia Library, Vancouver, British Colombia, Canada
| | - Conné Lategan
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hennady Shulha
- From the Department of Pediatrics, BC Children's Hospital, Vancouver, British Colombia, Canada
- University of British Columbia Library, Vancouver, British Colombia, Canada
| | - Vanessa Kitchin
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, British Colombia, Canada
| | - Sarah Silverberg
- Nemours Children's Hospital - Delaware, Wilmington, Delaware, United States of America
| | - Laura Sauvé
- From the Department of Pediatrics, BC Children's Hospital, Vancouver, British Colombia, Canada
- University of British Columbia Library, Vancouver, British Colombia, Canada
| | - Manish Sadarangani
- From the Department of Pediatrics, BC Children's Hospital, Vancouver, British Colombia, Canada
- University of British Columbia Library, Vancouver, British Colombia, Canada
| |
Collapse
|
2
|
Jeong YD, Ejima K, Kim KS, Iwanami S, Hart WS, Thompson RN, Jung IH, Iwami S, Ajelli M, Aihara K. A modeling study to define guidelines for antigen screening in schools and workplaces to mitigate COVID-19 outbreaks. COMMUNICATIONS MEDICINE 2025; 5:2. [PMID: 39753869 PMCID: PMC11699287 DOI: 10.1038/s43856-024-00716-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/17/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND In-person interaction offers invaluable benefits to people. To guarantee safe in-person activities during a COVID-19 outbreak, effective identification of infectious individuals is essential. In this study, we aim to analyze the impact of screening with antigen tests in schools and workplaces on identifying COVID-19 infections. METHODS We assess the effectiveness of various screening test strategies with antigen tests in schools and workplaces through quantitative simulations. The primary outcome of our analyses is the proportion of infected individuals identified. The transmission process at the population level is modeled using a deterministic compartmental model. Infected individuals are identified through screening tests or symptom development. The time-varying sensitivity of antigen tests and infectiousness is determined by a viral dynamics model. Screening test strategies are characterized by the screening schedule, sensitivity of antigen tests, screening duration, timing of screening initiation, and available tests per person. RESULTS Here, we show that early and frequent screening is the key to maximizing the effectiveness of the screening program. For example, 44.5% (95% CI: 40.8-47.5) of infected individuals are identified by daily testing, whereas it is only 33.7% (95% CI: 30.5-37.3) when testing is performed at the end of the program duration. If high sensitivity antigen tests (Detection limit: 6.3 × 10 4 copies/mL) are deployed, it reaches 69.3% (95% CI: 66.5-72.5). CONCLUSIONS High sensitivity antigen tests, high frequency screening tests, and immediate initiation of screening tests are important to safely restart educational and economic activities in-person. Our computational framework is useful for assessing screening programs by incorporating situation-specific factors.
Collapse
Affiliation(s)
- Yong Dam Jeong
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Mathematics, Pusan National University, Busan, South Korea
| | - Keisuke Ejima
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Kwang Su Kim
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Scientific Computing, Pukyong National University, Busan, South Korea
| | - Shoya Iwanami
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - William S Hart
- Mathematical Institute, University of Oxford, Oxford, UK
| | | | - Il Hyo Jung
- Department of Mathematics, Pusan National University, Busan, South Korea
- Finace Fishery Manufacture Industrial Mathematics Center on Big Data, Pusan National University, Busan, South Korea
| | - Shingo Iwami
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
- Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan.
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.
- Science Groove Inc., Fukuoka, Japan.
