1
|
van den Boom MA, Gregg NM, Ojeda Valencia G, Lundstrom BN, Miller KJ, van Blooijs D, Huiskamp GJM, Leijten FSS, Worrell GA, Hermes D. ER-detect: A pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data. J Neurosci Methods 2025; 418:110389. [PMID: 39952481 DOI: 10.1016/j.jneumeth.2025.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/10/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. However, the methods used for the detection of responses in cortico-cortical evoked potential (CCEP) data vary across studies, from visual inspection with manual annotation to a variety of automated methods. NEW METHOD To provide a robust workflow to process CCEP data and detect early evoked responses in a fully automated and reproducible fashion, we developed the Early Response (ER)-detect toolbox. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three early response detection methods, which were validated against 14 manually annotated CCEP datasets from two different clinical sites by four independent raters. RESULTS AND COMPARISON WITH EXISTING METHODS ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ∼0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. CONCLUSION ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results for both research and clinical purposes.
Collapse
Affiliation(s)
- Max A van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Dorien van Blooijs
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), Zwolle, Netherlands
| | - Geertjan J M Huiskamp
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Frans S S Leijten
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gregory A Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Aron O, Mezjan I, Krieg J, Ferrand M, Colnat-Coulbois S, Maillard L. Mapping the basal temporal language network: a SEEG functional connectivity study. BRAIN AND LANGUAGE 2024; 258:105486. [PMID: 39388909 DOI: 10.1016/j.bandl.2024.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
The Basal Temporal Language Area (BTLA) is recognized in epilepsy surgery setting when cortical electrical stimulation (CES) of the ventral temporal cortex (VTC) trigger anomia or paraphasia during naming tasks. Despite acknowledging a ventral language stream, current cognitive language models fail to properly integrate this entity. In this SEEG study we used cortico-cortical evoked potentials in nine epileptic patients to assess and compare the effective connectivity of 73 sites in the left VTC of which 26 were deemed eloquent for naming after CES (BTLA). Eloquent sites connectivity supports the existence of a basal temporal language network (BTLN) structured around posterior projectors while the fusiform gyrus behaved as an integrator. BTLN was strongly connected to the amygdala and hippocampus unlike the non-eloquent sites, except for the anterior fusiform gyrus (FG). These observations support the FG as a multimodal functional hub and add to our understanding of ventral temporal language processing.
Collapse
Affiliation(s)
- Olivier Aron
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France.
| | - Insafe Mezjan
- Lorraine University, CHRU Nancy, Neurosurgery Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| | - Julien Krieg
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France
| | - Mickael Ferrand
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France
| | - Sophie Colnat-Coulbois
- Lorraine University, CHRU Nancy, Neurosurgery Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| | - Louis Maillard
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| |
Collapse
|
3
|
Nakajima R, Osada T, Kinoshita M, Ogawa A, Okita H, Konishi S, Nakada M. More widespread functionality of posterior language area in patients with brain tumors. Hum Brain Mapp 2024; 45:e26801. [PMID: 39087903 PMCID: PMC11293139 DOI: 10.1002/hbm.26801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Damage to the posterior language area (PLA), or Wernicke's area causes cortical reorganization in the corresponding regions of the contralateral hemisphere. However, the details of reorganization within the ipsilateral hemisphere are not fully understood. In this context, direct electrical stimulation during awake surgery can provide valuable opportunities to investigate neuromodulation of the human brain in vivo, which is difficult through the non-invasive approaches. Thus, in this study, we aimed to investigate the characteristics of the cortical reorganization of the PLA within the ipsilateral hemisphere. Sixty-two patients with left hemispheric gliomas were divided into groups depending on whether the lesion extended to the PLA. All patients underwent direct cortical stimulation with a picture-naming task. We further performed functional connectivity analyses using resting-state functional magnetic resonance imaging (MRI) in a subset of patients and calculated betweenness centrality, an index of the network importance of brain areas. During direct cortical stimulation, the regions showing positive (impaired) responses in the non-PLA group were localized mainly in the posterior superior temporal gyrus (pSTG), whereas those in the PLA group were widely distributed from the pSTG to the posterior supramarginal gyrus (pSMG). Notably, the percentage of positive responses in the pSMG was significantly higher in the PLA group (47%) than in the non-PLA group (8%). In network analyses of functional connectivity, the pSMG was identified as a hub region with high betweenness centrality in both the groups. These findings suggest that the language area can spread beyond the PLA to the pSMG, a hub region, in patients with lesion progression to the pSTG. The change in the pattern of the language area may be a compensatory mechanism to maintain efficient brain networks.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Takahiro Osada
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| | - Akitoshi Ogawa
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Hirokazu Okita
- Department of Physical Medicine and RehabilitationKanazawa University HospitalKanazawaJapan
| | - Seiki Konishi
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
- Sapiens Life SciencesEvolution and Medicine Research CenterKanazawa UniversityKanazawaJapan
| |
Collapse
|
4
|
Alduais A, Alarifi HS, Alfadda H. Using Biosensors to Detect and Map Language Areas in the Brain for Individuals with Traumatic Brain Injury. Diagnostics (Basel) 2024; 14:1535. [PMID: 39061672 PMCID: PMC11275263 DOI: 10.3390/diagnostics14141535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The application of biosensors in neurolinguistics has significantly advanced the detection and mapping of language areas in the brain, particularly for individuals with brain trauma. This study explores the role of biosensors in this domain and proposes a conceptual model to guide their use in research and clinical practice. The researchers explored the integration of biosensors in language and brain function studies, identified trends in research, and developed a conceptual model based on cluster and thematic analyses. Using a mixed-methods approach, we conducted cluster and thematic analyses on data curated from Web of Science, Scopus, and SciSpace, encompassing 392 articles. This dual analysis facilitated the identification of research trends and thematic insights within the field. The cluster analysis highlighted Functional Magnetic Resonance Imaging (fMRI) dominance and the importance of neuroplasticity in language recovery. Biosensors such as the Magnes 2500 watt-hour (WH) neuromagnetometer and microwire-based sensors are reliable for real-time monitoring, despite methodological challenges. The proposed model synthesizes these findings, emphasizing biosensors' potential in preoperative assessments and therapeutic customization. Biosensors are vital for non-invasive, precise mapping of language areas, with fMRI and repetitive Transcranial Magnetic Stimulation (rTMS) playing pivotal roles. The conceptual model serves as a strategic framework for employing biosensors and improving neurolinguistic interventions. This research may enhance surgical planning, optimize recovery therapies, and encourage technological advancements in biosensor precision and application protocols.
Collapse
Affiliation(s)
- Ahmed Alduais
- Department of Human Sciences (Psychology), University of Verona, 37129 Verona, Italy
| | - Hessah Saad Alarifi
- Department of Educational Administration, College of Education, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hind Alfadda
- Department of Curriculum and Instruction, College of Education, King Saud University, Riyadh 11362, Saudi Arabia;
| |
Collapse
|
5
|
van den Boom MA, Gregg NM, Valencia GO, Lundstrom BN, Miller KJ, van Blooijs D, Huiskamp GJ, Leijten FS, Worrell GA, Hermes D. ER-detect: a pipeline for robust detection of early evoked responses in BIDS-iEEG electrical stimulation data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574915. [PMID: 38260687 PMCID: PMC10802406 DOI: 10.1101/2024.01.09.574915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. To provide a robust workflow to process these cortico-cortical evoked potential (CCEP) data and detect early evoked responses in a fully automated and reproducible fashion, we developed Early Response (ER)-detect. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three response detection methods, which were validated against 14-manually annotated CCEP datasets from two different sites by four independent raters. Results showed that ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results.
Collapse
Affiliation(s)
- Max A. van den Boom
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
- Department of Neurosurgery, Mayo Clinic; Rochester, MN, USA
| | | | | | | | - Kai J. Miller
- Department of Neurosurgery, Mayo Clinic; Rochester, MN, USA
| | - Dorien van Blooijs
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
- Stichting Epilepsie Instellingen Nederland (SEIN); Zwolle, The Netherlands
| | - Geertjan J.M. Huiskamp
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
| | - Frans S.S. Leijten
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht; Utrecht, NL
| | - Gregory A. Worrell
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN; USA
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic; Rochester, MN, USA
| |
Collapse
|
6
|
Monitoring Cortico-cortical Evoked Potentials Using Only Two 6-strand Strip Electrodes for Gliomas Extending to the Dominant Side of Frontal Operculum During One-step Tumor Removal Surgery. World Neurosurg 2022; 165:e732-e742. [PMID: 35798294 DOI: 10.1016/j.wneu.2022.06.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Resection of the dominant side of gliomas extending to the frontal operculum has high risk of severe language dysfunction. Here, we report recording cortico-cortical evoked potentials (CCEP) using only two 6-strand strip electrodes to monitor language-related fibers intraoperatively. We examined whether this simple procedure is useful for removing gliomas extending to the dominant side of frontal operculum. METHODS This study included 7 cases of glioma extending to the left frontal operculum. The frontal language area (FLA) was first identified by functional mapping during awake craniotomy. Next, a 6-strand strip electrode was placed on the FLA, while on the temporal side, an electrode was placed so as to slide parallel to the sylvian fissure toward the posterior language area. Electrical stimulation was performed using the electrode on the frontal side, and CCEPs were measured from the electrode on the temporal side. RESULTS CCEPs were detected in all cases. Immediately after surgery, all patients demonstrated language dysfunction to varying degree. CCEP decreased to 10% in 1 patient, who recovered language function after 24 months. CCEP decreased slightly 80% in 1, and, in the 5 other cases, CCEPs did not change. These 5 patients soon recovered language function within 2 weeks to 1 month. CONCLUSIONS This study confirmed the utility of CCEP monitoring using only two 6-strand strip electrodes during one-step surgery. We believe this simple method helped in monitoring intraoperative language function and predicting its postoperative recovery in patients with gliomas extending to the dominant side of frontal operculum.
