1
|
Dhureja M, Munshi A, Kumar P. AMPK as a Therapeutic Target: Advancing Epilepsy Management Through Metabolic Modulation. Mol Neurobiol 2025:10.1007/s12035-025-04745-4. [PMID: 39937419 DOI: 10.1007/s12035-025-04745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Epilepsy is often marked by paroxysmal seizures that disrupt the brain's sensory, motor, and psychosocial functions. The underlying pathology is generally believed to involve an imbalance between excitatory and inhibitory neurotransmission. However, a less explored but significant contributor to epilepsy is the collapse of the brain's metabolic and bioenergetic systems. The breakdown of the brain's bioenergetic system leads to the activation of various detrimental downstream signaling cascades that ultimately result in oxidative stress, neuroinflammation, and reduced autophagic flux, all of which impair neuronal-glial communication and precipitate epileptic attacks. This highlights the pressing need for a therapeutic agent to address these complex challenges. Researchers have identified adenosine monophosphate kinase (AMPK) as a potential solution. AMPK acts as the body's primary stress sensor, activated in response to the deficiency of growth factors and nutrient starvation to restore energy homeostasis. AMPK activation also maintains the intricate communication between neurons and glial cells, preserving synaptic plasticity integrity, mitigating mitochondrial damage, and dampening inflammatory signaling cascades. Despite demonstrating significant efficacy in managing a range of peripheral and neurological disorders, the role of AMPK in neurotransmission and epilepsy remains unexplored. This review explores the multifaceted molecular roles of AMPK beyond its traditional metabolic regulatory functions, suggesting that targeting AMPK could provide a novel avenue for drug development in epilepsy treatment.
Collapse
Affiliation(s)
- Maanvi Dhureja
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| |
Collapse
|
2
|
Abdel Mageed SS, Rashad AA, Elshaer SS, Elballal MS, Mohammed OA, Darwish SF, Salama RM, Mangoura SA, Al-Noshokaty TM, Gomaa RM, Elesawy AE, El-Demerdash AA, Zaki MB, Abulsoud AI, El-Dakroury WA, Elrebehy MA, Abdel-Reheim MA, Moustafa YM, Gedawy EM, Doghish AS. The emerging role of miRNAs in epilepsy: From molecular signatures to diagnostic potential. Pathol Res Pract 2024; 254:155146. [PMID: 38266457 DOI: 10.1016/j.prp.2024.155146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Epilepsy is a medical condition characterized by intermittent seizures accompanied by changes in consciousness. Epilepsy significantly impairs the daily functioning and overall well-being of affected individuals. Epilepsy is a chronic neurological disorder characterized by recurrent seizures resulting from various dysfunctions in brain activity. The molecular processes underlying changes in neuronal structure, impaired apoptotic responses in neurons, and disruption of regenerative pathways in glial cells in epilepsy remain unknown. MicroRNAs (miRNAs) play a crucial role in regulating apoptosis, autophagy, oxidative stress, neuroinflammation, and the body's regenerative and immune responses. miRNAs have been shown to influence many pathogenic processes in epilepsy including inflammatory responses, neuronal necrosis and apoptosis, dendritic growth, synaptic remodeling, and other processes related to the development of epilepsy. Therefore, the purpose of our current analysis was to determine the role of miRNAs in the etiology and progression of epilepsy. Furthermore, they have been examined for their potential application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, P.O. Box 11829, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ehab M Gedawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, P.O. Box 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
3
|
Hassan MH, Nassar AY, Meki ARMA, Nasser SA, Bakri AH, Radwan E. Pharmacogenetic study of phosphatase and tensin homolog polymorphism (rs701848) in childhood epilepsy: relation to circulating Wnt signaling. Neurol Res 2024; 46:99-110. [PMID: 37706249 DOI: 10.1080/01616412.2023.2257465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/30/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE The present study aimed at evaluating the potential contribution of Phosphatase and Tensin Homolog (PTEN) and its gene polymorphism (PTEN rs701848 T/C) in relation to Wingless/integrase-1 (Wnt) signaling in childhood epilepsy and the impact of antiepileptic medications on their serum levels. METHODS This study included 100 children with epilepsy (50 pharmacoresistant and 50 pharmacoresponsive) and 50 matched controls. All subjects had their genotypes for the PTEN rs701848T/C polymorphism assessed using TaqManTM assays and real-time PCR. By using the sandwich ELISA technique, the blood concentrations of PTEN and Wnt3a were measured. RESULTS Serum Wnt3a levels in epileptic patients were significantly higher than in the control group, p < 0.001. Children with epilepsy who received oxcarbazepine had considerably lower serum Wnt3a levels than those who didn't, p < 0.001.With an AUC of 0.71, the cutoff value for diagnosing epilepsy as serum Wnt3a > 6.2 ng/mL has a sensitivity of 55% and a specificity of 80%. When compared to controls, epileptic children had considerably more (TT) genotype and less (TC and CC) genotypes, p < 0.05 for all. Epileptic children had significantly higher (T) allele frequency than controls, p = 0.006 with OR (95%CI) = 1.962(1.206-3.192). Pharmacoresistant epileptic children had significantly higher (TT) genotype compared to pharmacoresponsive type (p = 0.020). CONCLUSION We originally found a strong association between PTEN rs701848 T/C and childhood epilepsy, in particular pharmacoresistant type. Serum Wnt3a levels increased in epilepsy, but were not significantly different between different alleles of PTEN. In pharmaco-responsive children Wnt3a levels differed significantly between the different PTEN genotypes. Antiepileptics may affect Wnt3a levels.
