1
|
Jurva A, Singh B, Qian H, Wang Z, Jacobs ML, Dhima K, Englot DJ, Roberson SW, Bick SK, Constantinidis C. Increased frontoparietal activity related to lower performance in neuropsychological assessment of working memory. Neuroimage 2025; 313:121240. [PMID: 40288702 DOI: 10.1016/j.neuroimage.2025.121240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/18/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025] Open
Abstract
Executive functions, including working memory, are typically assessed clinically with neuropsychological instruments. In contrast, computerized tasks are used to test these cognitive functions in laboratory human and animal studies. Little is known of how neural activity captured by laboratory tasks relates to ability measured by clinical instruments and, by extension, clinical diagnoses of pathological conditions. We therefore sought to determine what aspects of neural activity elicited in laboratory tasks are predictive of performance in neuropsychological instruments. We recorded neural activity from intracranial electrodes implanted in human epilepsy patients as they performed laboratory working memory tasks. These patients had completed neuropsychological instruments preoperatively, including the Weschler Adult Intelligent Scale and the Wisconsin Card Sorting test. Our results revealed that increased high-gamma (70-150 Hz) power in the prefrontal and parietal cortex after presentation of visual stimuli to be remembered was indicative of lower performance in the neuropsychological tasks. On the other hand, we observed a positive correlation between high-frequency power amplitude in the delay period of the laboratory tasks and neuropsychological performance. Our results demonstrate how neural activity around task events relates to executive function and may be associated with clinical diagnosis of specific cognitive deficits.
Collapse
Affiliation(s)
- August Jurva
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Helen Qian
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Zhengyang Wang
- Program in Neuroscience, Vanderbilt University, Nashville, TN 3723515, USA
| | - Monica L Jacobs
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Kaltra Dhima
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Sarah K Bick
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| |
Collapse
|
2
|
Xiao S, Yang Z, Lin Z, Chen L, Liao W, Wang J, Gao C, Lu J, Song Y, Su S, Jiang G. Spontaneous Brain Activity Abnormalities in Patients With Temporal Lobe Epilepsy: A Meta-Analysis of 1474 Patients. J Magn Reson Imaging 2025; 61:1782-1794. [PMID: 39215606 DOI: 10.1002/jmri.29568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Abnormalities in resting-state functional brain activity have been detected in patients with temporal lobe epilepsy (TLE). The results of individual neuroimaging studies of TLE, however, are frequently inconsistent due to small and heterogeneous samples, analytical flexibility, and publication bias toward positive findings. PURPOSE To investigate the most consistent regions of resting-state functional brain activity abnormality in patients with TLE through a quantitative meta-analysis of published neuroimaging data. STUDY TYPE Meta-analysis. SUBJECTS Exactly 1474 TLE patients (716 males and 758 females) from 31 studies on resting-state functional brain activity were included in this study. FIELD STRENGTH/SEQUENCE Studies utilizing 1.5 T or 3 T MR scanners were included for meta-analysis. Resting-state functional MRI using gradient echo-planar imaging, T1-weighted imaging. ASSESSMENT PubMed, Web of Science, Chinese National Knowledge Infrastructure, and WanFang databases were searched to identify studies investigating amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) at the whole-brain level between patients with TLE and healthy controls (HCs). STATISTICAL TESTS Seed-based d Mapping with Permutation of Subject Images, standard randomization tests and meta-regression analysis were used. Results were significant if P < 0.05 with family-wise error corrected. RESULTS Patients with TLE displayed resting-state functional brain activity which was a significant increase in the right hippocampus, and significant decrease in the right angular gurus and right precuneus. Additionally, the meta-regression analysis demonstrated that age (P = 0.231), sex distribution (P = 0.376), and illness duration (P = 0.184), did not show significant associations with resting state functional brain activity in patients with TLE. DATA CONCLUSION Common alteration patterns of spontaneous brain activity were identified in the right hippocampus and default-model network regions in patients with TLE. These findings may contribute to understanding of the underlying mechanism for potentially effective intervention of TLE. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE Stage 2.
Collapse
Affiliation(s)
- Shu Xiao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Zibin Yang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Zitao Lin
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Liqing Chen
- Department of Catheter Intervention, Maoming Maonan District People's Hospital, Maoming, China
| | - Weiming Liao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jurong Wang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Cuihua Gao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jianjun Lu
- Department of Neurosurgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yang Song
- Siemens Healthineers Ltd, Shanghai, China
| | - Sulian Su
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Guihua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| |
Collapse
|
3
|
Chai Z, Yang B, Qu X, Li T, Wang Q, Xian J. Alterations in surface-based amplitude of low-frequency fluctuations primary open-angle glaucoma link to neurotransmitter profiling and visual impairment severity. Brain Imaging Behav 2025; 19:159-174. [PMID: 39625606 DOI: 10.1007/s11682-024-00959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 02/23/2025]
Abstract
The study aimed to examine alterations in surface-based amplitude of low-frequency fluctuations (ALFF) and fractional amplitude of low-frequency fluctuations (fALFF) in primary open-angle glaucoma (POAG) patients using resting-state functional magnetic resonance imaging (rs-fMRI), and to investigate their relationships with visual function and molecular profiling. A total of 70 POAG patients and 45 age- and sex-matched healthy controls (HCs) underwent rs-fMRI scans. The differences between POAG and HCs groups were compared by two-sample t-test. Spearman's correlation analyses assessed the relationship between ALFF/fALFF values and ophthalmic parameters. Spatial correlation analysis of the patients-control difference map with brain imaging data further explores underlying neurobiological mechanisms. POAG patients displayed altered brain activity compared to HCs, including decreased ALFF/fALFF in the visual network and increased in the frontoparietal and default mode networks. They exhibited reduced fALFF in the somatomotor network and increased ALFF in the dorsal and ventral attention networks. These changes are linked to neurotransmitter systems, with fALFF particularly associated with the dopamine system. Moreover, the altered ALFF/fALFF in brain regions related to vision and attention - the occipital lobe, temporal lobe, parietal lobe, paracentral lobule, and frontal lobe correlated with ophthalmic examination parameters. Surface-based ALFF/fALFF in POAG decreased in visual processing regions and increased in brain regions related to cognitive control, working memory, and attention. These changes were linked to neurotransmitter distributions important for emotional stability and mental health, potentially informing treatment approaches for POAG patients.
Collapse
Affiliation(s)
- Zihan Chai
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Bingbing Yang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Xiaoxia Qu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Ting Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China
| | - Qian Wang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China.
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, No.1 of Dongjiaominxiang Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
4
|
Cano-López I, Catalán-Aguilar J, Lozano-García A, Hidalgo V, Hampel KG, Tormos-Pons P, Salvador A, Villanueva V, González-Bono E. Cognitive phenotypes in patients with drug-resistant temporal lobe epilepsy: Relationships with cortisol and affectivity. Clin Neuropsychol 2025; 39:400-423. [PMID: 38965831 DOI: 10.1080/13854046.2024.2375605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE Drug-resistant temporal lobe epilepsy (TLE) is a neurological disorder characterized by cognitive deficits. This study examined whether patients with TLE and different cognitive phenotypes differ in cortisol levels and affectivity while controlling for demographic and clinical variables. Methods: In this cross-sectional study, 79 adults with TLE underwent neuropsychological evaluation in which memory, language, attention/processing speed, executive function, and affectivity were assessed. Six saliva samples were collected in the afternoon to examine the ability of the hypothalamic-pituitary-adrenal (HPA) axis to descend according to the circadian rhythm (C1 to C6). The cortisol area under the curve concerning ground (AUCg) was computed to examine global cortisol secretion. RESULTS Three cognitive phenotypes were identified: memory impairment, generalized impairment, and no impairment. The memory-impairment phenotype showed higher cortisol levels at C4, C5, and C6 than the other groups (p = 0.03, η2 = 0.06), higher cortisol AUCg than the generalized-impairment phenotype (p = 0.004, η2 = 0.14), and a significant reduction in positive affectivity after the evaluation (p = 0.026, η2 = 0.11). Higher cortisol AUCg and reductions in positive affectivity were significant predictors of the memory-impairment phenotype (p < 0.001; Cox and Snell R2 = 0.47). CONCLUSIONS Patients with memory impairment had a slower decline in cortisol levels in the afternoon, which could be interpreted as an inability of the HPA axis to inhibit itself. Thus, chronic stress may influence hippocampus-dependent cognitive function more than other cognitive functions in patients with TLE.
Collapse
Affiliation(s)
- Irene Cano-López
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Judit Catalán-Aguilar
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Alejandro Lozano-García
- Faculty of Health Sciences, Valencian International University, Valencia, Spain
- Department of Psychology, Universidad Europea de Valencia, Valencia, Spain
| | - Vanesa Hidalgo
- Department of Psychology and Sociology, Area of Psychobiology, Social and Human Sciences Center, University of Zaragoza, Teruel, Spain
| | - Kevin G Hampel
- Refractory Epilepsy Unit, Neurology Service, Member of ERN EPICARE, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Paula Tormos-Pons
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Alicia Salvador
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| | - Vicente Villanueva
- Refractory Epilepsy Unit, Neurology Service, Member of ERN EPICARE, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Esperanza González-Bono
- Institut d'Investigació en Psicologia dels Recursos Humans, del Desenvolupament Organitzacional i de la Qualitat de Vida Laboral (IDOCAL)/Department of Psychobiology, Psychology Center, Universitat de València, Valencia, Spain
| |
Collapse
|
5
|
Jurva A, Singh B, Qian H, Wang Z, Jacobs ML, Dhima K, Englot DJ, Roberson SW, Bick SK, Constantinidis C. Frontoparietal activity related to neuropsychological assessment of working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632797. [PMID: 39868084 PMCID: PMC11761696 DOI: 10.1101/2025.01.13.632797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Executive functions, including working memory, are typically assessed clinically with neuropsychological instruments. In contrast, computerized tasks are used to test these cognitive functions in laboratory human and animal studies. Little is known of how neural activity captured by laboratory tasks relates to ability measured by clinical instruments and, by extension, clinical diagnoses of pathological conditions. We therefore sought to determine what aspects of neural activity elicited in laboratory tasks are predictive of performance in neuropsychological instruments. We recorded neural activity from intracranial electrodes implanted in human epilepsy patients as they performed laboratory working memory tasks. These patients had completed neuropsychological instruments preoperatively, including the Weschler Adult Intelligent Scale and the Wisconsin Card Sorting test. Our results revealed that increased high-gamma (70-150 Hz) power in the prefrontal and parietal cortex after presentation of visual stimuli to be remembered was indicative of lower performance in the neuropsychological tasks. On the other hand, we observed a positive correlation between high-frequency power amplitude in the delay period of the laboratory tasks and neuropsychological performance. Our results demonstrate how neural activity around task events relates to executive function and may be associated with clinical diagnosis of specific cognitive deficits.
Collapse
|
6
|
Nakagawa Y, Satake Y, Hata M, Ikeda M. Anterograde amnesia recurrence in temporal lobe epilepsy with amygdala-enlargement. BMJ Case Rep 2024; 17:e262302. [PMID: 39730167 DOI: 10.1136/bcr-2024-262302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024] Open
Abstract
Temporal lobe epilepsy (TLE) can cause different types of memory impairments. Here, we report a case of immediate improvement of memory impairment following antiepileptic drug (AED) treatment in a patient with TLE with amygdala enlargement (TLE-AE), who rapidly developed recurrence. The patient was a man in his 60s whose family members complained of his amnesia. Neuropsychological investigations detected obvious recent and remote memory loss and executive function impairments. Our examinations revealed evidence of TLE and bilateral amygdala enlargement without any results suggesting organic diseases, resulting in a diagnosis of TLE-AE. Although treatment with levetiracetam immediately improved recent memory and executive function, the improvement of the former was temporary. His recent memory loss impairments recurred within 3 months, but were recovered again after switching drug treatment to lacosamide and suppressing epileptic seizures. Careful follow-up after starting AED and sufficient AED adjustment is important in the treatment of memory problems in TLE-AE.
Collapse
Affiliation(s)
- Yuta Nakagawa
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
- Asakayama General Hospital, Sakai, Osaka, Japan
| | - Yuto Satake
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
- Division of Psychiatry, University College London, London, UK
| | - Masahiro Hata
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Yi JD, Pasdarnavab M, Kueck L, Tarcsay G, Ewell LA. Interictal spikes during spatial working memory carry helpful or distracting representations of space and have opposing impacts on performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623481. [PMID: 39605412 PMCID: PMC11601362 DOI: 10.1101/2024.11.13.623481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In temporal lobe epilepsy, interictal spikes (IS) - hypersynchronous bursts of network activity - occur at high rates in between seizures. We sought to understand the influence of IS on working memory by recording hippocampal local field potentials from epileptic mice while they performed a delayed alternation task. We found that IS disrupted performance when they were spatially non-restricted and occurred during running. In contrast, when IS were clustered at reward locations, animals performed well. A machine learning decoding approach revealed that IS at reward sites were larger than IS elsewhere on the maze, and could be classified as occurring at specific reward locations - suggesting they carry informative content for the memory task. Finally, a spiking model revealed that spatially clustered IS preserved hippocampal replay, while spatially dispersed IS disrupted replay by causing over-generalization. Together, these results show that IS can have opposing outcomes on memory.