Collapse
|
7
|
Aron O, Krieg J, Brissart H, Abdallah C, Colnat-Coulbois S, Jonas J, Maillard L. Naming impairments evoked by focal cortical electrical stimulation in the ventral temporal cortex correlate with increased functional connectivity. Neurophysiol Clin 2022; 52:312-322. [PMID: 35777988 DOI: 10.1016/j.neucli.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022] Open
Abstract
BACKGROUND High-frequency cortical electrical stimulations (HF-CES) are the gold standard for presurgical functional mapping. In the dominant ventral temporal cortex (VTC) HF-CES can elicit transient naming impairment (eloquent sites), defining a basal temporal language area (BTLA). OBJECTIVE Whether naming impairments induced by HF-CES within the VTC are related to a specific pattern of connectivity of the BTLA within the temporal lobe remains unknown. We addressed this issue by comparing the connectivity of eloquent and non-eloquent sites from the VTC using cortico-cortical evoked potentials (CCEP). METHODS Low frequency cortical electrical stimulations (LF-CES) were used to evoke CCEP in nine individual brains explored with Stereo-Electroencephalography. We compared the connectivity of eloquent versus non eloquent sites within the VTC using Pearson's correlation matrix. RESULTS Overall, within the VTC, eloquent sites were associated with increased functional connectivity compared to non-eloquent sites. Among the VTC structures, this pattern holds true for the inferior temporal gyrus and the parahippocampal gyrus while the fusiform gyrus specifically showed a high connectivity in both non eloquent and eloquent sites. CONCLUSIONS Our findings suggest that the cognitive effects of focal HF-CES are related to the functional connectivity properties of the stimulated sites, and therefore to the disturbance of a wide cortical network. They further suggest that functional specialization of a cortical region emerges from its specific pattern of functional connectivity. Cortical electrical stimulation functional mapping protocols including LF coupled to HF-CES could provide valuable data characterizing both local and distant functional architecture.
Collapse
Affiliation(s)
- Olivier Aron
- Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France; Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France.
| | - Julien Krieg
- Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
| | - Helene Brissart
- Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France
| | - Chifaou Abdallah
- Neurology and Neurosurgery Department, Montreal Neurological Institute (C.A.) McGill University, Montreal, Quebec, Canada
| | - Sophie Colnat-Coulbois
- Department of Neurosurgery, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France; Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
| | - Jacques Jonas
- Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France; Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
| | - Louis Maillard
- Department of Neurology, University Hospital of Nancy, Lorraine University, F-54000 Nancy, France; Research Center for Automatic Control of Nancy (CRAN), Lorraine University, CNRS, UMR, 7039 Vandoeuvre, France
| |
Collapse
|
8
|
Binding LP, Dasgupta D, Giampiccolo D, Duncan JS, Vos SB. Structure and function of language networks in temporal lobe epilepsy. Epilepsia 2022; 63:1025-1040. [PMID: 35184291 PMCID: PMC9773900 DOI: 10.1111/epi.17204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 12/30/2022]
Abstract
Individuals with temporal lobe epilepsy (TLE) may have significant language deficits. Language capabilities may further decline following temporal lobe resections. The language network, comprising dispersed gray matter regions interconnected with white matter fibers, may be atypical in individuals with TLE. This review explores the structural changes to the language network and the functional reorganization of language abilities in TLE. We discuss the importance of detailed reporting of patient's characteristics, such as, left- and right-sided focal epilepsies as well as lesional and nonlesional pathological subtypes. These factors can affect the healthy functioning of gray and/or white matter. Dysfunction of white matter and displacement of gray matter function could concurrently impact their ability, in turn, producing an interactive effect on typical language organization and function. Surgical intervention can result in impairment of function if the resection includes parts of this structure-function network that are critical to language. In addition, impairment may occur if language function has been reorganized and is included in a resection. Conversely, resection of an epileptogenic zone may be associated with recovery of cortical function and thus improvement in language function. We explore the abnormality of functional regions in a clinically applicable framework and highlight the differences in the underlying language network. Avoidance of language decline following surgical intervention may depend on tailored resections to avoid critical areas of gray matter and their white matter connections. Further work is required to elucidate the plasticity of the language network in TLE and to identify sub-types of language representation, both of which will be useful in planning surgery to spare language function.
Collapse
Affiliation(s)
- Lawrence P. Binding
- Department of Computer ScienceCentre for Medical Image ComputingUniversity College LondonLondonUK
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Debayan Dasgupta
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Victor Horsley Department of NeurosurgeryNational Hospital for Neurology and NeurosurgeryLondonUK
| | - Davide Giampiccolo
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Victor Horsley Department of NeurosurgeryNational Hospital for Neurology and NeurosurgeryLondonUK
- Institute of NeuroscienceCleveland Clinic LondonLondonUK
- Department of NeurosurgeryVerona University HospitalUniversity of VeronaVeronaItaly
| | - John S. Duncan
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Sjoerd B. Vos
- Department of Computer ScienceCentre for Medical Image ComputingUniversity College LondonLondonUK
- Neuroradiological Academic UnitUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Centre for Microscopy, Characterisation, and AnalysisThe University of Western AustraliaNedlandsWestern AustraliaAustralia
| |
Collapse
|
9
|
Patel P, Khalighinejad B, Herrero JL, Bickel S, Mehta AD, Mesgarani N. Improved Speech Hearing in Noise with Invasive Electrical Brain Stimulation. J Neurosci 2022; 42:3648-3658. [PMID: 35347046 PMCID: PMC9053855 DOI: 10.1523/jneurosci.1468-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Speech perception in noise is a challenging everyday task with which many listeners have difficulty. Here, we report a case in which electrical brain stimulation of implanted intracranial electrodes in the left planum temporale (PT) of a neurosurgical patient significantly and reliably improved subjective quality (up to 50%) and objective intelligibility (up to 97%) of speech in noise perception. Stimulation resulted in a selective enhancement of speech sounds compared with the background noises. The receptive fields of the PT sites whose stimulation improved speech perception were tuned to spectrally broad and rapidly changing sounds. Corticocortical evoked potential analysis revealed that the PT sites were located between the sites in Heschl's gyrus and the superior temporal gyrus. Moreover, the discriminability of speech from nonspeech sounds increased in population neural responses from Heschl's gyrus to the PT to the superior temporal gyrus sites. These findings causally implicate the PT in background noise suppression and may point to a novel potential neuroprosthetic solution to assist in the challenging task of speech perception in noise.SIGNIFICANCE STATEMENT Speech perception in noise remains a challenging task for many individuals. Here, we present a case in which the electrical brain stimulation of intracranially implanted electrodes in the planum temporale of a neurosurgical patient significantly improved both the subjective quality (up to 50%) and objective intelligibility (up to 97%) of speech perception in noise. Stimulation resulted in a selective enhancement of speech sounds compared with the background noises. Our local and network-level functional analyses placed the planum temporale sites in between the sites in the primary auditory areas in Heschl's gyrus and nonprimary auditory areas in the superior temporal gyrus. These findings causally implicate planum temporale in acoustic scene analysis and suggest potential neuroprosthetic applications to assist hearing in noise.
Collapse
Affiliation(s)
- Prachi Patel
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Bahar Khalighinejad
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Jose L Herrero
- Hofstra Northwell School of Medicine, New York, New York 11549
- Feinstein Institute for Medical Research, New York, New York 11030
| | - Stephan Bickel
- Hofstra Northwell School of Medicine, New York, New York 11549
- Feinstein Institute for Medical Research, New York, New York 11030
| | - Ashesh D Mehta
- Hofstra Northwell School of Medicine, New York, New York 11549
- Feinstein Institute for Medical Research, New York, New York 11030
| | - Nima Mesgarani
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York 10027
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| |
Collapse
|
10
|
Giampiccolo D, Duffau H. Controversy over the temporal cortical terminations of the left arcuate fasciculus: a reappraisal. Brain 2022; 145:1242-1256. [PMID: 35142842 DOI: 10.1093/brain/awac057] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/19/2021] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
The arcuate fasciculus has been considered a major dorsal fronto-temporal white matter pathway linking frontal language production regions with auditory perception in the superior temporal gyrus, the so-called Wernicke's area. In line with this tradition, both historical and contemporary models of language function have assigned primacy to superior temporal projections of the arcuate fasciculus. However, classical anatomical descriptions and emerging behavioural data are at odds with this assumption. On one hand, fronto-temporal projections to Wernicke's area may not be unique to the arcuate fasciculus. On the other hand, dorsal stream language deficits have been reported also for damage to middle, inferior and basal temporal gyri which may be linked to arcuate disconnection. These findings point to a reappraisal of arcuate projections in the temporal lobe. Here, we review anatomical and functional evidence regarding the temporal cortical terminations of the left arcuate fasciculus by incorporating dissection and tractography findings with stimulation data using cortico-cortical evoked potentials and direct electrical stimulation mapping in awake patients. Firstly, we discuss the fibers of the arcuate fasciculus projecting to the superior temporal gyrus and the functional rostro-caudal gradient in this region where both phonological encoding and auditory-motor transformation may be performed. Caudal regions within the temporoparietal junction may be involved in articulation and associated with temporoparietal projections of the third branch of the superior longitudinal fasciculus, while more rostral regions may support encoding of acoustic phonetic features, supported by arcuate fibres. We then move to examine clinical data showing that multimodal phonological encoding is facilitated by projections of the arcuate fasciculus to superior, but also middle, inferior and basal temporal regions. Hence, we discuss how projections of the arcuate fasciculus may contribute to acoustic (middle-posterior superior and middle temporal gyri), visual (posterior inferior temporal/fusiform gyri comprising the visual word form area) and lexical (anterior-middle inferior temporal/fusiform gyri in the basal temporal language area) information in the temporal lobe to be processed, encoded and translated into a dorsal phonological route to the frontal lobe. Finally, we point out surgical implications for this model in terms of the prediction and avoidance of neurological deficit.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University Hospital, Verona, Italy.,Institute of Neuroscience, Cleveland Clinic London, Grosvenor Place, London, UK.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France.,Team "Neuroplasticity, Stem Cells and Low-grade Gliomas," INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, Montpellier, France
| |
Collapse
|
11
|
Titov O, Bykanov A, Pitskhelauri D, Danilov G. Neuromonitoring of the language pathways using cortico-cortical evoked potentials: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:1883-1894. [PMID: 35031897 DOI: 10.1007/s10143-021-01718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
Cortico-cortical evoked potentials (CCEPs) are a surge in activity of one cortical zone caused by stimulation of another cortical zone. Recording of CCEP may be a useful method of intraoperative monitoring of the brain pathways, particularly of the language-related tracts. We aimed to conduct a systematic review and meta-analysis, dedicated to the clinical question: Does the CCEP recording effectively predict the postoperative speech deficits in neurosurgical patients? We conducted language-restricted PubMed, Google Scholar, Scopus, and Cochrane database search for eligible studies of CCEP published until March 2021. There were 4 articles (3 case series and 1 case report), which met our inclusion/exclusion criteria. A total of 32 patients (30 cases of tumors and 2 cavernomas) included in the analysis were divided into two cohorts - quantitative and qualitative, in accordance with the method of evaluating changes in the amplitude of CCEP after the lesion resection and postoperative alterations in speech function. Quantitative variables were studied using the Spearman rank correlation coefficient. Categorical variables were compared in groups by Fisher's exact test. We found a strong positive correlation between the decrease in the N1 wave amplitude and the severity of postoperative speech deficits (quantitative cohort: r = 0.57, p = 0.01; qualitative cohort: p = 0.02). Thus, the CCEP method using the N1 wave amplitude as a marker enables to effectively predict postoperative speech outcomes. Nevertheless, the low level of evidence for the included works indicated the necessity for additional research on this issue.