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health Department of Epidemiology and Biostatistics, Indiana University School of Public Health-, Bloomington, IN, USA
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Okada Y, Nishiura H. Vaccine-induced reduction of COVID-19 clusters in school settings in Japan during the epidemic wave caused by B.1.1.529 (Omicron) BA.2, 2022. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:7087-7101. [PMID: 39483074 DOI: 10.3934/mbe.2024312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Clusters of COVID-19 in high-risk settings, such as schools, have been deemed a critical driving force of the major epidemic waves at the societal level. In Japan, the vaccination coverage among students remained low up to early 2022, especially for 5-11-year-olds. The vaccination of the student population only started in February 2022. Given this background and considering that vaccine effectiveness against school transmission has not been intensively studied, this paper proposes a mathematical model that links the occurrence of clustering to the case count among populations aged 0-19, 20-59, and 60+ years of age. We first estimated the protected (immune) fraction of each age group either by infection or vaccination and then linked the case count in each age group to the number of clusters via a time series regression model that accounts for the time-varying hazard of clustering per infector. From January 3 to May 30, 2022, there were 4,722 reported clusters in school settings. Our model suggests that the immunity offered by vaccination averted 226 (95% credible interval: 219-232) school clusters. Counterfactual scenarios assuming elevated vaccination coverage with faster roll-out reveal that additional school clusters could have been averted. Our study indicates that even relatively low vaccination coverage among students could substantially lower the risk of clustering through vaccine-induced immunity. Our results also suggest that antigenically updated vaccines that are more effective against the variant responsible for the ongoing epidemic may greatly help decrease not only the incidence but also the unnecessary loss of learning opportunities among school-age students.
Collapse
Affiliation(s)
- Yuta Okada
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| | - Hiroshi Nishiura
- Kyoto University School of Public Health, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8601, Japan
| |
Collapse
|
4
|
Djuric O, Larosa E, Cassinadri M, Cilloni S, Bisaccia E, Pepe D, Bonvicini L, Vicentini M, Venturelli F, Giorgi Rossi P, Pezzotti P, Mateo Urdiales A, Bedeschi E, The Reggio Emilia Covid-19 Working Group. Effect of an enhanced public health contact tracing intervention on the secondary transmission of SARS-CoV-2 in educational settings: The four-way decomposition analysis. eLife 2024; 13:e85802. [PMID: 38416129 PMCID: PMC10901504 DOI: 10.7554/elife.85802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Background The aim of our study was to test the hypothesis that the community contact tracing strategy of testing contacts in households immediately instead of at the end of quarantine had an impact on the transmission of SARS-CoV-2 in schools in Reggio Emilia Province. Methods We analysed surveillance data on notification of COVID-19 cases in schools between 1 September 2020 and 4 April 2021. We have applied a mediation analysis that allows for interaction between the intervention (before/after period) and the mediator. Results Median tracing delay decreased from 7 to 3.1 days and the percentage of the known infection source increased from 34-54.8% (incident rate ratio-IRR 1.61 1.40-1.86). Implementation of prompt contact tracing was associated with a 10% decrease in the number of secondary cases (excess relative risk -0.1 95% CI -0.35-0.15). Knowing the source of infection of the index case led to a decrease in secondary transmission (IRR 0.75 95% CI 0.63-0.91) while the decrease in tracing delay was associated with decreased risk of secondary cases (1/IRR 0.97 95% CI 0.94-1.01 per one day of delay). The direct effect of the intervention accounted for the 29% decrease in the number of secondary cases (excess relative risk -0.29 95%-0.61 to 0.03). Conclusions Prompt contact testing in the community reduces the time of contact tracing and increases the ability to identify the source of infection in school outbreaks. Although there are strong reasons for thinking it is a causal link, observed differences can be also due to differences in the force of infection and to other control measures put in place. Funding This project was carried out with the technical and financial support of the Italian Ministry of Health - CCM 2020 and Ricerca Corrente Annual Program 2023.
Collapse
Affiliation(s)
- Olivera Djuric
- Epidemiology Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio EmiliaReggio EmiliaItaly
- Centre for Environmental, Nutritional and Genetic Epidemiology (CREAGEN), University of Modena and Reggio EmiliaModenaItaly
| | - Elisabetta Larosa
- Public Health Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Mariateresa Cassinadri
- Public Health Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Silvia Cilloni
- Public Health Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Eufemia Bisaccia
- Public Health Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Davide Pepe
- Public Health Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Laura Bonvicini
- Epidemiology Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Massimo Vicentini
- Epidemiology Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Francesco Venturelli
- Epidemiology Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda Unità Sanitaria Locale – IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Patrizio Pezzotti
- Department of Infectious Diseases, Istituto Superiore di SanitàRomeItaly
| | | | - Emanuela Bedeschi
- Public Health Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio EmiliaReggio EmiliaItaly
| | | |
Collapse
|