Collapse
Affiliation(s)
- Justin D. Yi
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- These authors contributed equally
| | | | | | - Gergely Tarcsay
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Laura A. Ewell
- Anatomy & Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Center for Learning and Memory, University of California, Irvine, Irvine, CA, USA
- Senior author
- Lead contact
| |
Collapse
|
8
|
de Bézenac C, Leek N, Adan G, Mohanraj R, Biswas S, Marson A, Keller S. Subcortical Alterations in Newly Diagnosed Epilepsy and Associated Changes in Brain Connectivity and Cognition. Hum Brain Mapp 2024; 45:e70069. [PMID: 39508641 PMCID: PMC11542292 DOI: 10.1002/hbm.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Patients with chronic focal epilepsy commonly exhibit subcortical atrophy, particularly of the thalamus. The timing of these alterations remains uncertain, though preliminary evidence suggests that observable changes may already be present at diagnosis. It is also not yet known how these morphological changes are linked to the coherence of white matter pathways throughout the brain, or to neuropsychological function often compromised before antiseizure medication treatment. This study investigates localized atrophy in subcortical regions using surface shape analysis in individuals with newly diagnosed focal epilepsy (NDfE) and assesses their implications on brain connectivity and cognitive function. We collected structural (T1w) and diffusion-weighted MRI and neuropsychological data from 104 patients with NDfE and 45 healthy controls (HCs) matched for age, sex, and education. A vertex-based shape analysis was performed on subcortical structures to compare patients with NDfE and HC, adjusting for age, sex, and intracranial volume. The mean deformation of significance areas (pcor < 0.05) was used to identify white matter pathways associated with overall shape alterations in patients relative to controls using correlational tractography. Additionally, the relationship between significant subcortical shape values and neuropsychological outcomes was evaluated using a generalized canonical correlation approach. Shape analysis revealed bilateral focal inward deformation (a proxy for localized atrophy) in anterior areas of the right and left thalamus and right pallidum in patients with NDfE compared to HC (FWE corrected). No structures showed areas of outward deformation in patients. The connectometry analysis revealed that fractional anisotropy (FA) was positively correlated with thalamic and pallidal shape deformation, that is, reduced FA was associated with inward deformation in tracts proximal to and or connecting with the thalamus including the fornix, frontal, parahippocampal, and corticothalamic pathways. Thalamic and pallidal shape changes were also related to increased depression and anxiety and reduced memory and cognitive function. These findings suggest that atrophy of the thalamus, which has previously been associated with the generation and maintenance of focal seizures, may present at epilepsy diagnosis and relate to alterations in both white matter connectivity and cognitive performance. We suggest that at least some alterations in brain structure and consequent impact on cognitive and affective processes are the result of early epileptogenic processes rather than exclusively due to the chronicity of longstanding epilepsy, recurrent seizures, and treatment with antiseizure medication.
Collapse
Affiliation(s)
- Christophe E. de Bézenac
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Nicola Leek
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Guleed H. Adan
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
- The Walton Centre NHS Foundation TrustLiverpoolUK
| | - Rajiv Mohanraj
- Department of NeurologyManchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation TrustSalfordUK
| | | | - Anthony G. Marson
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
- The Walton Centre NHS Foundation TrustLiverpoolUK
| | - Simon S. Keller
- Department of Pharmacology and TherapeuticsInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| |
Collapse
|
9
|
Falah A, Winston GP. Comparative analysis of processing speed impairments in TLE, FLE, and GGE: Theoretical insights and clinical Implications. Epilepsy Behav Rep 2024; 28:100722. [PMID: 39534465 PMCID: PMC11555411 DOI: 10.1016/j.ebr.2024.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/28/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
In this narrative review, we explore the differences in processing speed (PS) impairments among three epilepsy conditions; Temporal Lobe Epilepsy (TLE), Frontal Lobe Epilepsy (FLE) and Genetic Generalized Epilepsy (GGE) with a focus on Juvenile Myoclonic Epilepsy (JME). Despite the large body of research focusing on cognition in epilepsy, the intricacies of PS impairments in the epilepsy syndromes have not been fully explored. We investigate the cognitive profiles with focus on PS associated with each of the three conditions, and the neuropsychological methods employed. Furthermore, we evaluate PS in epilepsy within the theoretical frameworks of PS, such as the Relative Consequence Model, the Limited Time Mechanism Model, and the Neural Noise Hypothesis. We find the main challenge of PS research in epilepsy is the inconsistency of assessment methods utilized in different studies. Furthermore, PS impairments are not isolated but rather interconnected to other cognitive domains. Thus, future studies need to standardize PS assessment tools, and incorporate innovative solutions such as technology and neuroimaging techniques to further enhance our understanding of PS impairments in epilepsy.
Collapse
Affiliation(s)
- Adam Falah
- Centre for Neuroscience Studies, Queen’s University, 18 Stuart St, Kingston, Ontario K7L 3N6, Canada
| | - Gavin P. Winston
- Centre for Neuroscience Studies, Queen’s University, 18 Stuart St, Kingston, Ontario K7L 3N6, Canada
- Department of Medicine, Queen’s University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
10
|
Floros N, Papagiannakis N, Kyrozis A, Chroni E, Polychronopoulos P. Associations between neurolinguistic deficits and personality traits in people with epilepsy. Front Neurol 2024; 15:1416713. [PMID: 39479006 PMCID: PMC11521817 DOI: 10.3389/fneur.2024.1416713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction People with epilepsy (PWE) have been hypothesized to have higher prevalence of personality disorders and cognitive disorders. The objective of this study was to investigate the controversial notion of "epileptic personality," a series of supposedly specific personality traits of people with epilepsy (PWE). Methods For this purpose, 29 individuals with Mesial Temporal lobe Epilepsy (MTLE) and 23 with Juvenile myoclonic epilepsy (JME) as confirmed by electroencephalography (EEG), MRI scans and clinical examination, underwent a thorough neuropsychological and personality assessment. The resulting neuropsychological profiles were statistically analyzed considering possible personality disorders, character traits, cognitive and linguistic deviations from 20 healthy controls (HC). Results Our findings suggest accumulative cognitive and linguistic deficits in individuals with epilepsy compared to controls. It is possible that these might be misinterpreted as personality disorders. Specifically, personality traits (p = 0.049) and verbal fluency (p = 0.013), were significantly different between PWEs and controls. Also, the type of epilepsy and lateralization seem to affect executive function (p = 0.049) and pragmatology scores (p < 0.001), exhibiting differences in subgroup analysis. Discussion Different theories are considered as plausible pathophysiological explanations for the aforementioned differences. This research might serve as a basis to further investigate the cognitive aspects of epilepsy and possible pharmacological interventions, which are currently lacking.
Collapse
Affiliation(s)
- Nikitas Floros
- Department of Neurology, University of Patras, Patras, Greece
- 1st Department of Psychiatry, Eginiteion Hospital, University of Athens, Athens, Greece
| | | | - Andreas Kyrozis
- 1st Department of Neurology, Eginiteion Hospital, University of Athens, Athens, Greece
| | | | | |
Collapse
|
11
|
Phillips KHT, Patterson K, Butler CR, Woodberry E, Ralph MAL, Cope TE. Does epilepsy differentially affect different types of memory? Seizure 2024; 121:217-225. [PMID: 39243667 DOI: 10.1016/j.seizure.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the recognition that epilepsy can substantially disrupt memory, there are few published accounts of whether and how this disruption varies across different types of memory and/or different types of epilepsy. This review explores four main questions: (1) Are working, episodic and semantic memory differentially affected by epilepsy? (2) Do various types of epilepsy, and their treatment, have different, specifiable effects on memory? (3) Are the usual forms of neuropsychological assessments of memory - many or most designed for other conditions - appropriate for patients with epilepsy? (4) How can research on epilepsy contribute to our understanding of the neuroscience of memory? We conclude that widespread and multifactorial problems are seen in working memory in all patient groups, while patients with temporal lobe epilepsy seem particularly prone to episodic memory deficit, and those with frontal lobe epilepsy to executive function deficits that may in turn impair semantic control. Currently, it is difficult to make individual patient predictions about likely memory deficits based on seizure aetiology and type, but it is possible to guide and tailor neuropsychological assessments in an individualised way. We make recommendations for future directions in validating and optimising neuropsychological assessments, and consider how to approach effective shared decision making about the pros and cons of seizure treatment strategies, especially at crucial educational stages such as adolescence.
Collapse
Affiliation(s)
| | - Karalyn Patterson
- Cambridge University Hospitals, Cambridge, UK; MRC Cognition and Brain Sciences Unit, Cambridge, UK
| | | | | | - Matthew A Lambon Ralph
- Cambridge University Hospitals, Cambridge, UK; MRC Cognition and Brain Sciences Unit, Cambridge, UK
| | - Thomas E Cope
- Cambridge University Hospitals, Cambridge, UK; MRC Cognition and Brain Sciences Unit, Cambridge, UK
| |
Collapse
|
12
|
Connolly MJ, Jiang S, Samuel LC, Gutekunst CA, Gross RE, Devergnas A. Seizure onset and offset pattern determine the entrainment of the cortex and substantia nigra in the nonhuman primate model of focal temporal lobe seizures. PLoS One 2024; 19:e0307906. [PMID: 39197026 PMCID: PMC11356443 DOI: 10.1371/journal.pone.0307906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/13/2024] [Indexed: 08/30/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy. A major focus of human and animal studies on TLE network has been the limbic circuit. However, there is also evidence suggesting an active role of the basal ganglia in the propagation and control of temporal lobe seizures. Here, we characterize the involvement of the substantia nigra (SN) and somatosensory cortex (SI) during temporal lobe (TL) seizures induced by penicillin injection in the hippocampus (HPC) of two nonhuman primates. The seizure onset and offset patterns were manually classified and spectral power and coherence were calculated. We then compared the 3-second segments recorded in pre-ictal, onset, offset and post-ictal periods based on the seizure onset and offset patterns. Our results demonstrated an involvement of the SN and SI dependent on the seizure onset and offset pattern. We found that low amplitude fast activity (LAF) and high amplitude slow activity (HAS) onset patterns were associated with an increase in activity of the SN while the change in activity was limited to LAF seizures in the SI. However, the increase in HPC/SN coherence was specific to the farther-spreading LAF onset pattern. As for the role of the SN in seizure cessation, we observed that the coherence between the HPC/SN was reduced during burst suppression (BS) compared to other termination phases. Additionally, we found that this coherence returned to normal levels after the seizure ended, with no significant difference in post-ictal periods among the three types of seizure offsets. This study constitutes the first demonstration of TL seizures entraining the SN in the primate brain. Moreover, these findings provide evidence that this entrainment is dependent on the onset and offset pattern and support the hypothesis that the SN might play a role in the maintenance and termination of some specific temporal lobe seizure.
Collapse
Affiliation(s)
- Mark J. Connolly
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Sujin Jiang
- Emory College of Arts & Sciences, Emory University, Atlanta, GA, United States of America
| | - Lim C. Samuel
- Emory College of Arts & Sciences, Emory University, Atlanta, GA, United States of America
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Robert E. Gross
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States of America
| | - Annaelle Devergnas
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
13
|
Goodman AM, Allendorfer JB, Taylor GC, Philip NS, Correia S, Blum AS, Curt LaFrance W, Szaflarski JP. Altered fronto-limbic-motor response to stress differs between functional and epileptic seizures in a TBI model. Epilepsy Behav 2024; 157:109877. [PMID: 38917672 DOI: 10.1016/j.yebeh.2024.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND OBJECTIVES Psychogenic nonepileptic (functional) seizures (FS) clinically resemble epileptic seizures (ES) with both often preceded by traumatic brain injury (TBI). FS and ES emergence and occurrence after TBI may be linked to aberrant neurobehavioral stress responses. We hypothesized that neural activity signatures in response to a psychosocial stress task would differ between TBI + FS and TBI + ES after controlling for TBI status (TBI-only). METHODS In the current multicenter study, participants were recruited prospectively from Rhode Island Hospital, Providence Rhode Island Veterans Administration Medical Center, and the University of Alabama at Birmingham Medical Center. Previous diagnoses of TBI, ES, and FS were verified based on data collected from participants, medical chart and record review, and, where indicated, results of EEG and/or video-EEG confirmatory diagnosis. TBI + ES (N = 21) and TBI + FS (N = 21) were matched for age and sex and combined into an initial group (TBI + SZ; N = 42). A TBI-only group (N = 42) was age and sex matched to the TBI with seizures (TBI + SZ) group. All participants completed an fMRI control math task (CMT) and stress math task (SMT) based on the Montreal Imaging Stress Task (MIST). RESULTS The TBI + SZ group (n = 24 female) did not differ in mood or anxiety severity compared to TBI-only group (n = 24 female). However, TBI + FS group (n = 11 female) reported greater severity of these symptoms compared to TBI + ES (n = 13 female). The linear mixed effects analysis identified neural responses that differed between TBI-only and TBI + SZ during math performance within the left premotor cortex and during auditory feedback within bilateral prefrontal cortex and hippocampus/amygdala regions. Additionally, neural responses differed between TBI + ES and TBI + FS during math performance within the right dorsolateral prefrontal cortex and bilateral amygdala during auditory feedback within the supplementary motor area. All tests comparing neural stress responses to psychiatric symptom severity failed to reach significance. DISCUSSION Controlling for TBI and seizure status, these findings implicate specific nodes within frontal, limbic, and sensorimotor networks that may maintain functional neurological symptoms and possibly distinguish FS from ES. This study provides class II evidence of differences in neural responses to psychosocial stress between ES and FS after TBI.
Collapse
Affiliation(s)
- Adam M Goodman
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Psychology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Jane B Allendorfer
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Gabriella C Taylor
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Noah S Philip
- VA RR&D Center for Neurorestoration & Neurotechnology, VA Providence Healthcare System, Providence, RI, USA; Dept of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Stephen Correia
- VA RR&D Center for Neurorestoration & Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
| | - Andrew S Blum
- Dept of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
| | - W Curt LaFrance
- VA RR&D Center for Neurorestoration & Neurotechnology, VA Providence Healthcare System, Providence, RI, USA; Dept of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA; Dept of Neurology, Alpert Medical School of Brown University, Providence, RI, USA; Division of Neuropsychiatry and Behavioral Neurology, Rhode Island Hospital, Providence, RI, USA
| | - Jerzy P Szaflarski
- Department of Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; UAB Epilepsy Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA; Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
14
|
Murray NWG, Kneebone AC, Graham PL, Wong CH, Savage G, Gillinder L, Fong MWK. The network is more important than the node: stereo-EEG evidence of neurocognitive networks in epilepsy. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1424004. [PMID: 39114571 PMCID: PMC11303167 DOI: 10.3389/fnetp.2024.1424004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Introduction Neuropsychological assessment forms an integral part of the presurgical evaluation for patients with medically refractory focal epilepsy. Our understanding of cognitive impairment in epilepsy is based on seminal lesional studies that have demonstrated important structure-function relationships within the brain. However, a growing body of literature demonstrating heterogeneity in the cognitive profiles of patients with focal epilepsy (e.g., temporal lobe epilepsy; TLE) has led researchers to speculate that cognition may be impacted by regions outside the seizure onset zone, such as those involved in the interictal or "irritative" network. Methods Neuropsychological data from 48 patients who underwent stereoelectroencephalography (SEEG) monitoring between 2012 and 2023 were reviewed. Patients were categorized based on the site of seizure onset, as well as their irritative network, to determine the impact of wider network activity on cognition. Neuropsychological data were compared with normative standards (i.e., z = 0), and between groups. Results There were very few distinguishing cognitive features between patients when categorized based purely on the seizure onset zone (i.e., frontal lobe vs. temporal lobe epilepsy). In contrast, patients with localized irritative networks (i.e., frontal or temporal interictal epileptiform discharges [IEDs]) demonstrated more circumscribed profiles of impairment compared with those demonstrating wider irritative networks (i.e., frontotemporal IEDs). Furthermore, the directionality of propagation within the irritative network was found to influence the manifestations of cognitive impairment. Discussion The findings suggest that neuropsychological assessment is sensitive to network activity beyond the site of seizure onset. As such, an overly focal interpretation may not accurately reflect the distribution of the underlying pathology. This has important implications for presurgical work-up in epilepsy, as well as subsequent surgical outcomes.