Collapse
Affiliation(s)
- Oleg Titov
- Burdenko Neurosurgery Center, Moscow, Russia. .,OPEN BRAIN - Neurosurgical Laboratory of Open Access, Moscow, Russia.
| | | | | | | |
Collapse
|
12
|
Herrero JL, Smith A, Mishra A, Markowitz N, Mehta AD, Bickel S. Inducing neuroplasticity through intracranial θ-burst stimulation in the human sensorimotor cortex. J Neurophysiol 2021; 126:1723-1739. [PMID: 34644179 PMCID: PMC8782667 DOI: 10.1152/jn.00320.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023] Open
Abstract
The progress of therapeutic neuromodulation greatly depends on improving stimulation parameters to most efficiently induce neuroplasticity effects. Intermittent θ-burst stimulation (iTBS), a form of electrical stimulation that mimics natural brain activity patterns, has proved to efficiently induce such effects in animal studies and rhythmic transcranial magnetic stimulation studies in humans. However, little is known about the potential neuroplasticity effects of iTBS applied through intracranial electrodes in humans. This study characterizes the physiological effects of intracranial iTBS in humans and compare them with α-frequency stimulation, another frequently used neuromodulatory pattern. We applied these two stimulation patterns to well-defined regions in the sensorimotor cortex, which elicited contralateral hand muscle contractions during clinical mapping, in patients with epilepsy implanted with intracranial electrodes. Treatment effects were evaluated using oscillatory coherence across areas connected to the treatment site, as defined with corticocortical-evoked potentials. Our results show that iTBS increases coherence in the β-frequency band within the sensorimotor network indicating a potential neuroplasticity effect. The effect is specific to the sensorimotor system, the β band, and the stimulation pattern and outlasted the stimulation period by ∼3 min. The effect occurred in four out of seven subjects depending on the buildup of the effect during iTBS treatment and other patterns of oscillatory activity related to ceiling effects within the β band and to preexistent coherence within the α band. By characterizing the neurophysiological effects of iTBS within well-defined cortical networks, we hope to provide an electrophysiological framework that allows clinicians/researchers to optimize brain stimulation protocols which may have translational value.NEW & NOTEWORTHY θ-Burst stimulation (TBS) protocols in transcranial magnetic stimulation studies have shown improved treatment efficacy in a variety of neuropsychiatric disorders. The optimal protocol to induce neuroplasticity in invasive direct electrical stimulation approaches is not known. We report that intracranial TBS applied in human sensorimotor cortex increases local coherence of preexistent β rhythms. The effect is specific to the stimulation frequency and the stimulated network and outlasts the stimulation period by ∼3 min.
Collapse
Affiliation(s)
- Jose L Herrero
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Alexander Smith
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Akash Mishra
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Noah Markowitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ashesh D Mehta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Stephan Bickel
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
13
|
Hays MA, Smith RJ, Haridas B, Coogan C, Crone NE, Kang JY. Effects of stimulation intensity on intracranial cortico-cortical evoked potentials: A titration study. Clin Neurophysiol 2021; 132:2766-2777. [PMID: 34583119 DOI: 10.1016/j.clinph.2021.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the optimal stimulation parameters for eliciting cortico-cortical evoked potentials (CCEPs) for mapping functional and epileptogenic networks. METHODS We studied 13 patients with refractory epilepsy undergoing intracranial EEG monitoring. We systematically titrated the intensity of single-pulse electrical stimulation at multiple sites to assess the effect of increasing current on salient features of CCEPs such as N1 potential magnitude, signal to noise ratio, waveform similarity, and spatial distribution of responses. Responses at each incremental stimulation setting were compared to each other and to a final set of responses at the maximum intensity used in each patient (3.5-10 mA, median 6 mA). RESULTS We found that with a biphasic 0.15 ms/phase pulse at least 2-4 mA is needed to differentiate between non-responsive and responsive sites, and that stimulation currents of 6-7 mA are needed to maximize amplitude and spatial distribution of N1 responses and stabilize waveform morphology. CONCLUSIONS We determined a minimum stimulation threshold necessary for eliciting CCEPs, as well as a point at which the current-dependent relationship of several response metrics all saturate. SIGNIFICANCE This titration study provides practical, immediate guidance on optimal stimulation parameters to study specific features of CCEPs, which have been increasingly used to map both functional and epileptic brain networks in humans.
Collapse
Affiliation(s)
- Mark A Hays
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Rachel J Smith
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Babitha Haridas
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Coogan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joon Y Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Crocker B, Ostrowski L, Williams ZM, Dougherty DD, Eskandar EN, Widge AS, Chu CJ, Cash SS, Paulk AC. Local and distant responses to single pulse electrical stimulation reflect different forms of connectivity. Neuroimage 2021; 237:118094. [PMID: 33940142 DOI: 10.1016/j.neuroimage.2021.118094] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/13/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Measuring connectivity in the human brain involves innumerable approaches using both noninvasive (fMRI, EEG) and invasive (intracranial EEG or iEEG) recording modalities, including the use of external probing stimuli, such as direct electrical stimulation. To examine how different measures of connectivity correlate with one another, we compared 'passive' measures of connectivity during resting state conditions to the more 'active' probing measures of connectivity with single pulse electrical stimulation (SPES). We measured the network engagement and spread of the cortico-cortico evoked potential (CCEP) induced by SPES at 53 out of 104 total sites across the brain, including cortical and subcortical regions, in patients with intractable epilepsy (N=11) who were undergoing intracranial recordings as a part of their clinical care for identifying seizure onset zones. We compared the CCEP network to functional, effective, and structural measures of connectivity during a resting state in each patient. Functional and effective connectivity measures included correlation or Granger causality measures applied to stereoEEG (sEEGs) recordings. Structural connectivity was derived from diffusion tensor imaging (DTI) acquired before intracranial electrode implant and monitoring (N=8). The CCEP network was most similar to the resting state voltage correlation network in channels near to the stimulation location. In contrast, the distant CCEP network was most similar to the DTI network. Other connectivity measures were not as similar to the CCEP network. These results demonstrate that different connectivity measures, including those derived from active stimulation-based probing, measure different, complementary aspects of regional interrelationships in the brain.
Collapse
Affiliation(s)
- Britni Crocker
- Harvard-MIT Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lauren Ostrowski
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ziv M Williams
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Neurosurgery, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10467
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129; Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA 02124; Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455
| | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
15
|
Intraoperative Corticocortical Evoked Potentials for Language Monitoring in Epilepsy Surgery. World Neurosurg 2021; 151:e109-e121. [PMID: 33819704 DOI: 10.1016/j.wneu.2021.03.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To evaluate the applicability of corticocortical evoked potentials (CCEP) for intraoperative monitoring of the language network in epilepsy surgery under general anesthesia. To investigate the clinical relevance on language functions of intraoperative changes of CCEP recorded under these conditions. METHODS CCEP monitoring was performed in 14 epileptic patients (6 females, 4 children) during resections in the left perisylvian region under general anesthesia. Electrode strips were placed on the anterior language area (AL) and posterior language area (PL), identified by structural and functional magnetic resonance imaging. Single-pulse electric stimulations were delivered to pairs of adjacent contacts in a bipolar fashion. During resection, we monitored the integrity of the dorsal language pathway by stimulating either AL by recording CCEP from PL or vice versa, depending on stability and reproducibility of CCEP. We evaluated the first negative (N1) component of CCEP before, during, and after resection. RESULTS All procedures were successfully completed without adverse events. The best response was obtained from AL during stimulation of PL in 8 patients and from PL during stimulation of AL in 6 patients. None of 12 patients with a postresection N1 amplitude decrease of 0%-15% from baseline presented postoperative language impairment. Decreases of 28% and 24%, respectively, of the N1 amplitude were observed in 2 patients who developed transient postoperative speech disturbances. CONCLUSIONS The application of CCEP monitoring is possible and safe in epilepsy surgery under general anesthesia. Putative AL and PL can be identified using noninvasive presurgical neuroimaging. Decrease of N1 amplitude >15% from baseline may predict postoperative language deficits.