Collapse
Affiliation(s)
- Nicholas W. G. Murray
- School of Psychological Sciences, Macquarie University, Sydney, Australia
- Westmead Comprehensive Epilepsy Centre, The University of Sydney, Sydney, Australia
| | - Anthony C. Kneebone
- School of Psychology, University of Queensland, Brisbane, Australia
- Department of Neurology and Stroke, Flinders Medical Centre, Adelaide, Australia
| | - Petra L. Graham
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, Australia
| | - Chong H. Wong
- Westmead Comprehensive Epilepsy Centre, The University of Sydney, Sydney, Australia
| | - Greg Savage
- School of Psychological Sciences, Macquarie University, Sydney, Australia
| | - Lisa Gillinder
- Advanced Epilepsy Unit, The Mater Hospital, Brisbane, Australia
| | - Michael W. K. Fong
- Westmead Comprehensive Epilepsy Centre, The University of Sydney, Sydney, Australia
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Iammarino E, Marcantoni I, Sbrollini A, Mortada MHDJ, Morettini M, Burattini L. Scalp Electroencephalogram-Derived Involvement Indexes during a Working Memory Task Performed by Patients with Epilepsy. SENSORS (BASEL, SWITZERLAND) 2024; 24:4679. [PMID: 39066076 PMCID: PMC11280559 DOI: 10.3390/s24144679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Electroencephalography (EEG) wearable devices are particularly suitable for monitoring a subject's engagement while performing daily cognitive tasks. EEG information provided by wearable devices varies with the location of the electrodes, the suitable location of which can be obtained using standard multi-channel EEG recorders. Cognitive engagement can be assessed during working memory (WM) tasks, testing the mental ability to process information over a short period of time. WM could be impaired in patients with epilepsy. This study aims to evaluate the cognitive engagement of nine patients with epilepsy, coming from a public dataset by Boran et al., during a verbal WM task and to identify the most suitable location of the electrodes for this purpose. Cognitive engagement was evaluated by computing 37 engagement indexes based on the ratio of two or more EEG rhythms assessed by their spectral power. Results show that involvement index trends follow changes in cognitive engagement elicited by the WM task, and, overall, most changes appear most pronounced in the frontal regions, as observed in healthy subjects. Therefore, involvement indexes can reflect cognitive status changes, and frontal regions seem to be the ones to focus on when designing a wearable mental involvement monitoring EEG system, both in physiological and epileptic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Laura Burattini
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.I.); (I.M.); (A.S.); (M.J.M.); (M.M.)
| |
Collapse
|
16
|
Lozano-García A, Hampel KG, Gutiérrez A, Villanueva V, Cano-López I, González-Bono E. Clinical utility of Epitrack for differentiating profiles and patterns of post-surgical change in memory and quality of life in patients with drug-resistant epilepsy. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:464-475. [PMID: 35148237 DOI: 10.1080/23279095.2022.2036990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE To assess whether performance in attention and executive functions evaluated with the Epitrack screening tool before surgery can differentiate memory and quality of life (QOL) profiles, and detect different post-surgical change patterns in these variables in patients with epilepsy. METHODS This is a longitudinal study. Seventy-seven patients with drug-resistant epilepsy (mean age = 37.91) underwent a neuropsychological assessment before and one year after surgery. Epitrack, a screening tool that exclusively evaluates attention and executive functioning, was administered in the pre-surgical assessment, and verbal and visual memory and QOL were assessed before and after surgery. RESULTS Patients with impaired Epitrack performance had poorer verbal and visual memory than those with intact Epitrack performance, regardless of the time point (for all, p < 0.0001). They also showed a post-surgical decline in immediate verbal recall (p = 0.04) and discriminability (p = 0.001). Patients with intact Epitrack performance did not exhibit this decline. Epitrack total score significantly contributed to 13 and 11% of the variance of post-surgical changes in immediate verbal recall and discriminability, respectively. Epitrack groups did not differ in QOL profiles or changes, but post-surgical immediate verbal recall improvements were related to post-surgical QOL improvements. CONCLUSION Our findings underline the utility of Epitrack screening tool to detect different patterns of verbal and visual memory dysfunction, as well as to predict post-surgical verbal memory decline in patients with drug-resistant epilepsy. Patients with lower pre-surgical Epitrack scores appear to be at increased risk for post-surgical memory decline.
Collapse
Affiliation(s)
- Alejandro Lozano-García
- IDOCAL/Department of Psychobiology, Psychology Center, University of Valencia, Valencia, Spain
| | - Kevin G Hampel
- Refractory Epilepsy Unit, Neurology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Antonio Gutiérrez
- Refractory Epilepsy Unit, Neurology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Vicente Villanueva
- Refractory Epilepsy Unit, Neurology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Esperanza González-Bono
- IDOCAL/Department of Psychobiology, Psychology Center, University of Valencia, Valencia, Spain
| |
Collapse
|
17
|
Ocklenburg S, Mundorf A, Gerrits R, Karlsson EM, Papadatou-Pastou M, Vingerhoets G. Clinical implications of brain asymmetries. Nat Rev Neurol 2024; 20:383-394. [PMID: 38783057 DOI: 10.1038/s41582-024-00974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
No two human brains are alike, and with the rise of precision medicine in neurology, we are seeing an increased emphasis on understanding the individual variability in brain structure and function that renders every brain unique. Functional and structural brain asymmetries are a fundamental principle of brain organization, and recent research suggests substantial individual variability in these asymmetries that needs to be considered in clinical practice. In this Review, we provide an overview of brain asymmetries, variations in such asymmetries and their relevance in the clinical context. We review recent findings on brain asymmetries in neuropsychiatric and neurodevelopmental disorders, as well as in specific learning disabilities, with an emphasis on large-scale database studies and meta-analyses. We also highlight the relevance of asymmetries for disease symptom onset in neurodegenerative diseases and their implications for lateralized treatments, including brain stimulation. We conclude that alterations in brain asymmetry are not sufficiently specific to act as diagnostic biomarkers but can serve as meaningful symptom or treatment response biomarkers in certain contexts. On the basis of these insights, we provide several recommendations for neurological clinical practice.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany.
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany.
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Annakarina Mundorf
- ISM Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin Gerrits
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Emma M Karlsson
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Marietta Papadatou-Pastou
- National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Guy Vingerhoets
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Weidner EM, Moratti S, Schindler S, Grewe P, Bien CG, Kissler J. Amygdala and cortical gamma-band responses to emotional faces are modulated by attention to valence. Psychophysiology 2024; 61:e14512. [PMID: 38174584 DOI: 10.1111/psyp.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/22/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
The amygdala might support an attentional bias for emotional faces. However, whether and how selective attention toward a specific valence modulates this bias is not fully understood. Likewise, it is unclear whether amygdala and cortical signals respond to emotion and attention in a similar way. We recorded gamma-band activity (GBA, > 30 Hz) intracranially in the amygdalae of 11 patients with epilepsy and collected scalp recordings from 19 healthy participants. We presented angry, neutral, and happy faces randomly, and we denoted one valence as the target. Participants detected happy targets most quickly and accurately. In the amygdala, during attention to negative faces, low gamma-band activity (LGBA, < 90 Hz) increased for angry compared with happy faces from 160 ms. From 220 ms onward, amygdala high gamma-band activity (HGBA, > 90 Hz) was higher for angry and neutral faces than for happy ones. Monitoring neutral faces increased amygdala HGBA for emotions compared with neutral faces from 40 ms. Expressions were not differentiated in GBA while monitoring positive faces. On the scalp, only threat monitoring resulted in expression differentiation. Here, posterior LGBA was increased selectively for angry targets from 60 ms. The data show that GBA differentiation of emotional expressions is modulated by attention to valence: Top-down-controlled threat vigilance coordinates widespread GBA in favor of angry faces. Stimulus-driven emotion differentiation in amygdala GBA occurs during a neutral attentional focus. These findings align with a multi-pathway model of emotion processing and specify the role of GBA in this process.
Collapse
Affiliation(s)
- Enya M Weidner
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Stephan Moratti
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
| | - Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Philip Grewe
- Deptartment of Epileptology, Krankenhaus Mara, Bethel Epilepsy Center, Medical School OWL, Bielefeld University, Bielefeld, Germany
- Clinical Neuropsychology and Epilepsy Research, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Christian G Bien
- Deptartment of Epileptology, Krankenhaus Mara, Bethel Epilepsy Center, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Johanna Kissler
- Department of Psychology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
19
|
Singh B, Wang Z, Madiah LM, Gatti SE, Fulton JN, Johnson GW, Li R, Dawant BM, Englot DJ, Bick SK, Roberson SW, Constantinidis C. Brain-wide human oscillatory local field potential activity during visual working memory. iScience 2024; 27:109130. [PMID: 38380249 PMCID: PMC10877957 DOI: 10.1016/j.isci.2024.109130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Oscillatory activity in the local field potential (LFP) is thought to be a marker of cognitive processes. To understand how it differentiates tasks and brain areas in humans, we recorded LFPs in 15 adults with intracranial depth electrodes, as they performed visual-spatial and shape working memory tasks. Stimulus appearance produced widespread, broad-band activation, including in occipital, parietal, temporal, insular, and prefrontal cortex, and the amygdala and hippocampus. Occipital cortex was characterized by most elevated power in the high-gamma (100-150 Hz) range during the visual stimulus presentation. The most consistent feature of the delay period was a systematic pattern of modulation in the beta frequency (16-40 Hz), which included a decrease in power of variable timing across areas, and rebound during the delay period. These results reveal the widespread nature of oscillatory activity across a broad brain network and region-specific signatures of oscillatory processes associated with visual working memory.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Zhengyang Wang
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Leen M. Madiah
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - S. Elizabeth Gatti
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jenna N. Fulton
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Graham W. Johnson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rui Li
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Benoit M. Dawant
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah K. Bick
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Süß AM, Hug M, Conradi N, Kienitz R, Rosenow F, Rampp S, Merkel N. Lateralization of delta band power in magnetoencephalography (MEG) in patients with unilateral focal epilepsy and its relation to verbal fluency. Brain Behav 2023; 13:e3257. [PMID: 37752097 PMCID: PMC10636394 DOI: 10.1002/brb3.3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
INTRODUCTION Delta power is a clinically established biomarker for abnormal brain processes. However, in patients with unilateral focal epilepsy (FE) it is still not well understood, how it relates to the epileptogenic zone and to neurocognitive functioning. The aim of the present study was thus to assess how delta power relates to the affected hemisphere, whether lateralization strength differs between the patients, and how changes in delta power correlate with cognitive functioning. METHOD We retrospectively studied patients with left (LFE) and right FE (RFE) who had undergone a resting-state magnetoencephalography measurement. We computed global and hemispheric delta power and lateralization indices and examined whether delta power correlates with semantic and letter verbal fluency (former being a marker for language and verbal memory, latter for executive functions) in 26 FE patients (15 LFE, 11 RFE) and 10 healthy controls. RESULTS Delta power was increased in FE patients compared to healthy controls. However, the increase across hemispheres was related to the site of the epileptic focus: On group level, LFE patients showed higher delta power in both hemispheres, whereas RFE patients primarily exhibited higher delta power in the ipsilateral right hemisphere. Both groups showed co-fluctuations of delta power between the hemispheres. Besides, delta power correlated negatively only with letter verbal fluency. CONCLUSION The findings confirm and provide further evidence that delta power is a marker of pathological activity and abnormal brain processes in FE. Delta power dynamics differ between patient groups, indicating that delta power could offer additional diagnostic value. The negative association of delta power and letter verbal fluency suggests that executive dysfunctions are related to low frequency abnormalities.
Collapse
Affiliation(s)
- Annika Melissa Süß
- Epilepsy Center Frankfurt Rhine‐MainCenter of Neurology and NeurosurgeryUniversity Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University FrankfurtFrankfurt am MainGermany
| | - Marion Hug
- Department of NeurologyUniversity Hospital Frankfurt and Goethe UniversityFrankfurt am MainGermany
| | - Nadine Conradi
- Epilepsy Center Frankfurt Rhine‐MainCenter of Neurology and NeurosurgeryUniversity Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University FrankfurtFrankfurt am MainGermany
| | - Ricardo Kienitz
- Epilepsy Center Frankfurt Rhine‐MainCenter of Neurology and NeurosurgeryUniversity Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University FrankfurtFrankfurt am MainGermany
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine‐MainCenter of Neurology and NeurosurgeryUniversity Hospital FrankfurtFrankfurt am MainGermany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University FrankfurtFrankfurt am MainGermany
| | - Stefan Rampp
- Department of NeurosurgeryUniversity Hospital ErlangenErlangenGermany
- Department of NeurosurgeryUniversity Hospital Halle (Saale)Halle (Saale)Germany
| | - Nina Merkel
- Epilepsy Center Frankfurt Rhine‐MainCenter of Neurology and NeurosurgeryUniversity Hospital FrankfurtFrankfurt am MainGermany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck SocietyFrankfurt am MainGermany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
21
|
Sarkis RA. Update in Progress: Cognitive Phenotypes in Temporal Lobe Epilepsy. Epilepsy Curr 2023; 23:363-365. [PMID: 38269342 PMCID: PMC10805095 DOI: 10.1177/15357597231211446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Moving Towards a Taxonomy of Cognitive Impairments in Epilepsy: Application of Latent Profile Analysis to 1178 Patients With Temporal Lobe Epilepsy Reyes A, Hermann BP, Busch RM, Drane DL, Barr WB, Hamberger MJ, Roesch SC, McDonald CR. Brain Commun . 2022;4(6):fcac289. doi:10.1093/braincomms/fcac289 In efforts to understand the cognitive heterogeneity within and across epilepsy syndromes, cognitive phenotyping has been proposed as a new taxonomy aimed at developing a harmonized approach to cognitive classification in epilepsy. Data- and clinically driven approaches have been previously used with variability in the phenotypes derived across studies. In our study, we utilize latent profile analysis to test several models of phenotypes in a large multicentre sample of patients with temporal lobe epilepsy and evaluate their demographic and clinical profiles. For the first time, we examine the added value of replacing missing data and examine factors that may be contributing to missingness. A sample of 1178 participants met the inclusion criteria for the study, which included a diagnosis of temporal lobe epilepsy and the availability of comprehensive neuropsychological data. Models with two to five classes were examined using latent profile analysis and the optimal model was selected based on fit indices, posterior probabilities and proportion of sample sizes. The models were also examined with imputed data to investigate the impact of missing data on model selection. Based on the fit indices, posterior probability and distinctiveness of the latent classes, a three-class solution was the optimal solution. This three-class solution comprised a group of patients with multidomain impairments, a group with impairments predominantly in language and a group with no impairments. Overall, the multidomain group demonstrated a worse clinical profile and comprised a greater proportion of patients with mesial temporal sclerosis, a longer disease duration and a higher number of anti-seizure medications. The four-class and five-class solutions demonstrated the lowest probabilities of a group membership. Analyses with imputed data demonstrated that the four-class solution was the optimal solution; however, there was a weak agreement between the missing and imputed data sets for the four-Class solutions (κ = 0.288, P < 0.001). This study represents the first to use latent profile analysis to test and compare multiple models of cognitive phenotypes in temporal lobe epilepsy and to determine the impact of missing data on model fit. We found that the three-phenotype model was the most meaningful based on several fit indices and produced phenotypes with unique demographic and clinical profiles. Our findings demonstrate that latent profile analysis is a rigorous method to identify phenotypes in large, heterogeneous epilepsy samples. Furthermore, this study highlights the importance of examining the impact of missing data in phenotyping methods. Our latent profile analysis-derived phenotypes can inform future studies aimed at identifying cognitive phenotypes in other neurological disorders.
Collapse
Affiliation(s)
- Rani A Sarkis
- Epilepsy Division, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
22
|
Soncin LD, Belquaid S, McGonigal A, Giusiano B, Bartolomei F, Faure S. Post-traumatic stress disorder (PTSD), cognitive control, and perceived seizure control in patients with epilepsy: An exploratory study. Epilepsy Behav 2023; 147:109396. [PMID: 37619461 DOI: 10.1016/j.yebeh.2023.109396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Epilepsy is often linked to various psychiatric symptoms, with anxiety, depression, and interictal dysphoric disorders being the most prevalent. Few studies have investigated posttraumatic stress disorder (PTSD) in epilepsy, but they suggest a notable prevalence of PTSD. PTSD is known to be associated with cognitive impairments, particularly memory and executive functions. Our proposed exploratory study aims to investigate executive attentional control and emotional inhibition in patients with drug-resistant epilepsy (DRE) who exhibit PTSD symptoms compared with a healthy control group. Additionally, some PWE can manage their seizures using emotional and cognitive strategies, we find it relevant to explore the connection between their regulation abilities, cognitive control performance, and PTSD symptoms. We included 54 PWE and 60 healthy participants. They completed anxiety and depression scales as well as two questionnaires assessing PTSD symptoms and a questionnaire that measured the perceived self-control of seizures. We measured executive control using an executive control task (Attention Network Test, ANT) and an emotional Go/No-Go task. We found a positive correlation between PTSD scores (PDS-5) and performance at the ANT task. In contrast, in the emotional inhibition (Go/No-Go) task, behavioral inhibition errors were positively correlated with PTSD scores, specifically with hypervigilance symptoms in PTSD+ patients. There was a positive correlation between response reaction times in an aversive condition and PTSD scores: the more severe the PTSD symptoms, the faster the PWE identified stimuli in the angry face condition of the Go/No-Go task. Regarding perceived seizure control, we found correlations between alertness and PTSD symptoms associated with seizure anticipation during the inter- and peri-ictal periods. Patients with PTSD symptoms reported better seizure control. Our findings suggest that epilepsy patients with PTSD experience cognitive changes such as heightened executive attentional control, weakened emotional inhibition, and improved seizure control perception.
Collapse
Affiliation(s)
- Lisa-Dounia Soncin
- Université Côte d'Azur, LAPCOS, France; Aix Marseille Univ, INSERM, INS, Int Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.
| | | | - Aileen McGonigal
- Aix Marseille Univ, INSERM, INS, Int Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France; Mater Hospital and Faculty of Medicine, University of Queensland, Brisbane, Australia; Queensland Brain Institute, University of Queensland and Mater Hospital, Brisbane, Queensland, Australia.
| | - Bernard Giusiano
- Aix Marseille Univ, INSERM, INS, Int Neurosci Syst, Marseille, France; APHM, Timone Hospital, Public Health department, Marseille, France.
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Int Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France.
| | | |
Collapse
|
23
|
Allebone J, Kanaan RA, Rayner G, Maller J, O'Brien TJ, Mullen SA, Cook M, Adams SJ, Vogrin S, Vaughan DN, Kwan P, Berkovic SF, D'Souza WJ, Jackson G, Velakoulis D, Wilson SJ. Neuropsychological function in psychosis of epilepsy. Epilepsy Res 2023; 196:107222. [PMID: 37717505 DOI: 10.1016/j.eplepsyres.2023.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE The neuropsychological profile of patients with psychosis of epilepsy (POE) has received limited research attention. Recent neuroimaging work in POE has identified structural network pathology in the default mode network and the cognitive control network. This study examined the neuropsychological profile of POE focusing on cognitive domains subserved by these networks. METHODS Twelve consecutive patients with a diagnosis of POE were prospectively recruited from the Comprehensive Epilepsy Programmes at The Royal Melbourne, Austin and St Vincent's Hospitals, Melbourne, Australia between January 2015 and February 2017. They were compared to 12 matched patients with epilepsy but no psychosis and 42 healthy controls on standardised neuropsychological tests of memory and executive functioning in a case-control design. RESULTS Mean scores across all cognitive tasks showed a graded pattern of impairment, with the POE group showing the poorest performance, followed by the epilepsy without psychosis and the healthy control groups. This was associated with significant group-level differences on measures of working memory (p = < 0.01); immediate (p = < 0.01) and delayed verbal recall (p = < 0.01); visual memory (p < 0.001); and verbal fluency (p = 0.02). In particular, patients with POE performed significantly worse than the healthy control group on measures of both cognitive control (p = .005) and memory (p < .001), whereas the epilepsy without psychosis group showed only memory difficulties (delayed verbal recall) compared to healthy controls (p = .001). CONCLUSION People with POE show reduced performance in neuropsychological functions supported by the default mode and cognitive control networks, when compared to both healthy participants and people with epilepsy without psychosis.
Collapse
Affiliation(s)
- James Allebone
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Richard A Kanaan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Psychiatry, University of Melbourne, Austin Health, Melbourne, Australia.
| | - Genevieve Rayner
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Jerome Maller
- ANU College of Health and Medicine, Australian National University, Canberra, Victoria, Australia; Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Terence J O'Brien
- Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Saul A Mullen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Mark Cook
- Graeme Clark Institute, University of Melbourne, Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Sophia J Adams
- Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Simon Vogrin
- St Vincent's Hospital, Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - David N Vaughan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Patrick Kwan
- Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Neuroscience, Alfred Hospital, Monash University, Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Samuel F Berkovic
- Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Wendyl J D'Souza
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Graeme Jackson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne, Health, Melbourne, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| | - Sarah J Wilson
- Melbourne School of Psychological Sciences, University of Melbourne, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Comprehensive Epilepsy Program, Austin Health, University of Melbourne, Victoria, Australia; Department of Clinical Neuropsychology, Austin Health, Heidelberg, Victoria, Australia
| |
Collapse
|
24
|
Singh B, Wang Z, Madiah LM, Gatti SE, Fulton JN, Johnson GW, Li R, Dawant BM, Englot DJ, Bick SK, Roberson SW, Constantinidis C. Brain-wide human oscillatory LFP activity during visual working memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556554. [PMID: 37732263 PMCID: PMC10508766 DOI: 10.1101/2023.09.06.556554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Oscillatory activity is thought to be a marker of cognitive processes, although its role and distribution across the brain during working memory has been a matter of debate. To understand how oscillatory activity differentiates tasks and brain areas in humans, we recorded local field potentials (LFPs) in 12 adults as they performed visual-spatial and shape-matching memory tasks. Tasks were designed to engage working memory processes at a range of delay intervals between stimulus delivery and response initiation. LFPs were recorded using intracranial depth electrodes implanted to localize seizures for management of intractable epilepsy. Task-related LFP power analyses revealed an extensive network of cortical regions that were activated during the presentation of visual stimuli and during their maintenance in working memory, including occipital, parietal, temporal, insular, and prefrontal cortical areas, and subcortical structures including the amygdala and hippocampus. Across most brain areas, the appearance of a stimulus produced broadband power increase, while gamma power was evident during the delay interval of the working memory task. Notable differences between areas included that occipital cortex was characterized by elevated power in the high gamma (100-150 Hz) range during the 500 ms of visual stimulus presentation, which was less pronounced or absent in other areas. A decrease in power centered in beta frequency (16-40 Hz) was also observed after the stimulus presentation, whose magnitude differed across areas. These results reveal the interplay of oscillatory activity across a broad network, and region-specific signatures of oscillatory processes associated with visual working memory.
Collapse
Affiliation(s)
- Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University
| | | | - Leen M Madiah
- Department of Biomedical Engineering, Vanderbilt University
| | | | - Jenna N Fulton
- Department of Neurology, Vanderbilt University Medical Center
| | - Graham W Johnson
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Rui Li
- Department of Electrical and Computer Engineering, Vanderbilt University
| | - Benoit M Dawant
- Department of Electrical and Computer Engineering, Vanderbilt University
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Sarah K Bick
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurological Surgery, Vanderbilt University Medical Center
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University
- Department of Neurology, Vanderbilt University Medical Center
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University
- Neuroscience Program, Vanderbilt University
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| |
Collapse
|
25
|
Patrikelis P, Messinis L, Kimiskidis V, Gatzonis S. Neuropsychology of epilepsy surgery and theory-based practice: an opinion review. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:835-843. [PMID: 37793405 PMCID: PMC10550352 DOI: 10.1055/s-0043-1770349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/15/2023] [Indexed: 10/06/2023]
Abstract
The present review attempts to discuss how some of the central concepts from the Lurian corpus of theories are relevant to the modern neuropsychology of epilepsy and epilepsy surgery. Through the lenses of the main Lurian concepts (such as the qualitative syndrome analysis), we discuss the barriers to clinical reasoning imposed by quadrant-based views of the brain, or even atheoretical, statistically-based and data-driven approaches. We further advice towards a systemic view inspired by Luria's clinical work and theorizing, given their importance towards our clinical practice, by contrasting it to the modular views when appropriate. Luria provided theory-guided methods of assessment and rehabilitation of higher cortical functions. Although his work did not specifically address epilepsy, his theory and clinical approaches actually apply to the whole neuropathology spectrum and accounting for the whole panorama of neurocognition. This holistic and systemic approach to the brain is consistent with the network approach of the neuroimaging era. As to epilepsy, the logic of cognitive functions organized into complex functional systems, contrary to modular views of the brain, heralds current knowledge of epilepsy as a network disease, as well as the concept of the functional deficit zone.
Collapse
Affiliation(s)
- Panayiotis Patrikelis
- University of Athens, School of Medicine, Evangelismos Hospital, Epilepsy Surgery Unit, National and Kapodistrian 1st Department of Neurosurgery, Laboratory of Clinical Neuropsychology, Athens, Greece.
- Aristotle University of Thessaloniki, School of Psychology, Faculty of Philosophy, Thessaloniki, Greece.
| | - Lambros Messinis
- Aristotle University of Thessaloniki, School of Psychology, Faculty of Philosophy, Thessaloniki, Greece.
- University Hospital of Patras, School of Medicine, Neuropsychology Section, Departments of Neurology and Psychiatry, Patras, Greece.
| | - Vasileios Kimiskidis
- Aristotle University of Thessaloniki, School of Medicine, Faculty of Health Sciences, 1st Department of Neurology, Thessaloniki, Greece.
| | - Stylianos Gatzonis
- University of Athens, School of Medicine, Evangelismos Hospital, Epilepsy Surgery Unit, National and Kapodistrian 1st Department of Neurosurgery, Laboratory of Clinical Neuropsychology, Athens, Greece.
| |
Collapse
|
26
|
Yu H, Gao J, Chang RSK, Mak W, Thach TQ, Cheung RTF. Inhibitory dysfunction may cause prospective memory impairment in temporal lobe epilepsy (TLE) patients: an event-related potential study. Front Hum Neurosci 2023; 17:1006744. [PMID: 37565055 PMCID: PMC10410078 DOI: 10.3389/fnhum.2023.1006744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Prospective memory (PM) is the ability to remember future intentions, and PM function is closely related to independence in daily life, particularly in patients with temporal lobe epilepsy (TLE). As PM involves various cognitive components of attention, working memory, inhibition and other executive functions, this study investigated how TLE may affect PM components and the underlying neural mechanisms. Methods Sixty-four subjects were recruited, including 20 refractory TLE patients, 18 well-controlled TLE patients and 26 age-matched healthy controls. A set of neuropsychological tests was administered to assess specific brain functions. An event-related potential (ERP) task was used to further explore how PM and its components would be differentially affected in the two TLE types. Results Our findings revealed that: (1) refractory TLE patients scored lower than the healthy controls in the digit span, Verbal Fluency Test and Symbol Digit Modalities Test; (2) refractory TLE patients exhibited impaired PM performance and reduced prospective positivity amplitudes over the frontal, central and parietal regions in ERP experiments when compared to the healthy controls; and (3) decreased P3 amplitudes in the nogo trials were observed over the frontal-central sites in refractory but not in well-controlled TLE patients. Discussion To our knowledge, this is the first ERP study on PM that has specifically identified PM impairment in refractory but not in well-controlled TLE patients. Our finding of double dissociation in PM components suggests that inhibition dysfunction may be the main reason for PM deficit in refractory TLE patients. The present results have clinical implications for neuropsychological rehabilitation in TLE patients.