Collapse
|
16
|
Yamao Y, Matsumoto R, Kikuchi T, Yoshida K, Kunieda T, Miyamoto S. Intraoperative Brain Mapping by Cortico-Cortical Evoked Potential. Front Hum Neurosci 2021; 15:635453. [PMID: 33679353 PMCID: PMC7930065 DOI: 10.3389/fnhum.2021.635453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/04/2022] Open
Abstract
To preserve postoperative brain function, it is important for neurosurgeons to fully understand the brain's structure, vasculature, and function. Intraoperative high-frequency electrical stimulation during awake craniotomy is the gold standard for mapping the function of the cortices and white matter; however, this method can only map the "focal" functions and cannot monitor large-scale cortical networks in real-time. Recently, an in vivo electrophysiological method using cortico-cortical evoked potentials (CCEPs) induced by single-pulse electrical cortical stimulation has been developed in an extraoperative setting. By using the CCEP connectivity pattern intraoperatively, mapping and real-time monitoring of the dorsal language pathway is available. This intraoperative CCEP method also allows for mapping of the frontal aslant tract, another language pathway, and detection of connectivity between the primary and supplementary motor areas in the frontal lobe network. Intraoperative CCEP mapping has also demonstrated connectivity between the frontal and temporal lobes, likely via the ventral language pathway. Establishing intraoperative electrophysiological monitoring is clinically useful for preserving brain function, even under general anesthesia. This CCEP technique demonstrates potential clinical applications for mapping and monitoring large-scale cortical networks.
Collapse
Affiliation(s)
- Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Riki Matsumoto
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kikuchi
- Division of Neurology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Gronlier E, Vendramini E, Volle J, Wozniak-Kwasniewska A, Antón Santos N, Coizet V, Duveau V, David O. Single-pulse electrical stimulation methodology in freely moving rat. J Neurosci Methods 2021; 353:109092. [PMID: 33549638 DOI: 10.1016/j.jneumeth.2021.109092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cortico-cortical evoked potentials (CCEP) are becoming popular to infer brain connectivity and cortical excitability in implanted refractory epilepsy patients. Our goal was to transfer this methodology to the freely moving rodent. NEW METHOD CCEP were recorded on freely moving Sprague-Dawley rats, from cortical and subcortical areas using depth electrodes. Electrical stimulation was applied using 1 ms biphasic current pulse, cathodic first, at a frequency of 0.5 Hz, with intensities ranging from 0.2 to 0.8 mA. Data were then processed in a similar fashion to human clinical studies, which included epoch selection, artefact correction and smart averaging. RESULTS For a large range of tested intensities, we recorded CCEPs with very good signal to noise ratio and reproducibility between animals, without any behavioral modification. The CCEP were composed of different components according to recorded and stimulated sites, similarly to human recordings. COMPARISON WITH EXISTING METHODS We minimally adapted a clinically-motivated methodology to a freely moving rodent model to achieve high translational relevance of future preclinical studies. CONCLUSIONS Our results indicate that the CCEP methodology can be applied to freely moving rodents and transferred to preclinical research. This will be of interest to address various neuroscientific questions, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Eloïse Gronlier
- SynapCell SAS, Saint-Ismier, France; Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, Grenoble, France.
| | - Estelle Vendramini
- Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, Grenoble, France
| | | | | | - Noelia Antón Santos
- Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, Grenoble, France
| | - Véronique Coizet
- Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, Grenoble, France
| | | | - Olivier David
- Univ. Grenoble Alpes, Inserm, GIN, Grenoble Institut des Neurosciences, Grenoble, France; Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
18
|
Guo Z, Zhao B, Hu W, Zhang C, Wang X, Wang Y, Liu C, Mo J, Sang L, Ma Y, Shao X, Zhang J, Zhang K. Effective connectivity among the hippocampus, amygdala, and temporal neocortex in epilepsy patients: A cortico-cortical evoked potential study. Epilepsy Behav 2021; 115:107661. [PMID: 33434884 DOI: 10.1016/j.yebeh.2020.107661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/08/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Mesial temporal lobe epilepsy (MTLE) is one of the most common types of intractable epilepsy. The hippocampus and amygdala are two crucial structures of the mesial temporal lobe and play important roles in the epileptogenic network of MTLE. This study aimed to explore the effective connectivity among the hippocampus, amygdala, and temporal neocortex and to determine whether differences in effective connectivity exist between MTLE patients and non-MTLE patients. METHODS This study recruited 20 patients from a large cohort of drug-resistant epilepsy patients, of whom 14 were MTLE patients. Single-pulse electrical stimulation (SPES) was performed to acquire cortico-cortical evoked potentials (CCEPs). The root mean square (RMS) was used as the metric of the magnitude of CCEP to represent the effective connectivity. We then conducted paired and independent sample t-tests to assess the directionality of the effective connectivity. RESULTS In both MTLE patients and non-MTLE patients, the directional connectivity from the amygdala to the hippocampus was stronger than that from the hippocampus to the amygdala (P < 0.01); the outward connectivity from the amygdala to the cortex was stronger than the inward connectivity from the cortex to the amygdala (P < 0.01); the amygdala had stronger connectivity to the neocortex than the hippocampus (P < 0.01). In MTLE patients, the neocortex had stronger connectivity to the hippocampus than to the amygdala (P < 0.01). No significant differences in directional connectivity were noted between the two groups. CONCLUSIONS A unique effective connectivity pattern among the hippocampus, amygdala, and temporal neocortex was identified through CCEPs analysis. This study may aid in our understanding of physiological and pathological networks in the brain and inspire neurostimulation protocols for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Zhihao Guo
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Baotian Zhao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Wenhan Hu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yao Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Chang Liu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Jiajie Mo
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Lin Sang
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Yanshan Ma
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, China
| | - Xiaoqiu Shao
- Department of Neurology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China; Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Beijing Key Laboratory of Neurostimulation, Beijing, China.
| |
Collapse
|
19
|
ReFaey K, Tripathi S, Bhargav AG, Grewal SS, Middlebrooks EH, Sabsevitz DS, Jentoft M, Brunner P, Wu A, Tatum WO, Ritaccio A, Chaichana KL, Quinones-Hinojosa A. Potential differences between monolingual and bilingual patients in approach and outcome after awake brain surgery. J Neurooncol 2020; 148:587-598. [PMID: 32524393 DOI: 10.1007/s11060-020-03554-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION 20.8% of the United States population and 67% of the European population speak two or more languages. Intraoperative different languages, mapping, and localization are crucial. This investigation aims to address three questions between BL and ML patients: (1) Are there differences in complications (i.e. seizures) and DECS techniques during intra-operative brain mapping? (2) Is EOR different? and (3) Are there differences in the recovery pattern post-surgery? METHODS Data from 56 patients that underwent left-sided awake craniotomy for tumors infiltrating possible dominant hemisphere language areas from September 2016 to June 2019 were identified and analyzed in this study; 14 BL and 42 ML control patients. Patient demographics, education level, and the age of language acquisition were documented and evaluated. fMRI was performed on all participants. RESULTS 0 (0%) BL and 3 (7%) ML experienced intraoperative seizures (P = 0.73). BL patients received a higher direct DECS current in comparison to the ML patients (average = 4.7, 3.8, respectively, P = 0.03). The extent of resection was higher in ML patients in comparison to the BL patients (80.9 vs. 64.8, respectively, P = 0.04). The post-operative KPS scores were higher in BL patients in comparison to ML patients (84.3, 77.4, respectively, P = 0.03). BL showed lower drop in post-operative KPS in comparison to ML patients (- 4.3, - 8.7, respectively, P = 0.03). CONCLUSION We show that BL patients have a lower incidence of intra-operative seizures, lower EOR, higher post-operative KPS and tolerate higher DECS current, in comparison to ML patients.
Collapse
Affiliation(s)
- Karim ReFaey
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Shashwat Tripathi
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA.,Department of Mathematics, University of Texas at Austin, Austin, TX, USA
| | - Adip G Bhargav
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Sanjeet S Grewal
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Erik H Middlebrooks
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA.,Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - David S Sabsevitz
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA.,Department of Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Mark Jentoft
- Department of Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Peter Brunner
- Albany Medical College, Albany, NY, USA.,National Center for Adaptive Neurotechnologies, Albany, NY, USA
| | - Adela Wu
- Department of Neurologic Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | | | - Alfredo Quinones-Hinojosa
- Department of Neurologic Surgery, Mayo Clinic, Jacksonville, FL, USA. .,Brain Tumor Stem Cell Laboratory, Department of Neurologic Surgery, Mayo Clinic, 4500 San Pablo Rd. S, FloridaJacksonville, FL, 32224, USA.
| |
Collapse
|
20
|
Intraoperative Electrophysiologic Mapping of Medial Frontal Motor Areas and Functional Outcomes. World Neurosurg 2020; 138:e389-e404. [DOI: 10.1016/j.wneu.2020.02.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/19/2022]
|
21
|
Foley E, Wood AG, Furlong PL, Walsh AR, Kearney S, Bill P, Hillebrand A, Seri S. Mapping language networks and their association with verbal abilities in paediatric epilepsy using MEG and graph analysis. Neuroimage Clin 2020; 27:102265. [PMID: 32413809 PMCID: PMC7226893 DOI: 10.1016/j.nicl.2020.102265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 10/26/2022]
Abstract
Recent theoretical models of language have emphasised the importance of integration within distributed networks during language processing. This is particularly relevant to young patients with epilepsy, as the topology of the functional network and its dynamics may be altered by the disease, resulting in reorganisation of functional language networks. Thus, understanding connectivity within the language network in patients with epilepsy could provide valuable insights into healthy and pathological brain function, particularly when combined with clinical correlates. The objective of this study was to investigate interactions within the language network in a paediatric population of epilepsy patients using measures of MEG phase synchronisation and graph-theoretical analysis, and to examine their association with language abilities. Task dependent increases in connectivity were observed in fronto-temporal networks during verb generation across a group of 22 paediatric patients (9 males and 13 females; mean age 14 years). Differences in network connectivity were observed between patients with typical and atypical language representation and between patients with good and poor language abilities. In addition, node centrality in left frontal and temporal regions was significantly associated with language abilities, where patients with good language abilities had significantly higher node centrality within inferior frontal and superior temporal regions of the left hemisphere, compared to patients with poor language abilities. Our study is one of the first to apply task-based measures of MEG network synchronisation in paediatric epilepsy, and we propose that these measures of functional connectivity and node centrality could be used as tools to identify critical regions of the language network prior to epilepsy surgery.