Collapse
Affiliation(s)
- Hemei Yu
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Junling Gao
- Centre of Buddhist Studies, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Richard Shek-Kwan Chang
- Division of Neurology, Department of Medicine, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Windsor Mak
- Division of Neurology, Department of Medicine, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Thuan-Quoc Thach
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Raymond Tak Fai Cheung
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Division of Neurology, Department of Medicine, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
27
|
Petrillo K, Javed B, Toosizadeh N. Association between dual-task function and neuropsychological testing in older adults with cognitive impairment. Exp Gerontol 2023; 178:112223. [PMID: 37244373 DOI: 10.1016/j.exger.2023.112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Despite the current high prevalence of dementia, more than half of older adult patients never receive an evaluation. Current evaluation methods are lengthy, cumbersome, and not viable for busy clinics. This indicates that, despite recent improvements, a quick and objective routine test for screening cognitive decline in older adults is still needed. Poor dual-task gait performance has been previously associated with decreased executive and neuropsychological function. However, gait tests are not always viable for clinics or older patients. METHODS The aim of this study was to assess the relationship between a novel upper-extremity function (UEF) dual-task performance and neuropsychological test results in older adults. For UEF dual-tasks, participants performed a consistent elbow flexion and extension, while counting backwards in increments of threes or ones. Wearable motion sensors were attached to the forearm and upper-arm to measure accuracy and speed of elbow flexion kinematics to calculate a UEF cognitive score. RESULTS We recruited older adults at three stages: cognitively normal (CN) (n = 35), mild cognitively impaired (MCI) of the Alzheimer's type (n = 34), and Alzheimer's disease (AD) (n = 22). The results demonstrate significant correlations between UEF cognitive score and mini-mental state examination (MMSE), Mini-Cog, Category fluency, Benson complex figure copy, Trail making test, and Montreal cognitive assessment (MOCA) (r values between -0.2355 and -0.6037 and p < 0.0288). DISCUSSION UEF dual-task was associated with executive function, orientation, repetition, abstraction, verbal recall, attention and calculation, language and visual construction. Of the associated brain domains, UEF dual-task was most significantly associated with executive function, visual construction, and delayed recall. The results from this study convey potential for UEF dual-task as a safe and convenient cognitive impairment screening method.
Collapse
Affiliation(s)
- Kelsi Petrillo
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America
| | - Bilaval Javed
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America; Division of Geriatrics, General Internal Medicine and Palliative Medicine, Department of Medicine, University of Arizona, Tucson, United States of America
| | - Nima Toosizadeh
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America; Division of Geriatrics, General Internal Medicine and Palliative Medicine, Department of Medicine, University of Arizona, Tucson, United States of America; Arizona Center on Aging, Department of Medicine, College of Medicine, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
28
|
Lopes-Santos LE, de Angelis G, Nakano FN, Thome U, Velasco TR, Santos MV, Machado HR, Hamad APA, Sakamoto AC, Wichert-Ana L. Executive functioning in children with posterior cortex epilepsy compared to temporal and frontal lobe epilepsies. Epilepsy Res 2023; 192:107141. [PMID: 37062183 DOI: 10.1016/j.eplepsyres.2023.107141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023]
Abstract
OBJECTIVE People with epilepsy are at an increased risk of experiencing executive dysfunction, particularly those with frontal lobe epilepsy (FLE). The literature has also demonstrated alterations in executive functioning (EF) in patients with temporal lobe epilepsy (TLE). However, few studies have examined the neuropsychological profile of posterior cortex epilepsy (PCE), and little attention has been given to cognitive impairments in the pediatric population with PCE. This study aims to investigate EF performance in children with drug-resistant PCE compared to patients with FLE and TLE. METHODS We analyzed neuropsychological data from 217 patients aged 6-18 years who underwent preoperative evaluation for epilepsy surgery. The EF of patients with PCE was compared to patients with FLE and TLE. RESULTS There was no significant difference in Full-Scale Intelligence Quotient (FSIQ) means between groups. However, we found a significant effect of brain region on the Coding task, in which patients with PCE and FLE performed worse than those with TLE (p = 0.034). We also observed performance differences between groups on the Stroop test (p = 0.005), with patients with PCE and FLE performing worse than the TLE group. SIGNIFICANCE These findings suggest that children with PCE have alterations in their EF that are similar to the deficits found in FLE compared to patients with TLE. This emphasizes the importance of understanding the neuroanatomy of executive functions and the model of neural networks extending beyond the prefrontal cortex.
Collapse
Affiliation(s)
- Lucas Emmanuel Lopes-Santos
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Epilepsy Surgery Center (CIREP), Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Geisa de Angelis
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Epilepsy Surgery Center (CIREP), Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Frederico Nakane Nakano
- Epilepsy Surgery Center (CIREP), Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ursula Thome
- Epilepsy Surgery Center (CIREP), Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tonicarlo Rodrigues Velasco
- Epilepsy Surgery Center (CIREP), Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcelo Volpon Santos
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hélio Rubens Machado
- Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Paula Andrade Hamad
- Epilepsy Surgery Center (CIREP), Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Américo Ceiki Sakamoto
- Epilepsy Surgery Center (CIREP), Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lauro Wichert-Ana
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
29
|
Caciagli L, Paquola C, He X, Vollmar C, Centeno M, Wandschneider B, Braun U, Trimmel K, Vos SB, Sidhu MK, Thompson PJ, Baxendale S, Winston GP, Duncan JS, Bassett DS, Koepp MJ, Bernhardt BC. Disorganization of language and working memory systems in frontal versus temporal lobe epilepsy. Brain 2023; 146:935-953. [PMID: 35511160 PMCID: PMC9976988 DOI: 10.1093/brain/awac150] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/28/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a common comorbidity of epilepsy and adversely impacts people with both frontal lobe (FLE) and temporal lobe (TLE) epilepsy. While its neural substrates have been investigated extensively in TLE, functional imaging studies in FLE are scarce. In this study, we profiled the neural processes underlying cognitive impairment in FLE and directly compared FLE and TLE to establish commonalities and differences. We investigated 172 adult participants (56 with FLE, 64 with TLE and 52 controls) using neuropsychological tests and four functional MRI tasks probing expressive language (verbal fluency, verb generation) and working memory (verbal and visuo-spatial). Patient groups were comparable in disease duration and anti-seizure medication load. We devised a multiscale approach to map brain activation and deactivation during cognition and track reorganization in FLE and TLE. Voxel-based analyses were complemented with profiling of task effects across established motifs of functional brain organization: (i) canonical resting-state functional systems; and (ii) the principal functional connectivity gradient, which encodes a continuous transition of regional connectivity profiles, anchoring lower-level sensory and transmodal brain areas at the opposite ends of a spectrum. We show that cognitive impairment in FLE is associated with reduced activation across attentional and executive systems, as well as reduced deactivation of the default mode system, indicative of a large-scale disorganization of task-related recruitment. The imaging signatures of dysfunction in FLE are broadly similar to those in TLE, but some patterns are syndrome-specific: altered default-mode deactivation is more prominent in FLE, while impaired recruitment of posterior language areas during a task with semantic demands is more marked in TLE. Functional abnormalities in FLE and TLE appear overall modulated by disease load. On balance, our study elucidates neural processes underlying language and working memory impairment in FLE, identifies shared and syndrome-specific alterations in the two most common focal epilepsies and sheds light on system behaviour that may be amenable to future remediation strategies.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| | - Xiaosong He
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christian Vollmar
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | - Maria Centeno
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Epilepsy Unit, Hospital Clínic de Barcelona, IDIBAPS, 08036 Barcelona, Spain
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Urs Braun
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karin Trimmel
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Centre for Medical Image Computing, University College London, London, UK
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Meneka K Sidhu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Pamela J Thompson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Sallie Baxendale
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Gavin P Winston
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
- Department of Medicine, Division of Neurology, Queen's University, Kingston, Ontario, Canada
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Matthias J Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire SL9 0RJ, UK
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
30
|
McDonald CR, Busch RM, Reyes A, Arrotta K, Barr W, Block C, Hessen E, Loring DW, Drane DL, Hamberger MJ, Wilson SJ, Baxendale S, Hermann BP. Development and application of the International Classification of Cognitive Disorders in Epilepsy (IC-CoDE): Initial results from a multi-center study of adults with temporal lobe epilepsy. Neuropsychology 2023; 37:301-314. [PMID: 35084879 PMCID: PMC9325925 DOI: 10.1037/neu0000792] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
[Correction Notice: An Erratum for this article was reported online in Neuropsychology on Sep 15 2022 (see record 2023-01997-001). In the original article, there was an error in Figure 2. In the box at the top left of the figure, the fourth explanation incorrectly stated, "Generalized impairment = At least one test < -1.0 or -1.5SD in three or more domains." The correct wording is "Generalized impairment = At least two tests < -1.0 or -1.5SD in each of three or more domains." All versions of this article have been corrected.] Objective: To describe the development and application of a consensus-based, empirically driven approach to cognitive diagnostics in epilepsy research-The International Classification of Cognitive Disorders in Epilepsy (IC-CoDE) and to assess the ability of the IC-CoDE to produce definable and stable cognitive phenotypes in a large, multi-center temporal lobe epilepsy (TLE) patient sample. METHOD Neuropsychological data were available for a diverse cohort of 2,485 patients with TLE across seven epilepsy centers. Patterns of impairment were determined based on commonly used tests within five cognitive domains (language, memory, executive functioning, attention/processing speed, and visuospatial ability) using two impairment thresholds (≤1.0 and ≤1.5 standard deviations below the normative mean). Cognitive phenotypes were derived across samples using the IC-CoDE and compared to distributions of phenotypes reported in existing studies. RESULTS Impairment rates were highest on tests of language, followed by memory, executive functioning, attention/processing speed, and visuospatial ability. Application of the IC-CoDE using varying operational definitions of impairment (≤ 1.0 and ≤ 1.5 SD) produced cognitive phenotypes with the following distribution: cognitively intact (30%-50%), single-domain (26%-29%), bi-domain (14%-19%), and generalized (10%-22%) impairment. Application of the ≤ 1.5 cutoff produced a distribution of phenotypes that was consistent across cohorts and approximated the distribution produced using data-driven approaches in prior studies. CONCLUSIONS The IC-CoDE is the first iteration of a classification system for harmonizing cognitive diagnostics in epilepsy research that can be applied across neuropsychological tests and TLE cohorts. This proof-of-principle study in TLE offers a promising path for enhancing research collaborations globally and accelerating scientific discoveries in epilepsy. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
|
31
|
Wee RWS, Nash A, Angus-Leppan H. Deep phenotyping of frontal lobe epilepsy compared to other epilepsy syndromes. J Neurol 2023; 270:3072-3081. [PMID: 36847847 DOI: 10.1007/s00415-023-11639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/01/2023]
Abstract
AIMS Frontal lobe epilepsy (FLE) is understudied and often misdiagnosed. We sought to comprehensively phenotype FLE and to differentiate FLE from other focal and generalised epilepsy syndromes. METHODS This was a retrospective, observational cohort study of 1078 cases of confirmed epilepsy in a tertiary neurology centre in London. Data sources were electronic health records, investigation reports and clinical letters. RESULTS 166 patients had FLE based on clinical findings and investigations-97 with identifiable electroencephalography (EEG) foci in frontal areas (definite FLE), while 69 had no frontal EEG foci (probable FLE). Apart from EEG findings, probable and definite FLE did not differ in other features. FLE was distinct from generalized epilepsy, which tended to present with tonic-clonic seizures and be due to genetic causes. FLE and temporal lobe epilepsy (TLE) both featured focal unaware seizures and underlying structural or metabolic aetiology. FLE, TLE and generalized epilepsy differed in their EEG (P = 0.0003) and MRI (P = 0.002) findings, where FLE had a higher rate of normal EEG and abnormal MRI findings compared to TLE. CONCLUSIONS EEG is often normal for FLE, and abnormalities are commonly identified with MRI. There was no difference in the clinical features of definite and probable FLE, suggesting they represent the same clinical entity. The diagnosis of FLE can be made even when scalp EEG is normal. This large medical cohort provides hallmark features of FLE that differentiate it from TLE and other epilepsy syndromes.