Collapse
Affiliation(s)
- Elaine Foley
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK.
| | - Amanda G Wood
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK; School of Psychology, Faculty of Health, Melbourne Burwood Campus, Deakin University, Geelong, Victoria, Australia
| | - Paul L Furlong
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK
| | - A Richard Walsh
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Shauna Kearney
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Peter Bill
- Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Stefano Seri
- School of Life and Health Sciences, Aston Brain Centre, Aston University, Birmingham, UK; Children's Epilepsy Surgery Service, Birmingham Women's and Children's Hospital, Birmingham, UK
| |
Collapse
|
22
|
Prime D, Woolfe M, O'Keefe S, Rowlands D, Dionisio S. Quantifying volume conducted potential using stimulation artefact in cortico-cortical evoked potentials. J Neurosci Methods 2020; 337:108639. [PMID: 32156547 DOI: 10.1016/j.jneumeth.2020.108639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Cortico-cortical evoked potentials (CCEP) are a technique using low frequency stimulation to infer regions of cortical connectivity in patients undergoing Stereo-electroencephalographic (SEEG) monitoring for refractory epilepsy. Little attention has been given to volume conducted components of CCEP responses, and how they may inflate CCEP connectivity. NEW METHOD Using data from 37 SEEG-CCEPs patients, a novel method was developed to quantify stimulation artefact by measuring the peak-to-peak voltage difference in the first 10 ms after CCEP stimulation. Early responses to CCEP stimulation were also quantified by calculating the root mean square of the 10-100 ms period after each stimulation pulse. Both the early CCEP responses and amplitude of stimulation artefact were regressed by physical distance, stimulation waveform, stimulation intensity and tissue type to identify conduction related properties. RESULTS Both stimulation artefact and early responses were correlated strongly with the inverse square of the distance from the stimulating electrode. Once corrected for the inverse square distance from the electrode, stimulation artefact and CCEP responses showed a linear relationship, indicating a volume conducted component. COMPARISON WITH EXISTING METHODS This is the first study to use stimulation artefact to quantify volume conducted potentials, and is the first to quantify volume conducted potentials in SEEG. A single prior study utilizing electrocorticography has shown that parts of early CCEP responses are due to volume conduction. CONCLUSIONS The linear relationship between stimulation artefact amplitude and CCEP early responses, once corrected for distance, suggests that stimulation artefact can be used as a measure to quantify the volume conducted components.
Collapse
Affiliation(s)
- David Prime
- Griffith University School of Engineering, Nathan, QLD, Australia; Mater Advanced Epilepsy Unit, Brisbane, QLD, Australia.
| | - Matthew Woolfe
- Griffith University School of Engineering, Nathan, QLD, Australia; Mater Advanced Epilepsy Unit, Brisbane, QLD, Australia
| | - Steven O'Keefe
- Griffith University School of Engineering, Nathan, QLD, Australia
| | - David Rowlands
- Griffith University School of Engineering, Nathan, QLD, Australia
| | | |
Collapse
|
23
|
Kamada K, Kapeller C, Takeuchi F, Gruenwald J, Guger C. Tailor-Made Surgery Based on Functional Networks for Intractable Epilepsy. Front Neurol 2020; 11:73. [PMID: 32117032 PMCID: PMC7031351 DOI: 10.3389/fneur.2020.00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Normal and pathological networks related to seizure propagation have got attention to elucide complex seizure semiology and contribute to diagnosis and surgical monitoring in epilepsy treatment. Since focal and generalized epileptogenic syndromes abnormalities might involve multiple foci and large-scale networks, we applied electrophysiolpgy (cortco-cortico evoked potential; CCEP), and tractography to make detailed diagnosis for complex syndrome. All 14 epilepsy patients with no or little abnormality on images investigations underwent subdural grid implantation for epilepsy diagnosis. To perform quick network analysis, we recorded and analyzed high gamma activity (HGA) of epileptogenic activity and CCEPs to identify pathological activity distribution and network connectivity. [Results] Pathological CCEPs showed two negative deflections consisting of early (>40 ms) and late (>150 ms) components in electrically stable circumstance at bed side and early CCEPs appeared in 57% of the patients. On the basis of the CCEP findings, tractography detected anatomical connections. Early components of pathological CCEPs diminished after complete disconnection of tractoography-based fibers between the foci in seven of eight cases. One case with residual pathological CCEPs showed poorer outcome. Thirteen (92.8%) patients with or without CCEPs who underwent network surgery had favorable prognosis except for a case with wide traumatic epilepsy. Intraoperative CCEP measurements and HGA mapping enabled visualization of pathological networks and clinical impotence as a biomarker to improve functional prognosis. HGA/CCEP recording should shed light on pathological and complex propagation for epilepsy surgery.
Collapse
Affiliation(s)
- Kyousuke Kamada
- Department of Neurosurgery, Megumino Hospital, Eniwa, Japan.,ATR Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Christoph Kapeller
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Fumiya Takeuchi
- Department of Research Promotion Center, Asahikawa Medical University, Asahikawa, Japan
| | - Johannes Gruenwald
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Christoph Guger
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| |
Collapse
|
24
|
Muh CR, Chou ND, Rahimpour S, Komisarow JM, Spears TG, Fuchs HE, Serafini S, Grant GA. Cortical stimulation mapping for localization of visual and auditory language in pediatric epilepsy patients. J Neurosurg Pediatr 2020; 25:168-177. [PMID: 31703207 DOI: 10.3171/2019.8.peds1922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/28/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To determine resection margins near eloquent tissue, electrical cortical stimulation (ECS) mapping is often used with visual naming tasks. In recent years, auditory naming tasks have been found to provide a more comprehensive map. Differences in modality-specific language sites have been found in adult patients, but there is a paucity of research on ECS language studies in pediatric patients. The goals of this study were to evaluate word-finding distinctions between visual and auditory modalities and identify which cortical subregions most often contain critical language function in a pediatric population. METHODS Twenty-one pediatric patients with epilepsy or temporal lobe pathology underwent ECS mapping using visual (n = 21) and auditory (n = 14) tasks. Fisher's exact test was used to determine whether the frequency of errors in the stimulated trials was greater than the patient's baseline error rate for each tested modality and subregion. RESULTS While the medial superior temporal gyrus was a common language site for both visual and auditory language (43.8% and 46.2% of patients, respectively), other subregions showed significant differences between modalities, and there was significant variability between patients. Visual language was more likely to be located in the anterior temporal lobe than was auditory language. The pediatric patients exhibited fewer parietal language sites and a larger range of sites overall than did adult patients in previously published studies. CONCLUSIONS There was no single area critical for language in more than 50% of patients tested in either modality for which more than 1 patient was tested (n > 1), affirming that language function is plastic in the setting of dominant-hemisphere pathology. The high rates of language function throughout the left frontal, temporal, and anterior parietal regions with few areas of overlap between modalities suggest that ECS mapping with both visual and auditory testing is necessary to obtain a comprehensive language map prior to epileptic focus or tumor resection.
Collapse
Affiliation(s)
- Carrie R Muh
- 1Department of Neurosurgery, Duke University Hospital, and
- 2Department of Neurosurgery, Maria Fareri Children's Hospital, Westchester Medical Center, Valhalla, New York; and
| | - Naomi D Chou
- 1Department of Neurosurgery, Duke University Hospital, and
| | | | | | - Tracy G Spears
- 3Duke Clinical Research Institute, Durham, North Carolina
| | | | | | - Gerald A Grant
- 4Department of Neurosurgery, Stanford University Hospital, Stanford, California
| |
Collapse
|
25
|
Prime D, Woolfe M, Rowlands D, O'Keefe S, Dionisio S. Comparing connectivity metrics in cortico-cortical evoked potentials using synthetic cortical response patterns. J Neurosci Methods 2020; 334:108559. [PMID: 31927000 DOI: 10.1016/j.jneumeth.2019.108559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cortico-Cortical Evoked Potentials (CCEPs) are a novel low frequency stimulation method used for brain mapping during intracranial epilepsy investigations. Only a handful of metrics have been applied to CCEP data to infer connectivity, and no comparison as to which is best has been performed. NEW METHOD We implement a novel method which involved superimposing synthetic cortical responses onto stereoelectroencephalographic (SEEG) data, and use this to compare several metric's ability to detect the simulated patterns. In this we compare two commonly employed metrics currently used in CCEP analysis against eight time series similarity metrics (TSSMs), which have been widely used in machine learning and pattern matching applications. RESULTS Root Mean Square (RMS), a metric commonly employed in CCEP analysis, was sensitive to a wide variety of response patterns, but insensitive to simulated epileptiform patterns. Autoregressive (AR) coefficients calculated by Burg's method were also sensitive to a wide range of patterns, but were extremely sensitive to epileptiform patterns. Other metrics which employed elastic warping techniques were less sensitive to the simulated response patterns. COMPARISON WITH EXISTING METHODS Our study is the first to compare CCEP connectivity metrics against one-another. Our results found that RMS, which has been used in many CCEP studies previously, was the most sensitive metric across a wide range of patterns. CONCLUSIONS Our novel method showed that RMS is a robust and sensitive measure, validating much of the findings of the SEEG-CCEP literature to date. Autoregressive coefficients may also be a useful metric to investigate epileptic networks.
Collapse
Affiliation(s)
- David Prime
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia; Mater Advanced Epilepsy Unit, Brisbane, QLD, Australia.
| | - Matthew Woolfe
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia; Mater Advanced Epilepsy Unit, Brisbane, QLD, Australia
| | - David Rowlands
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia
| | - Steven O'Keefe
- Griffith University School of Engineering and Built Environment, Nathan, QLD, Australia
| | | |
Collapse
|
26
|
Zhao C, Liang Y, Li C, Gao R, Wei J, Zuo R, Zhong Y, Ren Z, Geng X, Zhang G, Zhang X. Localization of Epileptogenic Zone Based on Cortico-Cortical Evoked Potential (CCEP): A Feature Extraction and Graph Theory Approach. Front Neuroinform 2019; 13:31. [PMID: 31068798 PMCID: PMC6491865 DOI: 10.3389/fninf.2019.00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/03/2019] [Indexed: 01/01/2023] Open
Abstract
Objective Epilepsy is a chronic brain disease, which is prone to relapse and affects individuals of all ages worldwide, particularly the very young and elderly. Up to one-third of these patients are medically intractable and require resection surgery. However, the outcomes of epilepsy surgery rely upon the clear identification of epileptogenic zone (EZ). The combination of cortico-cortical evoked potential (CCEP) and electrocorticography (ECoG) provides an opportunity to observe the connectivity of human brain network and more comprehensive information that may help the clinicians localize the epileptogenic focus more precisely. However, there is no standard analysis method in the clinical application of CCEPs, especially for the quantitative analysis of abnormal connectivity of epileptic networks. The aim of this paper was to present an approach on the batch processing of CCEPs and provide information relating to the localization of EZ for clinical study. Methods Eight medically intractable epilepsy patients were included in this study. Each patient was implanted with subdural grid electrodes and electrical stimulations were applied directly to their cortex to induce CCEPs. After signal preprocessing, we constructed three effective brain networks at different spatial scales for each patient, regarding the amplitudes of CCEPs as the connection weights. Graph theory was then applied to analyze the brain network topology of epileptic patients, and the topological metrics of EZ and non-EZ (NEZ) were compared. Results The effective connectivity network reconstructed from CCEPs was asymmetric, both the number and the amplitudes of effective CCEPs decreased with increasing distance between stimulating and recording sites. Besides, the distribution of CCEP responses was associated with the locations of EZ which tended to have higher degree centrality (DC) and nodal shortest path length (NLP) than NEZ. Conclusion Our results indicated that the brain networks of epileptics were asymmetric and mainly composed of short-distance connections. The DC and NLP were highly consistent to the distribution of the EZ, and these topological parameters have great potential to be readily applied to the clinical localization of the EZ.
Collapse
Affiliation(s)
- Cui Zhao
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.,School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Ying Liang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.,School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Chunlin Li
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.,School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Runshi Gao
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Wei
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.,School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Rui Zuo
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.,School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Yihua Zhong
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.,School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zhaohui Ren
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.,School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Xinling Geng
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.,School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xu Zhang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.,School of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Kamada K, Ogawa H, Kapeller C, Prueckl R, Hiroshima S, Tamura Y, Takeuchi F, Guger C. Disconnection of the pathological connectome for multifocal epilepsy surgery. J Neurosurg 2018; 129:1182-1194. [PMID: 29271713 DOI: 10.3171/2017.6.jns17452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/02/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVERecent neuroimaging studies suggest that intractable epilepsy involves pathological functional networks as well as strong epileptogenic foci. Combining cortico-cortical evoked potential (CCEP) recording and tractography is a useful strategy for mapping functional connectivity in normal and pathological networks. In this study, the authors sought to demonstrate the efficacy of preoperative combined CCEP recording, high gamma activity (HGA) mapping, and tractography for surgical planning, and of intraoperative CCEP measures for confirmation of selective pathological network disconnection.METHODSThe authors treated 4 cases of intractable epilepsy. Diffusion tensor imaging-based tractography data were acquired before the first surgery for subdural grid implantation. HGA and CCEP investigations were done after the first surgery, before the second surgery was performed to resect epileptogenic foci, with continuous CCEP monitoring during resection.RESULTSAll 4 patients in this report had measurable pathological CCEPs. The mean negative peak-1 latency of normal CCEPs related to language functions was 22.2 ± 3.5 msec, whereas pathological CCEP latencies varied between 18.1 and 22.4 msec. Pathological CCEPs diminished after complete disconnection in all cases. At last follow-up, all of the patients were in long-term postoperative seizure-free status, although 1 patient still suffered from visual aura every other month.CONCLUSIONSCombined CCEP measurement, HGA mapping, and tractography greatly facilitated targeted disconnection of pathological networks in this study. Although CCEP recording requires technical expertise, it allows for assessment of pathological network involvement in intractable epilepsy and may improve seizure outcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fumiya Takeuchi
- 3Center for Advanced Research and Education, School of Medicine, Asahikawa Medical University, Hokkaido, Japan; and
| | | |
Collapse
|
28
|
A quantitative method for evaluating cortical responses to electrical stimulation. J Neurosci Methods 2018; 311:67-75. [PMID: 30292823 DOI: 10.1016/j.jneumeth.2018.09.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Electrical stimulation of the cortex using subdurally implanted electrodes can causally reveal structural connectivity by eliciting cortico-cortical evoked potentials (CCEPs). While many studies have demonstrated the potential value of CCEPs, the methods to evaluate them were often relatively subjective, did not consider potential artifacts, and did not lend themselves to systematic scientific investigations. NEW METHOD We developed an automated and quantitative method called SIGNI (Stimulation-Induced Gamma-based Network Identification) to evaluate cortical population-level responses to electrical stimulation that minimizes the impact of electrical artifacts. We applied SIGNI to electrocorticographic (ECoG) data from eight human subjects who were implanted with a total of 978 subdural electrodes. Across the eight subjects, we delivered 92 trains of approximately 200 discrete electrical stimuli each (amplitude 4-15 mA) to a total of 64 electrode pairs. RESULTS We verified SIGNI's efficacy by demonstrating a relationship between the magnitude of evoked cortical activity and stimulation amplitude, as well as between the latency of evoked cortical activity and the distance from the stimulated locations. CONCLUSIONS SIGNI reveals the timing and amplitude of cortical responses to electrical stimulation as well as the structural connectivity supporting these responses. With these properties, it enables exploration of new and important questions about the neurophysiology of cortical communication and may also be useful for pre-surgical planning.
Collapse
|
29
|
Trebaul L, Deman P, Tuyisenge V, Jedynak M, Hugues E, Rudrauf D, Bhattacharjee M, Tadel F, Chanteloup-Foret B, Saubat C, Reyes Mejia GC, Adam C, Nica A, Pail M, Dubeau F, Rheims S, Trébuchon A, Wang H, Liu S, Blauwblomme T, Garcés M, De Palma L, Valentin A, Metsähonkala EL, Petrescu AM, Landré E, Szurhaj W, Hirsch E, Valton L, Rocamora R, Schulze-Bonhage A, Mindruta I, Francione S, Maillard L, Taussig D, Kahane P, David O. Probabilistic functional tractography of the human cortex revisited. Neuroimage 2018; 181:414-429. [PMID: 30025851 PMCID: PMC6150949 DOI: 10.1016/j.neuroimage.2018.07.039] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/21/2018] [Accepted: 07/15/2018] [Indexed: 12/13/2022] Open
Abstract
In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.
Collapse
Affiliation(s)
- Lena Trebaul
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Pierre Deman
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Viateur Tuyisenge
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Maciej Jedynak
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Etienne Hugues
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - David Rudrauf
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Manik Bhattacharjee
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - François Tadel
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Blandine Chanteloup-Foret
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Carole Saubat
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Gina Catalina Reyes Mejia
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France
| | - Claude Adam
- Epilepsy Unit, Dept of Neurology, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Anca Nica
- Neurology Department, CHU, Rennes, France
| | - Martin Pail
- Brno Epilepsy Center, Department of Neurology, St. Anne's University Hospital and Medical Faculty of Masaryk University, Brno, Czech Republic
| | - François Dubeau
- Montreal Neurological Institute and Hospital, Montreal, Canada
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of Lyon, Lyon, France
| | - Agnès Trébuchon
- Service de Neurophysiologie Clinique, APHM, Hôpitaux de la Timone, Marseille, France
| | - Haixiang Wang
- Yuquan Hospital Epilepsy Center, Tsinghua University, Beijing, China
| | - Sinclair Liu
- Canton Sanjiu Brain Hospital Epilepsy Center, Jinan University, Guangzhou, China
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Hôpital Necker-Enfants Malades, Université Paris V Descartes, Sorbonne Paris Cité, Paris, France
| | - Mercedes Garcés
- Multidisciplinary Epilepsy Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Luca De Palma
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRRCS, Rome, Italy
| | - Antonio Valentin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), London, UK
| | | | | | | | - William Szurhaj
- Epilepsy Unit, Department of Clinical Neurophysiology, Lille University Medical Center, Lille, France
| | - Edouard Hirsch
- University Hospital, Department of Neurology, Strasbourg, France
| | - Luc Valton
- University Hospital, Department of Neurology, Toulouse, France
| | - Rodrigo Rocamora
- Epilepsy Monitoring Unit, Department of Neurology, Hospital del Mar-IMIM, Barcelona, Spain
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ioana Mindruta
- Neurology Department, University Emergency Hospital, Bucharest, Romania
| | | | - Louis Maillard
- Centre Hospitalier Universitaire de Nancy, Nancy, France
| | - Delphine Taussig
- Service de neurochirurgie pédiatrique, Fondation Rothschild, Paris, France
| | - Philippe Kahane
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France; CHU Grenoble Alpes, Neurology Department, Grenoble, France
| | - Olivier David
- Inserm, U1216, Grenoble, F-38000, France; Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, Grenoble, F-38000, France.