Collapse
Affiliation(s)
- Ryan W S Wee
- Barnet Hospital, London, UK.,Epilepsy Initiative Group, Royal Free London NHS Foundation Trust, Pond St, London, NW3 2QG, UK
| | - Adina Nash
- Epilepsy Initiative Group, Royal Free London NHS Foundation Trust, Pond St, London, NW3 2QG, UK
| | - Heather Angus-Leppan
- Epilepsy Initiative Group, Royal Free London NHS Foundation Trust, Pond St, London, NW3 2QG, UK. .,UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
32
|
Au Yong HM, Clough M, Perucca P, Malpas CB, Kwan P, O'Brien TJ, Fielding J. Ocular motility as a measure of cerebral dysfunction in adults with focal epilepsy. Epilepsy Behav 2023; 141:109140. [PMID: 36812874 DOI: 10.1016/j.yebeh.2023.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Using objective oculomotor measures, we aimed to: (1) compare oculomotor performance in patients with drug-resistant focal epilepsy to healthy controls, and (2) investigate the differential impact of epileptogenic focus laterality and location on oculomotor performance. METHODS We recruited 51 adults with drug-resistant focal epilepsy from the Comprehensive Epilepsy Programs of two tertiary hospitals and 31 healthy controls to perform prosaccade and antisaccade tasks. Oculomotor variables of interest were latency, visuospatial accuracy, and antisaccade error rate. Linear mixed models were performed to compare interactions between groups (epilepsy, control) and oculomotor tasks, and between epilepsy subgroups and oculomotor tasks for each oculomotor variable. RESULTS Compared to healthy controls, patients with drug-resistant focal epilepsy exhibited longer antisaccade latencies (mean difference = 42.8 ms, P = 0.001), poorer spatial accuracy for both prosaccade (mean difference = 0.4°, P = 0.002), and antisaccade tasks (mean difference = 2.1°, P < 0.001), and more antisaccade errors (mean difference = 12.6%, P < 0.001). In the epilepsy subgroup analysis, left-hemispheric epilepsy patients exhibited longer antisaccade latencies compared to controls (mean difference = 52.2 ms, P = 0.003), while right-hemispheric epilepsy was the most spatially inaccurate compared to controls (mean difference = 2.5°, P = 0.003). The temporal lobe epilepsy subgroup displayed longer antisaccade latencies compared to controls (mean difference = 47.6 ms, P = 0.005). SIGNIFICANCE Patients with drug-resistant focal epilepsy exhibit poor inhibitory control as evidenced by a high percentage of antisaccade errors, slower cognitive processing speed, and impaired visuospatial accuracy on oculomotor tasks. Patients with left-hemispheric epilepsy and temporal lobe epilepsy have markedly impaired processing speed. Overall, oculomotor tasks can be a useful tool to objectively quantify cerebral dysfunction in drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Hue Mun Au Yong
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Meaghan Clough
- Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| | - Piero Perucca
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Epilepsy Research Centre, Department of Medicine (Austin Health), The University of Melbourne, Heidelberg, Victoria, Australia; Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, Heidelberg, Victoria, Australia.
| | - Charles B Malpas
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| | - Patrick Kwan
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| | - Terence J O'Brien
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia.
| | - Joanne Fielding
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia; Department of Neuroscience, The Central Clinical School, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
33
|
Yoganathan K, Malek N, Torzillo E, Paranathala M, Greene J. Neurological update: structural and functional imaging in epilepsy surgery. J Neurol 2023; 270:2798-2808. [PMID: 36792721 PMCID: PMC10130132 DOI: 10.1007/s00415-023-11619-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Structural and functional imaging prior to surgery in drug-resistant focal epilepsy, has an important role to play alongside electroencephalography (EEG) techniques, in planning the surgical approach and predicting post-operative outcome. This paper reviews the role of structural and functional imaging of the brain, namely computed tomography (CT), magnetic resonance imaging (MRI), functional MRI (fMRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging in the preoperative work-up of people with medically refractory epilepsy. In MRI-negative patients, the precise localisation of the epileptogenic zone may be established by demonstrating hypometabolism on PET imaging or hyperperfusion on SPECT imaging in the area surrounding the seizure focus. These imaging modalities are far less invasive than intracranial EEG, which is the gold standard but requires surgical placement of electrodes or recording grids. Even when intracranial EEG is needed, PET or SPECT imaging can assist in the planning of EEG electrode placement, due to its' limited spatial sampling. Multimodal imaging techniques now allow the multidisciplinary epilepsy surgery team to identify and better characterise focal pathology, determine its' relationship to eloquent areas of the brain and the degree of interconnectedness within both physiological and pathological networks, as well as improve planning and surgical outcomes for patients. This paper will update the reader on this whole field and provide them with a practical guide, to aid them in the selection of appropriate investigations, interpretation of the findings and facilitating patient discussions in individuals with drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Katie Yoganathan
- University of Oxford and Oxford University Hospitals, Oxford, UK. .,Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Naveed Malek
- Department of Neurology, Queen's Hospital, Romford, UK
| | - Emma Torzillo
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | - John Greene
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
34
|
D'Aprano F, Malpas CB, Roberts S, Saling MM. Verbosity with retelling: Narrative discourse production in temporal lobe epilepsy. Epilepsy Res 2023; 189:107069. [PMID: 36603454 DOI: 10.1016/j.eplepsyres.2022.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
To examine micro- and macrolinguistic underpinnings of circumstantiality in temporal lobe epilepsy (TLE), we examined the elicited narrative output of 15 individuals with TLE and 14 controls. To replicate and extend Field and colleagues' (2000) work, participants were asked to produce five immediately consecutive elicitations of an eight-frame cartoon "Cowboy Story" (Joanette et al., 1986). Following transcription and coding, detailed multi-level discourse analysis demonstrated a typical pattern of compression in controls. The narratives produced by individuals with TLE were less fluent, cohesive, and coherent across trials: producing fewer novel units and more repetitive and extraneous content. Significant group by trial interactions in sample length, spontaneous duration, and statements, were not explained by seizure burden, age, or lexical retrieval deficits. These findings suggest that they do not benefit from repeated engagement with a narrative in the same manner as controls. Disturbed social cognition and pragmatics in TLE might underpin communication inefficiencies.
Collapse
Affiliation(s)
- Fiore D'Aprano
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, Australia; Department of Neurology, Alfred Health, Australia.
| | - Charles B Malpas
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; Department of Neurology, The Royal Melbourne Hospital, Australia; Department of Neurology, Alfred Health, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Stefanie Roberts
- Department of Neurology, The Royal Melbourne Hospital, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia.
| | - Michael M Saling
- Melbourne School of Psychological Sciences, The University of Melbourne, Australia; Department of Clinical Neuropsychology, The Austin Hospital, Australia.
| |
Collapse
|
35
|
Reyes A, Hermann BP, Busch RM, Drane DL, Barr WB, Hamberger MJ, Roesch SC, McDonald CR. Moving towards a taxonomy of cognitive impairments in epilepsy: application of latent profile analysis to 1178 patients with temporal lobe epilepsy. Brain Commun 2022; 4:fcac289. [PMID: 36447559 PMCID: PMC9692194 DOI: 10.1093/braincomms/fcac289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/07/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
In efforts to understand the cognitive heterogeneity within and across epilepsy syndromes, cognitive phenotyping has been proposed as a new taxonomy aimed at developing a harmonized approach to cognitive classification in epilepsy. Data- and clinically driven approaches have been previously used with variability in the phenotypes derived across studies. In our study, we utilize latent profile analysis to test several models of phenotypes in a large multicentre sample of patients with temporal lobe epilepsy and evaluate their demographic and clinical profiles. For the first time, we examine the added value of replacing missing data and examine factors that may be contributing to missingness. A sample of 1178 participants met the inclusion criteria for the study, which included a diagnosis of temporal lobe epilepsy and the availability of comprehensive neuropsychological data. Models with two to five classes were examined using latent profile analysis and the optimal model was selected based on fit indices, posterior probabilities and proportion of sample sizes. The models were also examined with imputed data to investigate the impact of missing data on model selection. Based on the fit indices, posterior probability and distinctiveness of the latent classes, a three-class solution was the optimal solution. This three-class solution comprised a group of patients with multidomain impairments, a group with impairments predominantly in language and a group with no impairments. Overall, the multidomain group demonstrated a worse clinical profile and comprised a greater proportion of patients with mesial temporal sclerosis, a longer disease duration and a higher number of anti-seizure medications. The four-class and five-class solutions demonstrated the lowest probabilities of a group membership. Analyses with imputed data demonstrated that the four-class solution was the optimal solution; however, there was a weak agreement between the missing and imputed data sets for the four-Class solutions (κ = 0.288, P < 0.001). This study represents the first to use latent profile analysis to test and compare multiple models of cognitive phenotypes in temporal lobe epilepsy and to determine the impact of missing data on model fit. We found that the three-phenotype model was the most meaningful based on several fit indices and produced phenotypes with unique demographic and clinical profiles. Our findings demonstrate that latent profile analysis is a rigorous method to identify phenotypes in large, heterogeneous epilepsy samples. Furthermore, this study highlights the importance of examining the impact of missing data in phenotyping methods. Our latent profile analysis-derived phenotypes can inform future studies aimed at identifying cognitive phenotypes in other neurological disorders.
Collapse
Affiliation(s)
- Anny Reyes
- Center for Multimodal Imaging and Genetics, University of CaliforniaSan Diego, La Jolla, CA 92093, USA
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA 92120, USA
| | - Bruce P Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Robyn M Busch
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44106, USA
- Department of Neurology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - William B Barr
- Department of Neurology, NYU-Langone Medical Center and NYU School of Medicine, New York, NY 10016, USA
- Department of Psychiatry, NYU-Langone Medical Center and NYU School of Medicine, New York, NY 10016, USA
| | - Marla J Hamberger
- Department of Neurology, Columbia University, New York, NY 10027, USA
| | - Scott C Roesch
- Department of Psychology, San Diego State University, San Diego, CA 92182, USA
| | - Carrie R McDonald
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
36
|
Vilà-Balló A, De la Cruz-Puebla M, López-Barroso D, Miró J, Sala-Padró J, Cucurell D, Falip M, Rodríguez-Fornells A. Reward-based decision-making in mesial temporal lobe epilepsy patients with unilateral hippocampal sclerosis pre- and post-surgery. Neuroimage Clin 2022; 36:103251. [PMID: 36510413 PMCID: PMC9668642 DOI: 10.1016/j.nicl.2022.103251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Correct functioning of the reward processing system is critical for optimizing decision-making as well as preventing the development of addictions and/or neuropsychiatric symptoms such as depression, apathy, and anhedonia. Consequently, patients with mesial temporal lobe epilepsy due to unilateral hippocampal sclerosis (mTLE-UHS) represent an excellent opportunity to study the brain networks involved in this system. OBJECTIVE The aim of the current study was to evaluate decision-making and the electrophysiological correlates of feedback processing in a sample of mTLE-UHS patients, compared to healthy controls. In addition, we assessed the impact of mesial temporal lobe surgical resection on these processes, as well as general, neuropsychological functioning. METHOD 17 mTLE-UHS patients and 17 matched healthy controls completed: [1] a computerized version of the Game of Dice Task, [2] a Standard Iowa Gambling Task, and [3] a modified ERP version of a probabilistic gambling task coupled with multichannel electroencephalography. Neuropsychological scores were also obtained both pre- and post-surgery. RESULTS Behavioral analyses showed a pattern of increased risk for the mTLE-UHS group in decision-making under ambiguity compared to the control group. A decrease in the amplitude of the Feedback Related Negativity (FRN), a weaker effect of valence on delta power, and a general reduction of delta and theta power in the mTLE-UHS group, as compared to the control group, were also found. The beta-gamma activity associated with the delivery of positive reward was similar in both groups. Behavioral performance and electrophysiological measures did not worsen post-surgery. CONCLUSIONS Patients with mTLE-UHS showed impairments in decision-making under ambiguity, particularly when they had to make decisions based on the outcomes of their choices, but not in decision-making under risk. No group differences were observed in decision-making when feedbacks were random. These results might be explained by the abnormal feedback processing seen in the EEG activity of patients with mTLE-UHS, and by concomitant impairments in working memory, and memory. These impairments may be linked to the disruption of mesial temporal lobe networks. Finally, feedback processing and decision-making under ambiguity were already affected in mTLE-UHS patients pre-surgery and did not show evidence of clear worsening post-surgery.
Collapse
Affiliation(s)
- Adrià Vilà-Balló
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain,Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Headache and Neurological Pain Research Group, Vall d’Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain,Department of Psychology, Faculty of Education and Psychology, University of Girona, Girona, Spain,Corresponding authors.
| | - Myriam De la Cruz-Puebla
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Department of Cellular Biology, Physiology, and Immunology, Neurosciences Institute, Autonomous University of Barcelona, Barcelona, Spain,Department of Equity in Brain Health, Global Brain Health Institute (GBHI), University of California, San Francisco (UCSF), CA, USA,Department of Internal Medicine, Health Sciences Faculty, Technical University of Ambato, Tungurahua, Ecuador,Dept. of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Málaga, Málaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Málaga, Málaga, Spain,Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain,Dept. of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Málaga, Málaga, Spain
| | - Júlia Miró
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Epilepsy Unit, Neurological Service, Neurology and Genetics Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Jacint Sala-Padró
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Dept. of Psychobiology and Methodology of Behavioural Sciences, Faculty of Psychology, University of Málaga, Málaga, Spain
| | - David Cucurell
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain,Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Mercè Falip
- Epilepsy Unit, Neurological Service, Neurology and Genetics Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antoni Rodríguez-Fornells
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain,Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| |
Collapse
|
37
|
Najafi T, Jaafar R, Remli R, Wan Zaidi WA. A Classification Model of EEG Signals Based on RNN-LSTM for Diagnosing Focal and Generalized Epilepsy. SENSORS (BASEL, SWITZERLAND) 2022; 22:7269. [PMID: 36236368 PMCID: PMC9571034 DOI: 10.3390/s22197269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Epilepsy is a chronic neurological disorder caused by abnormal neuronal activity that is diagnosed visually by analyzing electroencephalography (EEG) signals. BACKGROUND Surgical operations are the only option for epilepsy treatment when patients are refractory to treatment, which highlights the role of classifying focal and generalized epilepsy syndrome. Therefore, developing a model to be used for diagnosing focal and generalized epilepsy automatically is important. METHODS A classification model based on longitudinal bipolar montage (LB), discrete wavelet transform (DWT), feature extraction techniques, and statistical analysis in feature selection for RNN combined with long short-term memory (LSTM) is proposed in this work for identifying epilepsy. Initially, normal and epileptic LB channels were decomposed into three levels, and 15 various features were extracted. The selected features were extracted from each segment of the signals and fed into LSTM for the classification approach. RESULTS The proposed algorithm achieved a 96.1% accuracy, a 96.8% sensitivity, and a 97.4% specificity in distinguishing normal subjects from subjects with epilepsy. This optimal model was used to analyze the channels of subjects with focal and generalized epilepsy for diagnosing purposes, relying on statistical parameters. CONCLUSIONS The proposed approach is promising, as it can be used to detect epilepsy with satisfactory classification performance and diagnose focal and generalized epilepsy.