| |
Collapse
|
30
|
Alba-Ferrara L, Kochen S, Hausmann M. Emotional Prosody Processing in Epilepsy: Some Insights on Brain Reorganization. Front Hum Neurosci 2018; 12:92. [PMID: 29593517 PMCID: PMC5859098 DOI: 10.3389/fnhum.2018.00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/26/2018] [Indexed: 11/27/2022] Open
Abstract
Drug resistant epilepsy is one of the most complex, multifactorial and polygenic neurological syndrome. Besides its dynamicity and variability, it still provides us with a model to study brain-behavior relationship, giving cues on the anatomy and functional representation of brain function. Given that onset zone of focal epileptic seizures often affects different anatomical areas, cortical but limited to one hemisphere, this condition also let us study the functional differences of the left and right cerebral hemispheres. One lateralized function in the human brain is emotional prosody, and it can be a useful ictal sign offering hints on the location of the epileptogenic zone. Besides its importance for effective communication, prosody is not considered an eloquent domain, making resective surgery on its neural correlates feasible. We performed an Electronic databases search (Medline and PsychINFO) from inception to July 2017 for studies about prosody in epilepsy. The search terms included “epilepsy,” “seizure,” “emotional prosody,” and “vocal affect.” This review focus on emotional prosody processing in epilepsy as it can give hints regarding plastic functional changes following seizures (preoperatively), resection (post operatively), and also as an ictal sign enabling the assessment of dynamic brain networks. Moreover, it is argued that such reorganization can help to preserve the expression and reception of emotional prosody as a central skill to develop appropriate social interactions.
Collapse
Affiliation(s)
- Lucy Alba-Ferrara
- Facultad de Ciencias Biomedicas, Austral University, Buenos Aires, Argentina.,Estudios en Neurociencias y Sistemas Complejos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Florencio Varela, Argentina
| | - Silvia Kochen
- Estudios en Neurociencias y Sistemas Complejos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Florencio Varela, Argentina
| | - Markus Hausmann
- Science Labs, Department of Psychology, Durham University, Durham, United Kingdom
| |
Collapse
|
31
|
Zhang N, Zhang B, Rajah GB, Geng X, Singh R, Yang Y, Yan X, Li Z, Zhou W, Ding Y, Sun W. The effectiveness of cortico-cortical evoked potential in detecting seizure onset zones. Neurol Res 2018; 40:480-490. [PMID: 29575990 DOI: 10.1080/01616412.2018.1454092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Nan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Bingqing Zhang
- Epilepsy Center of YuQuan Hospital, Tsinghua University, Beijing, China
| | - Gary B. Rajah
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rasanjeet Singh
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yanfeng Yang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiupeng Yan
- Epilepsy Center of YuQuan Hospital, Tsinghua University, Beijing, China
| | - Zhe Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjing Zhou
- Epilepsy Center of YuQuan Hospital, Tsinghua University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Wei Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Połczyńska M, Kuhn T, You SC, Walshaw P, Curtiss S, Bookheimer S. Assessment of grammar optimizes language tasks for the intracarotid amobarbital procedure. Epilepsy Behav 2017; 76:89-100. [PMID: 28923498 DOI: 10.1016/j.yebeh.2017.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/24/2017] [Accepted: 08/14/2017] [Indexed: 11/16/2022]
Abstract
PURPOSE A previous study showed that assessment of language laterality could be improved by adding grammar tests to the recovery phase of the intracarotid amobarbital procedure (IAP) (Połczyńska et al. 2014). The aim of this study was to further investigate the extent to which grammar tests lateralize language function during the recovery phase of the IAP in a larger patient sample. METHODS Forty patients with drug-resistant epilepsy (14 females, thirty-two right-handed, mean age 38.5years, SD=10.6) participated in this study. On EEG, 24 patients had seizures originating in the left hemisphere (LH), 13 in the right hemisphere (RH), and 4 demonstrated mixed seizure origin. Thirty participants (75%) had bilateral injections, and ten (25%) had unilateral injections (five RH and five LH). Based on results from the encoding phase, we segregated our study participants to a LH language dominant and a mixed dominance group. In the recovery phase of the IAP, the participants were administered a new grammar test (the CYCLE-N) and a standard language test. We analyzed the laterality index measure and effect sizes in the two tests. KEY FINDINGS In the LH-dominant group, the CYCLE-N generated more profound language deficits in the recovery phase than the standard after injection to either hemisphere (p<0.001). At the same time, the laterality index for the grammar tasks was still higher than for the standard tests. Critically, the CYCLE-N administered in the recovery phase was nearly as effective as the standard tests given during the encoding phase. SIGNIFICANCE The results may be significant for individuals with epilepsy undergoing IAP. The grammar tests may be a highly efficient measure for lateralizing language function in the recovery phase.
Collapse
Affiliation(s)
- Monika Połczyńska
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, USA; Faculty of English, Adam Mickiewicz University, Poznań, Poland.
| | - Taylor Kuhn
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, USA.
| | - S Christine You
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, USA.
| | - Patricia Walshaw
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, USA.
| | | | - Susan Bookheimer
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, USA.
| |
Collapse
|
33
|
TAMURA M, MURAGAKI Y, SAITO T, MARUYAMA T, NITTA M, TSUZUKI S, ISEKI H, OKADA Y. Strategy of Surgical Resection for Glioma Based on Intraoperative Functional Mapping and Monitoring. Neurol Med Chir (Tokyo) 2017; 55:383-98. [PMID: 26185825 PMCID: PMC4628166 DOI: 10.2176/nmc.ra.2014-0415] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A growing number of papers have pointed out the relationship between aggressive resection of gliomas and survival prognosis. For maximum resection, the current concept of surgical decision-making is in “information-guided surgery” using multimodal intraoperative information. With this, anatomical information from intraoperative magnetic resonance imaging (MRI) and navigation, functional information from brain mapping and monitoring, and histopathological information must all be taken into account in the new perspective for innovative minimally invasive surgical treatment of glioma. Intraoperative neurofunctional information such as neurophysiological functional monitoring takes the most important part in the process to acquire objective visual data during tumor removal and to integrate these findings as digitized data for intraoperative surgical decision-making. Moreover, the analysis of qualitative data and threshold-setting for quantitative data raise difficult issues in the interpretation and processing of each data type, such as determination of motor evoked potential (MEP) decline, underestimation in tractography, and judgments of patient response for neurofunctional mapping and monitoring during awake craniotomy. Neurofunctional diagnosis of false-positives in these situations may affect the extent of resection, while false-negatives influence intra- and postoperative complication rates. Additionally, even though the various intraoperative visualized data from multiple sources contribute significantly to the reliability of surgical decisions when the information is integrated and provided, it is not uncommon for individual pieces of information to convey opposing suggestions. Such conflicting pieces of information facilitate higher-order decision-making that is dependent on the policies of the facility and the priorities of the patient, as well as the availability of the histopathological characteristics from resected tissue.
Collapse
Affiliation(s)
- Manabu TAMURA
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Yoshihiro MURAGAKI
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
- Address reprint requests to: Yoshihiro Muragaki, MD, PhD, Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan. e-mail:
| | - Taiichi SAITO
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Takashi MARUYAMA
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Masayuki NITTA
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Shunsuke TSUZUKI
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Hiroshi ISEKI
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| | - Yoshikazu OKADA
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo
| |
Collapse
|
34
|
Shimada S, Kunii N, Kawai K, Matsuo T, Ishishita Y, Ibayashi K, Saito N. Impact of volume-conducted potential in interpretation of cortico-cortical evoked potential: Detailed analysis of high-resolution electrocorticography using two mathematical approaches. Clin Neurophysiol 2017; 128:549-557. [PMID: 28226289 DOI: 10.1016/j.clinph.2017.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Cortico-cortical evoked potential (CCEP) has been utilized to evaluate connectivity between cortices. However, previous reports have rarely referred to the impact of volume-conducted potential (VCP) which must be a confounding factor of large potential around the stimulation site. To address this issue, we challenged the null hypothesis that VCP accounts for the majority of the recorded potential, particularly around the stimulation site. METHODS CCEP was recorded with high-density intracranial electrodes in 8 patients with intractable epilepsy. First, we performed regression analysis for describing the relationship between the distance and potential of each electrode. Second, we performed principal component analysis (PCA) to reveal the temporal features of recorded waveforms. RESULTS The regression curve, declining by the inverse square of the distance, fitted tightly to the plots (R2: 0.878-0.991) with outliers. PCA suggested the responses around the stimulation site had the same temporal features. We also observed the continuous declination over the anatomical gap and the phase reversal phenomena around the stimulation site. CONCLUSIONS These results were consistent with the null hypothesis. SIGNIFICANCE This study highlighted the risk of misinterpreting CCEP mapping, and proposed mathematical removal of VCP, which could lead to more reliable mapping based on CCEP.