Collapse
Affiliation(s)
- Tahereh Najafi
- Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Rosmina Jaafar
- Department of Electrical, Electronics and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Rabani Remli
- Department of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Wan Asyraf Wan Zaidi
- Department of Medicine, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
38
|
Ge H, Di G, Yan Z, Liu D, Liu Y, Song K, Yang K, Hu X, Jiang Z, Hu X, Tian L, Xiao C, Zou Y, Liu H, Chen J. Does epilepsy always indicate worse outcomes? A longitudinal follow-up analysis of 485 glioma patients. World J Surg Oncol 2022; 20:297. [PMID: 36117154 PMCID: PMC9484070 DOI: 10.1186/s12957-022-02772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epilepsy is one of the most common glioma complications, and the two may be connected in more ways than we understand. We aimed to investigate the clinical features of glioma-associated epilepsy and explore the risk factors associated with it. METHODS We collected clinical information from 485 glioma patients in the Nanjing Brain Hospital and conducted 4 periodic follow-up visits. Based on the collected data, we analyzed the clinical characteristics of glioma patients with or without epilepsy and their relationship with survival. RESULTS Among glioma patients, younger people were more likely to have epilepsy. However, epilepsy incidence was independent of gender. Patients with grade II gliomas were most likely to develop epilepsy, while those with grade IV gliomas were least likely. There was no difference in Karnofsky Performance Status scores between patients with glioma-associated epilepsy and those without epilepsy. Additionally, epilepsy was independently associated with longer survival in the World Health Organization grade IV glioma patients. For grades II, III, and IV tumors, the 1-year survival rate of the epilepsy group was higher than that of the non-epilepsy group. CONCLUSIONS Epilepsy did not lead to worse admission performance and correlated with a better prognosis for patients with grade IV glioma.
Collapse
Affiliation(s)
- Honglin Ge
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Guangfu Di
- Department of Neurosurgery, the First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, China
| | - Zheng Yan
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Dongming Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yong Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Kun Song
- Department of Pathology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Kun Yang
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xinhua Hu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Zijuan Jiang
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiao Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Lei Tian
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuanjie Zou
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hongyi Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, 210029, Jiangsu, China. .,Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
39
|
Xu K, Wei Y, Liu C, Zhao L, Geng B, Mai W, Zhang S, Liang L, Zeng X, Deng D, Liu P. Effect of Moxibustion Treatment on Degree Centrality in Patients With Mild Cognitive Impairment: A Resting-State Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2022; 16:889426. [PMID: 35982690 PMCID: PMC9378775 DOI: 10.3389/fnhum.2022.889426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background Mild cognitive impairment (MCI) is a common neurological disorder. Moxibustion has been shown to be effective in treating MCI, but its therapeutic mechanisms still remain unclear. This study mainly aimed to investigate the modulation effect of moxibustion treatment for patients with MCI by functional magnetic resonance imaging (fMRI). Methods A total of 47 patients with MCI and 30 healthy controls (HCs) participated in resting-state fMRI imaging (rs-fMRI) scans. Patients with MCI were randomly divided into true moxibustion group (TRUE, n = 30) and sham moxibustion group (SHAM, n = 17). The degree centrality (DC) approach was applied to distinguish altered brain functions. Correlation analysis was then performed to examine the relationships between the neuroimaging findings and clinical symptoms. Results Compared with HCs, patients with MCI mainly showed decreased DC in the left middle frontal cortex (MFC) and bilateral middle cingulate cortex (MCC). After moxibustion treatment, the SHAM group had no significant DC findings, while TRUE group mainly showed significant increased DC in the bilateral MFC and MCC, as well as decreased DC in the left middle occipital cortex (MOC). Repeated measures analysis of variance (ANOVA) showed significant interactions between the two groups of patients with MCI. In addition, the higher Mini-Mental State Examination (MMSE) score was significantly positively correlated with increased DC in the right MFC and left MCC after moxibustion treatment. Conclusion Our findings demonstrate that the potential value of moxibustion treatment on MCI, which adds new insights into the popular view that moxibustion treatment may slow cognitive decline in patients with MCI.
Collapse
Affiliation(s)
- Ke Xu
- Life Science Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Yichen Wei
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chengxiang Liu
- Life Science Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Lihua Zhao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Bowen Geng
- Life Science Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Wei Mai
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Shuming Zhang
- Life Science Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Lingyan Liang
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiao Zeng
- Life Science Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi’an, China
| | - Demao Deng
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- *Correspondence: Demao Deng,
| | - Peng Liu
- Life Science Research Center, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi’an, China
- Peng Liu,
| |
Collapse
|
40
|
Xu K, Wei Y, Zhang S, Zhao L, Geng B, Mai W, Li P, Liang L, Chen D, Zeng X, Deng D, Liu P. Percentage amplitude of fluctuation and structural covariance changes of subjective cognitive decline in patients: A multimodal imaging study. Front Neurosci 2022; 16:888174. [PMID: 35937877 PMCID: PMC9354620 DOI: 10.3389/fnins.2022.888174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Back ground Subjective cognitive decline (SCD) may be the first clinical sign of Alzheimer’s disease (AD). The possible neural mechanisms of SCD are not well known. This study aimed to compare percent amplitude of fluctuation (PerAF) and structural covariance patterns in patients with SCD and healthy controls (HCs). Methods We enrolled 53 patients with SCD and 65 HCs. Resting-state functional magnetic resonance imaging (MRI) data and T1-weighted anatomical brain 3.0-T MRI scans were collected. The PerAF approach was applied to distinguish altered brain functions between the two groups. A whole-brain voxel-based morphometry analysis was performed, and all significant regions were selected as regions of interest (ROIs) for the structural covariance analysis. Statistical analysis was performed using two-sample t-tests, and multiple regressions were applied to examine the relationships between neuroimaging findings and clinical symptoms. Results Functional MRI results revealed significantly increased PerAF including the right hippocampus (HIPP) and right thalamus (THA) in patients with SCD relative to HCs. Gray matter volume (GMV) results demonstrated decreased GMV in the bilateral ventrolateral prefrontal cortex (vlPFC) and right insula in patients with SCD relative to HCs. Taking these three areas including the bilateral vlPFC and right insula as ROIs, differences were observed in the structural covariance of the ROIs with several regions between the two groups. Additionally, significant correlations were observed between neuroimaging findings and clinical symptoms. Conclusion Our study investigated the abnormal PerAF and structural covariance patterns in patients with SCD, which might provide new insights into the pathological mechanisms of SCD.
Collapse
Affiliation(s)
- Ke Xu
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Yichen Wei
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shuming Zhang
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Lihua Zhao
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Bowen Geng
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Wei Mai
- Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Pengyu Li
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Lingyan Liang
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Duoli Chen
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Xiao Zeng
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
| | - Demao Deng
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Demao Deng,
| | - Peng Liu
- School of Life Sciences and Technology, Life Science Research Center, Xidian University, Xi’an, China
- School of Life Sciences and Technology, Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xidian University, Xi’an, China
- *Correspondence: Peng Liu,
| |
Collapse
|
41
|
Yang F, Jia W, Kukun H, Ding S, Zhang H, Wang Y. A Study of Spontaneous Brain Activity on Resting-State Functional Magnetic Resonance Imaging in Adults with MRI-Negative Temporal Lobe Epilepsy. Neuropsychiatr Dis Treat 2022; 18:1107-1116. [PMID: 35677937 PMCID: PMC9170234 DOI: 10.2147/ndt.s366189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE-N) represent an important subgroup of temporal lobe epilepsy (TLE). Here, we aimed to combine three voxel-based local brain area analysis methods of resting-state functional MRI (rs-fMRI), to examine the TLE-N patients' resting brain function based on neural synchronization and intensity of local brain areas. Methods The study included 47 patients with TLE, including 28 cases of drug-controlled TLE (cTLE-N) and 19 cases of drug-resistant TLE-N (rTLE-N), as well as 30 participants in the healthy control (HC) group. To comprehensively assess the altered brain function associated with TLE-N patients, we analyzed three data-driven rs-fMRI algorithms for amplitude of low-frequency fluctuations (ALFF), fractional ALFF (fALFF) and regional homogeneity (ReHo). Results Compared to the HC group, the distribution of abnormal functional brain areas in cTLE-N patients was dominated by occipital lobe activation, as measured by increased fALFF values in the superior occipital gyrus (SOG) and increased ReHo values in the lingual gyrus (Lin), fusiform gyrus, and middle occipital gyrus. Patients with rTLE-N exhibited a diffuse distribution of abnormal functional brain areas, showing increased fALFF values in the SOG, Lin, superior temporal gyrus, and postcentral gyrus, and decreased fALFF values in the inferior frontal gyrus orbital, parahippocampal gyrus, and superior frontal gyrus orbital. The ReHo values were reduced in the orbital region of the middle frontal gyrus, the precuneus, and the parietal inferior angular gyrus; while ReHo values were elevated values in several frontal, temporal, occipital, and subcortical brain areas. Conclusion Patients with rTLE-N have local brain activity changes in the prefrontal limbic system and default model network dysfunction, while cTLE-N patients have local brain activity changes in the visual functional areas. Different epilepsy networks exist between cTLE-N and rTLE-N.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| | - Wenxiao Jia
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| | - Hanjiaerbieke Kukun
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| | - Shuang Ding
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| | - Haotian Zhang
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| | - Yunling Wang
- Department of Radiology, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, People’s Republic of China
| |
Collapse
|
42
|
Simsekoglu R, Tombul T, Demirci H, Özdemir M, Ankaralı H. Comparison of decision-making under ambiguity in patients with temporal lobe and frontal lobe epilepsy. Epilepsy Behav 2022; 129:108636. [PMID: 35259626 DOI: 10.1016/j.yebeh.2022.108636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The effect of the frontal lobe on cognitive functions is a subject that has been studied frequently. However, cognitive impairments that can be seen in frontal lobe epilepsy are less addressed. In previous studies on decision-making disorders in patients with epilepsy, patients with temporal lobe epilepsy (TLE) were frequently studied, and it was reported that decision-making disorders could be encountered in this patient group. In this study, we aimed to compare the decision-making performance of patients with cryptogenic frontal lobe epilepsy (FLE) and TLE in ambiguous situations. METHODS Twenty patients with TLE (mean age: 34.10 ± 11.71 years) and 20 patients with FLE (mean age: 32.25 ± 11.92 years) were enrolled in the study and their cognitive performance was compared with 20 healthy controls (mean age: 33.15 ± 13.66 years). Neuropsychological tests were performed on the participants for sleep, depression, anxiety, impulsivity, intelligence, attention, language functions, memory and learning, and frontal axis functions. Decision-making performance in ambiguous situations was studied using the Iowa Gambling Task (IGT). RESULTS Iowa Gambling Task performances of patients with FLE and TLE were found to be worse than in healthy controls (p = 0.049). Although there was no statistically significant difference when the decision-making of patients with TLE and FLE was compared, it was observed that patients with FLE chose higher risk cards compared with those with TLE. The performances of the neuropsychological subgroup tests of patients with TLE and FLE in attention, language functions, memory and learning, and frontal axis functions were found to be significantly worse than in healthy subjects. CONCLUSION Decision-making in patients with TLE and FLE in ambiguous situations is similarly impaired compared with healthy controls.
Collapse
Affiliation(s)
- Ruken Simsekoglu
- Istanbul Medeniyet University, Göztepe City Hospital, Neurology Department, Turkey.
| | - Temel Tombul
- Istanbul Medeniyet University, Göztepe City Hospital, Neurology Department, Turkey
| | - Hasan Demirci
- Department of Psychology, University of Health Sciences, Turkey
| | - Mehtap Özdemir
- Istanbul Medeniyet University, Göztepe City Hospital, Neurology Department, Turkey
| | - Handan Ankaralı
- Istanbul Medeniyet University, Medical Faculty, Biostatistics and Medical Informatics Department, Turkey
| |
Collapse
|
43
|
Catalán-Aguilar J, Lozano-García A, González-Bono E, Villanueva V, Hampel KG, Cano-López I. Academic and employment insertion as a factor related to quality of life in patients with drug-resistant temporal lobe epilepsy. Rev Neurol 2022; 74:219-227. [PMID: 35332925 PMCID: PMC11502159 DOI: 10.33588/rn.7407.2020684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Academic and employment insertion is one of the issues that most concern people with epilepsy, but little is known about its relationship with quality of life. AIM We aimed to analyze the effects of the academic and employment insertion on quality of life, anxiety, depression, social support, and executive functions, and the relationships among these variables in patients with drug-resistant epilepsy. PATIENTS AND METHODS Fifty-nine patients with drug-resistant temporal lobe epilepsy were classified into two groups: with academic or employment insertion (n = 25) and without insertion (n = 34) and underwent a neuropsychological evaluation. RESULTS Patients with insertion had a significantly better quality of life, lower trait anxiety, and higher social support, and tended to have a lower percentage of errors and higher percent conceptual level responses than those without insertion. Academic/employment insertion had indirect effects on quality of life through its relationship with global social support and trait anxiety. CONCLUSIONS Our findings provide a model for understanding the quality of life in patients with temporal lobe epilepsy for an integral perspective of the patient and points out the key role of increased social support and reduced anxiety associated with academic and employment insertion to improve quality of life. These results could favor the implementation of programs that promote academic or employment reinsertion, considering the relevance of socio-emotional domains.
Collapse
Affiliation(s)
| | | | | | - V Villanueva
- Hospital Universitario y Politécnico La Fe, Valencia, España
| | - K G Hampel
- Hospital Universitario y Politécnico La Fe, Valencia, España
| | - I Cano-López
- Universidad Internacional de Valencia, Valencia, España
| |
Collapse
|
44
|
Joplin S, Gascoigne M, Barton B, Webster R, Gill D, Lawson JA, Mandalis A, Sabaz M, McLean S, Gonzalez L, Smith ML, Lah S. Accelerated long-term forgetting in children with temporal lobe epilepsy: A timescale investigation of material specificity and executive skills. Epilepsy Behav 2022; 129:108623. [PMID: 35259627 DOI: 10.1016/j.yebeh.2022.108623] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/15/2022]
Abstract
Recently, children with temporal lobe epilepsy (TLE) were found to be at risk of accelerated long-term forgetting (ALF). In this study, we examined the temporal trajectory of ALF, while exploring the relationship between ALF, executive skills, and epilepsy variables. Fifty-one children, (23 with TLE and 28 typically developing) completed a battery of neuropsychological tests of verbal and visual memory, executive skills, and two experimental memory tasks (verbal and visual) involving recall after short (30-min) and extended (1-day and 2-week) delays. Side of seizure focus and hippocampal integrity were considered. On the visual task (Scene Memory), children with TLE performed comparably to typically developing children following a 30-min and 1-day delay, although worse than typically developing children at 2 weeks: ALF was observed in children with right TLE focus. The two groups did not differ on the experimental verbal memory task. Children with TLE also had worse performance than typically developing children on standardized verbal memory test and on tests of executive skills (i.e., verbal generativity, inhibition, working memory, complex attention). Only complex attention was associated with visual ALF. ALF was present for visuo-spatial materials in children with TLE at two weeks, and children with right TLE were most susceptible. A relationship was identified between complex attention and long-term forgetting. The findings extend our understanding of difficulties in long-term memory formation experienced by children with TLE.
Collapse
Affiliation(s)
- Samantha Joplin
- School of Psychology, The University of Sydney, NSW 2006, Australia.
| | - Michael Gascoigne
- School of Psychology and Translational Health Research Institute, Western Sydney University, NSW 2751, Australia
| | - Belinda Barton
- Children's Hospital Education Research Institute and the Kids Neuroscience Centre, The Children's Hospital at Westmead, NSW 2145, Australia; Children's Hospital Westmead Clinical School, Westmead, NSW 2145, Australia
| | - Richard Webster
- TY Nelson Department of Neurology, Kids Neuroscience Centre, The Children's Hospital at Westmead, NSW 2145, Australia
| | - Deepak Gill
- TY Nelson Department of Neurology, Kids Neuroscience Centre, The Children's Hospital at Westmead, NSW 2145, Australia
| | - John A Lawson
- School of Women and Children's Health, UNSW, Department of Neurology SCHN, Randwick, NSW 2031, Australia
| | - Anna Mandalis
- Department of Psychology, Sydney Children's Hospital, Randwick, NSW 2031, Australia
| | - Mark Sabaz
- Department of Psychology, Sydney Children's Hospital, Randwick, NSW 2031, Australia
| | - Samantha McLean
- TY Nelson Department of Neurology, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Linda Gonzalez
- Brain and Mind, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Mary-Lou Smith
- Department of Psychology, University of Toronto Mississauga and Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Suncica Lah
- School of Psychology, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
45
|
Bakhtiari A, Bjørke AB, Larsson PG, Olsen KB, Nævra MCJ, Taubøll E, Heuser K, Østby Y. Episodic Memory Dysfunction and Effective Connectivity in Adult Patients With Newly Diagnosed Nonlesional Temporal Lobe Epilepsy. Front Neurol 2022; 13:774532. [PMID: 35222242 PMCID: PMC8866246 DOI: 10.3389/fneur.2022.774532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Epilepsy is associated with both changes in brain connectivity and memory function, usually studied in the chronic patients. The aim of this study was to explore the presence of connectivity alterations measured by EEG in the parietofrontal network in patients with temporal lobe epilepsy (TLE), and to examine episodic memory, at the time point of diagnosis. Methods The parietofrontal network of newly diagnosed patients with TLE (N = 21) was assessed through electroencephalography (EEG) effective connectivity and compared with that of matched controls (N = 21). Furthermore, we assessed phenomenological aspects of episodic memory in both groups. Association between effective connectivity and episodic memory were assessed through correlation. Results Patients with TLE displayed decreased episodic (p ≤ 0.001, t = −5.18) memory scores compared with controls at the time point of diagnosis. The patients showed a decreased right parietofrontal connectivity (p = 0.03, F = 4.94) compared with controls, and significantly weaker connectivity in their right compared with their left hemisphere (p = 0.008, t = −2.93). There were no significant associations between effective connectivity and episodic memory scores. Conclusions We found changes in both memory function and connectivity at the time point of diagnosis, supporting the notion that TLE involves complex memory functions and brain networks beyond the seizure focus to strongly interconnected brain regions, already early in the disease course. Whether the observed connectivity changes can be interpreted as functionally important to the alterations in memory function, it remains speculative.
Collapse
Affiliation(s)
- Aftab Bakhtiari
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Agnes Balint Bjørke
- Division of Clinical Neuroscience, Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Division of Neurology, Rheumatology and Habilitation, Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Gunnar Larsson
- Section of Clinical Neurophysiology, Division of Clinical Neuroscience, Department of Neurosurgery, Oslo University Hospital–Rikshospitalet, Oslo, Norway
| | - Ketil Berg Olsen
- Section of Clinical Neurophysiology, Division of Clinical Neuroscience, Department of Neurosurgery, Oslo University Hospital–Rikshospitalet, Oslo, Norway
| | - Marianne C. Johansen Nævra
- Section of Clinical Neurophysiology, Division of Clinical Neuroscience, Department of Neurosurgery, Oslo University Hospital–Rikshospitalet, Oslo, Norway
| | - Erik Taubøll
- Division of Clinical Neuroscience, Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Division of Neurology, Rheumatology and Habilitation, Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Kjell Heuser
- Division of Clinical Neuroscience, Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- *Correspondence: Kjell Heuser
| | - Ylva Østby
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
- Ylva Østby
| |
Collapse
|
46
|
Tung H, Pan SY, Lan TH, Lin YY, Peng SJ. Characterization of Hippocampal-Thalamic-Cortical Morphometric Reorganization in Temporal Lobe Epilepsy. Front Neurol 2022; 12:810186. [PMID: 35222230 PMCID: PMC8866816 DOI: 10.3389/fneur.2021.810186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
IntroductionBrain cortico-subcortical connectivity has been investigated in epilepsy using the functional MRI (MRI). Although structural images cannot demonstrate dynamic changes, they provide higher spatial resolution, which allows exploration of the organization of brain in greater detail.MethodsWe used high-resolution brain MRI to study the hippocampal-thalamic-cortical networks in temporal lobe epilepsy (TLE) using a volume-based morphometric method. We enrolled 22 right-TLE, 33 left-TLE, and 28 age/gender-matched controls retrospectively. FreeSurfer software was used for the thalamus segmentation.ResultsAmong the 50 subfields, ipsilateral anterior, lateral, and parts of the intralaminar and medial nuclei, as well as the contralateral parts of lateral nuclei had significant volume loss in both TLE. The anteroventral nucleus was most vulnerable. Most thalamic subfields were susceptible to seizure burden, especially the left-TLE. SPM12 was used to conduct an analysis of the gray matter density (GMD) maps. Decreased extratemporal GMD occurred bilaterally. Both TLE demonstrated significant GMD loss over the ipsilateral inferior frontal gyrus, precentral gyrus, and medial orbital cortices.SignificanceThalamic subfield atrophy was related to the ipsilateral inferior frontal GMD changes, which presented positively in left-TLE and negatively in right-TLE. These findings suggest prefrontal-thalamo-hippocampal network disruption in TLE.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Szu-Yen Pan
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Syu-Jyun Peng
| |
Collapse
|
47
|
Fallahi A, Pooyan M, Habibabadi JM, Hashemi-Fesharaki SS, Tabatabaei NH, Ay M, Nazem-Zadeh MR. A novel approach for extracting functional brain networks involved in mesial temporal lobe epilepsy based on self organizing maps. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
48
|
Bolocan M, Iacob CI, Avram E. Working Memory and Language Contribution to Verbal Learning and Memory in Drug-Resistant Unilateral Focal Temporal Lobe Epilepsy. Front Neurol 2021; 12:780086. [PMID: 34956061 PMCID: PMC8692669 DOI: 10.3389/fneur.2021.780086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
We aimed to investigate the working memory (WM) and language separate contributions to verbal learning and memory in patients with unilateral drug-resistant temporal lobe epilepsy (drTLE); additionally, we explored the mediating role of WM on the relationship between the number of antiepileptic drugs (AEDs) and short-term verbal memory. We retrospectively enrolled 70 patients with left (LTLE; n = 44) and right (RTLE; n = 26) drTLE. About 40 similar (age and education) healthy controls were used to determine impairments of groups at WM, language (naming and verbal fluency), and verbal learning and memory (five trials list-learning, story memory-immediate recall). To disentangle the effect of learning from the short-term memory, we separately analyzed performances at the first trial, last trial, and delayed-recall list-learning measures, in addition to the total learning capacity (the sum of the five trials). Correlation and regression analyses were used to assess the contribution of potential predictors while controlling for main clinical and demographic variables, and ascertain the mediating role of WM. All patients were impaired at WM and story memory, whereas only LTLE showed language and verbal learning deficits. In RTLE, language was the unique predictor for the most verbal learning performances, whereas WM predicted the results at story memory. In LTLE, WM was the sole predictor for short-term verbal learning (list-learning capacity; trial 1) and mediated the interaction between AED number and the performance at these measures, whereas language predicted the delayed-recall. Finally, WM confounded the performance at short-term memory in both groups, although at different measures. WM is impaired in drTLE and contributes to verbal memory and learning deficits in addition to language, mediating the relationship between AED number and short-term verbal memory in LTLE. Clinicians should consider this overlap when interpreting poor performance at verbal learning and memory in drTLE.
Collapse
Affiliation(s)
- Monica Bolocan
- Laboratory of Health Psychology and Clinical Neuropsychology, Department of Applied Psychology and Psychotherapy, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Claudia I Iacob
- Laboratory of Health Psychology and Clinical Neuropsychology, Department of Applied Psychology and Psychotherapy, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| | - Eugen Avram
- Laboratory of Health Psychology and Clinical Neuropsychology, Department of Applied Psychology and Psychotherapy, Faculty of Psychology and Educational Sciences, University of Bucharest, Bucharest, Romania
| |
Collapse
|
49
|
Hermann BP, Struck AF, Busch RM, Reyes A, Kaestner E, McDonald CR. Neurobehavioural comorbidities of epilepsy: towards a network-based precision taxonomy. Nat Rev Neurol 2021; 17:731-746. [PMID: 34552218 PMCID: PMC8900353 DOI: 10.1038/s41582-021-00555-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Cognitive and behavioural comorbidities are prevalent in childhood and adult epilepsies and impose a substantial human and economic burden. Over the past century, the classic approach to understanding the aetiology and course of these comorbidities has been through the prism of the medical taxonomy of epilepsy, including its causes, course, characteristics and syndromes. Although this 'lesion model' has long served as the organizing paradigm for the field, substantial challenges to this model have accumulated from diverse sources, including neuroimaging, neuropathology, neuropsychology and network science. Advances in patient stratification and phenotyping point towards a new taxonomy for the cognitive and behavioural comorbidities of epilepsy, which reflects the heterogeneity of their clinical presentation and raises the possibility of a precision medicine approach. As we discuss in this Review, these advances are informing the development of a revised aetiological paradigm that incorporates sophisticated neurobiological measures, genomics, comorbid disease, diversity and adversity, and resilience factors. We describe modifiable risk factors that could guide early identification, treatment and, ultimately, prevention of cognitive and broader neurobehavioural comorbidities in epilepsy and propose a road map to guide future research.
Collapse
Affiliation(s)
- Bruce P. Hermann
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,
| | - Aaron F. Struck
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Robyn M. Busch
- Epilepsy Center and Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anny Reyes
- Department of Psychiatry and Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, USA
| | - Erik Kaestner
- Department of Psychiatry and Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, USA
| | - Carrie R. McDonald
- Department of Psychiatry and Center for Multimodal Imaging and Genetics, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
50
|
Tan JK, Khoo CS, Beh HC, Hod R, Baharudin A, Yahya WNNW, Tan HJ. Prevalence and associated risk factors of undiagnosed depression among people with epilepsy in a multiethnic society. Epilepsy Res 2021; 178:106772. [PMID: 34763265 DOI: 10.1016/j.eplepsyres.2021.106772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/17/2021] [Accepted: 09/19/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Depression is the most frequent psychiatric comorbidity of epilepsy. However, clinicians often neglect to screen for depressive symptoms among patients with epilepsy and, therefore, fail to detect depression. Many studies have described the risks associated with depression in patients with epilepsy, but few studies have elaborated whether these risks are similar in those with undiagnosed depression, especially in a multiethnic community. METHODS In the present cross-sectional study conducted at a tertiary teaching hospital, we aimed to investigate the prevalence and associated risk factors of undiagnosed depression in patients with epilepsy. We recruited patients with epilepsy aged 18-65 years after excluding those with background illnesses that may have contributed to the depressive symptoms. In total, 129 participants were recruited. We collected their demographic and clinical details before interviewing them using two questionnaires-the Neurological Disorders Depression Inventory for Epilepsy and Beck's Depression Inventory-II. Subsequently, if a participant screened positive for depression, the diagnosis was confirmed using the Diagnostic and Statistical Manual of Mental Disorders questionnaire, and a psychiatric clinic referral was offered. RESULTS Among the 129 participants, 9.3 % had undiagnosed major depressive disorder, and there was a female preponderance (66.7 %). The risk factors for undiagnosed depression among patients with epilepsy included low socioeconomic background (p = 0.026), generalized epilepsy (p = 0.036), and temporal lobe epilepsy (p = 0.010). Other variables such as being underweight and unmarried were more common among patients diagnosed with depression than without but no statistically significant relationship was found. CONCLUSION The prevalence of undiagnosed depression among patients with epilepsy was higher than that in population-based studies conducted in Western countries. Although questionnaires to screen for depression are widely available, some clinicians rarely use them and, therefore, fail to identify patients who may benefit from psychosocial support and treatment that would improve their disease outcomes and quality of life. The present study indicated that clinicians should use screening questionnaires to identify undiagnosed depression in people with epilepsy.
Collapse
Affiliation(s)
- Juen Kiem Tan
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ching Soong Khoo
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Hui Chien Beh
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Azlin Baharudin
- Department of Psychiatry, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wan Nur Nafisah Wan Yahya
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Hui Jan Tan
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| |
Collapse
|