Collapse
Affiliation(s)
- Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Matsuo
- Department of Neurosurgery, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8625, Japan
| | - Yohei Ishishita
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kenji Ibayashi
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
35
|
Yamao Y, Suzuki K, Kunieda T, Matsumoto R, Arakawa Y, Nakae T, Nishida S, Inano R, Shibata S, Shimotake A, Kikuchi T, Sawamoto N, Mikuni N, Ikeda A, Fukuyama H, Miyamoto S. Clinical impact of intraoperative CCEP monitoring in evaluating the dorsal language white matter pathway. Hum Brain Mapp 2017; 38:1977-1991. [PMID: 28112455 DOI: 10.1002/hbm.23498] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 11/09/2022] Open
Abstract
In order to preserve postoperative language function, we recently proposed a new intraoperative method to monitor the integrity of the dorsal language pathway (arcuate fasciculus; AF) using cortico-cortical evoked potentials (CCEPs). Based on further investigations (20 patients, 21 CCEP investigations), including patients who were not suitable for awake surgery (five CCEP investigations) or those without preoperative neuroimaging data (eight CCEP investigations including four with untraceable tractography due to brain edema), we attempted to clarify the clinical impact of this new intraoperative method. We monitored the integrity of AF by stimulating the anterior perisylvian language area (AL) by recording CCEPs from the posterior perisylvian language area (PL) consecutively during both general anesthesia and awake condition. After tumor resection, single-pulse electrical stimuli were also applied to the floor of the removal cavity to record subcortico-cortical evoked potentials (SCEPs) at AL and PL in 12 patients (12 SCEP investigations). We demonstrated that (1) intraoperative dorsal language network monitoring was feasible even when patients were not suitable for awake surgery or without preoperative neuroimaging studies, (2) CCEP is a dynamic marker of functional connectivity or integrity of AF, and CCEP N1 amplitude could even become larger after reduction of brain edema, (3) a 50% CCEP N1 amplitude decline might be a cut-off value to prevent permanent language dysfunction due to impairment of AF, (4) a correspondence (<2.0 ms difference) of N1 onset latencies between CCEP and the sum of SCEPs indicates close proximity of the subcortical stimulus site to AF (<3.0 mm). Hum Brain Mapp 38:1977-1991, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yukihiro Yamao
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kengo Suzuki
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sei Nishida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Rika Inano
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sumiya Shibata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
36
|
Matsumoto R, Kunieda T, Nair D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 2016; 44:27-36. [PMID: 27939100 DOI: 10.1016/j.seizure.2016.11.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
In the last decade, single pulse electrical stimulation (SPES) has been used as an investigational tool in the field of epilepsy surgery. Direct cortical stimulation applied at a frequency of ∼1Hz can probe cortico-cortical connections by averaging electrocorticogram time-lock to the stimuli (2×20-30 trials). These evoked potentials that emanate from adjacent and remote cortices have been termed cortico-cortical evoked potentials (CCEPs). Although limited to patients undergoing invasive presurgical evaluations with intracranial electrodes, CCEP provides a novel way to explore inter-areal connectivity in vivo in the living human brain to probe functional brain networks such as language and cognitive motor networks. In addition to its impact on systems neuroscience, this method, in combination with 50Hz electrical cortical stimulation, could contribute clinically to map the functional brain systems by tracking the cortico-cortical connections among the functional cortical regions in each individual patient. This approach may help identify the normal cortico-cortical network within pathology as well as reveal connections that might arise from neural plasticity. Because of its high practicality, it has been recently applied for intraoperative monitoring of the functional brain networks for patients with brain tumor. With regard to epilepsy, SPES has been used for the two major purposes, one to probe cortical excitability of the focus, namely, epileptogenicity, and the other to probe seizure networks. Both early (i.e., CCEP) and delayed responses, and probably their high frequency oscillation counterparts, are regarded as a surrogate marker of epileptogenicity. With regards to its impact on the human brain connectivity map, worldwide collaboration is warranted to establish the standardized CCEP connectivity map as a solid reference for non-invasive connectome researches.
Collapse
Affiliation(s)
- Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Dileep Nair
- Epilepsy Center, Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
37
|
Kunieda T, Yamao Y, Kikuchi T, Matsumoto R. New Approach for Exploring Cerebral Functional Connectivity: Review of Cortico-cortical Evoked Potential. Neurol Med Chir (Tokyo) 2015; 55:374-82. [PMID: 25925755 PMCID: PMC4628165 DOI: 10.2176/nmc.ra.2014-0388] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There has been a paradigm shift in the understanding of brain function. The intrinsic architecture of neuronal connections forms a key component of the cortical organization in our brain. Many imaging studies, such as noninvasive magnetic resonance imaging (MRI) studies, have now enabled visualization of the white matter fiber tracts interconnecting the functional cortical areas in the living brain. Although such a structural connectome is essential for understanding of cortical function, the anatomical information alone is not sufficient. Practically, few techniques allow the investigation of the excitatory and inhibitory mechanisms of the cortex in vivo in humans. Several attempts have been made to track neuronal connectivity by applying direct electrical stimuli to the brain in order to stimulate subdural and/or depth electrodes and record responses from the functionally connected cortex. In vivo single-pulse electrical stimulation (SPES) and/or cortico-cortical evoked potential (CCEP) were recently introduced to track various brain networks. This article reviews the concepts, significance, methods, mechanisms, limitations, and clinical applications of CCEP in the analysis of these dynamic connections.
Collapse
Affiliation(s)
- Takeharu Kunieda
- Department of Neurosurgery, Kyoto University Graduate School of Medicine
| | | | | | | |
Collapse
|
38
|
Saito T, Muragaki Y, Maruyama T, Tamura M, Nitta M, Okada Y. Intraoperative functional mapping and monitoring during glioma surgery. Neurol Med Chir (Tokyo) 2014; 55:1-13. [PMID: 25744346 PMCID: PMC4533401 DOI: 10.2176/nmc.ra.2014-0215] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glioma surgery represents a significant advance with respect to improving resection rates using new surgical techniques, including intraoperative functional mapping, monitoring, and imaging. Functional mapping under awake craniotomy can be used to detect individual eloquent tissues of speech and/or motor functions in order to prevent unexpected deficits and promote extensive resection. In addition, monitoring the patient’s neurological findings during resection is also very useful for maximizing the removal rate and minimizing deficits by alarming that the touched area is close to eloquent regions and fibers. Assessing several types of evoked potentials, including motor evoked potentials (MEPs), sensory evoked potentials (SEPs) and visual evoked potentials (VEPs), is also helpful for performing surgical monitoring in patients under general anesthesia (GA). We herein review the utility of intraoperative mapping and monitoring the assessment of neurological findings, with a particular focus on speech and the motor function, in patients undergoing glioma surgery.
Collapse
Affiliation(s)
- Taiichi Saito
- Department of Neurosurgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women' Medical University; Department of Neurosurgery, Tokyo Rosai Hospital
| | | | | | | | | | | |
Collapse
|
39
|
Połczyńska M, Curtiss S, Walshaw P, Siddarth P, Benjamin C, Moseley BD, Vigil C, Jones M, Eliashiv D, Bookheimer S. Grammar tests increase the ability to lateralize language function in the Wada test. Epilepsy Res 2014; 108:1864-73. [DOI: 10.1016/j.eplepsyres.2014.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/12/2014] [Accepted: 09/13/2014] [Indexed: 10/24/2022]
|
40
|
Saito T, Tamura M, Muragaki Y, Maruyama T, Kubota Y, Fukuchi S, Nitta M, Chernov M, Okamoto S, Sugiyama K, Kurisu K, Sakai KL, Okada Y, Iseki H. Intraoperative cortico-cortical evoked potentials for the evaluation of language function during brain tumor resection: initial experience with 13 cases. J Neurosurg 2014; 121:827-38. [PMID: 24878290 DOI: 10.3171/2014.4.jns131195] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The objective in the present study was to evaluate the usefulness of cortico-cortical evoked potentials (CCEP) monitoring for the intraoperative assessment of speech function during resection of brain tumors. METHODS Intraoperative monitoring of CCEP was applied in 13 patients (mean age 34 ± 14 years) during the removal of neoplasms located within or close to language-related structures in the dominant cerebral hemisphere. For this purpose strip electrodes were positioned above the frontal language area (FLA) and temporal language area (TLA), which were identified with direct cortical stimulation and/or preliminary mapping with the use of implanted chronic subdural grid electrodes. The CCEP response was defined as the highest observed negative peak in either direction of stimulation. In 12 cases the tumor was resected during awake craniotomy. RESULTS An intraoperative CCEP response was not obtained in one case because of technical problems. In the other patients it was identified from the FLA during stimulation of the TLA (7 cases) and from the TLA during stimulation of the FLA (5 cases), with a mean peak latency of 83 ± 15 msec. During tumor resection the CCEP response was unchanged in 5 cases, decreased in 4, and disappeared in 3. Postoperatively, all 7 patients with a decreased or absent CCEP response after lesion removal experienced deterioration in speech function. In contrast, in 5 cases with an unchanged intraoperative CCEP response, speaking abilities after surgery were preserved at the preoperative level, except in one patient who experienced not dysphasia, but dysarthria due to pyramidal tract injury. This difference was statistically significant (p < 0.01). The time required to recover speech function was also significantly associated with the type of intraoperative change in CCEP recordings (p < 0.01) and was, on average, 1.8 ± 1.0, 5.5 ± 1.0, and 11.0 ± 3.6 months, respectively, if the response was unchanged, was decreased, or had disappeared. CONCLUSIONS Monitoring CCEP is feasible during the resection of brain tumors affecting language-related cerebral structures. In the intraoperative evaluation of speech function, it can be a helpful adjunct or can be used in its direct assessment with cortical and subcortical mapping during awake craniotomy. It can also be used to predict the prognosis of language disorders after surgery and decide on the optimal resection of a neoplasm.
Collapse
|
41
|
In vivo human hippocampal cingulate connectivity: A corticocortical evoked potentials (CCEPs) study. Clin Neurophysiol 2013; 124:1547-56. [PMID: 23535454 DOI: 10.1016/j.clinph.2013.01.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/06/2012] [Accepted: 01/30/2013] [Indexed: 11/23/2022]
|