Collapse
Affiliation(s)
- Mohammed H Hassan
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Ahmed Y Nassar
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdel-Raheim M A Meki
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Biochemistry, Sphinx University, New Assiut city, Assiut, Egypt
| | - Shimaa A Nasser
- Department of Biochemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
| | - Ali Helmi Bakri
- Department of Pediatrics, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Biochemistry, Sphinx University, New Assiut city, Assiut, Egypt
| |
Collapse
|
4
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
5
|
Hansen SN, Holm A, Kauppinen S, Klitgaard H. RNA therapeutics for epilepsy: An emerging modality for drug discovery. Epilepsia 2023; 64:3113-3129. [PMID: 37703096 DOI: 10.1111/epi.17772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Drug discovery in epilepsy began with the finding of potassium bromide by Sir Charles Locock in 1857. The following century witnessed the introduction of phenotypic screening tests for discovering antiseizure medications (ASMs). Despite the high success rate of developing ASMs, they have so far failed in eliminating drug resistance and in delivering disease-modifying treatments. This emphasizes the need for new drug discovery strategies in epilepsy. RNA-based drugs have recently shown promise as a new modality with the potential of providing disease modification and counteracting drug resistance in epilepsy. RNA therapeutics can be directed either toward noncoding RNAs, such as microRNAs, long noncoding RNAs (ncRNAs), and circular RNAs, or toward messenger RNAs. The former show promise in sporadic, nongenetic epilepsies, as interference with ncRNAs allows for modulation of entire disease pathways, whereas the latter seem more promising in monogenic childhood epilepsies. Here, we describe therapeutic strategies for modulating disease-associated RNA molecules and highlight the potential of RNA therapeutics for the treatment of different patient populations such as sporadic, drug-resistant epilepsy, and childhood monogenic epilepsies.
Collapse
Affiliation(s)
| | - Anja Holm
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Sakari Kauppinen
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | | |
Collapse
|
6
|
Xie G, Chen H, He C, Hu S, Xiao X, Luo Q. The dysregulation of miRNAs in epilepsy and their regulatory role in inflammation and apoptosis. Funct Integr Genomics 2023; 23:287. [PMID: 37653173 PMCID: PMC10471759 DOI: 10.1007/s10142-023-01220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Epilepsy is a neurological disorder that impacts millions of people worldwide, and it is characterized by the occurrence of recurrent seizures. The pathogenesis of epilepsy is complex, involving dysregulation of various genes and signaling pathways. MicroRNAs (miRNAs) are a group of small non-coding RNAs that play a vital role in the regulation of gene expression. They have been found to be involved in the pathogenesis of epilepsy, acting as key regulators of neuronal excitability and synaptic plasticity. In recent years, there has been a growing interest in exploring the miRNA regulatory network in epilepsy. This review summarizes the current knowledge of the regulatory miRNAs involved in inflammation and apoptosis in epilepsy and discusses its potential as a new avenue for developing targeted therapies for the treatment of epilepsy.
Collapse
Affiliation(s)
- Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, Hubei, China
| | - Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Chan He
- Department of Clinical Laboratory, Maternal and Child Health Hospital in Wuchang District, Wuhan, Hubei, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Qingshan District, Wuhan, Hubei, China
| | - Xue Xiao
- Department of Clinical Laboratory, Gongrencun Street Community Health Service Center, Wuhan, China
| | - Qunying Luo
- Department of Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Sokolov E, Dietrich J, Cole AJ. The complexities underlying epilepsy in people with glioblastoma. Lancet Neurol 2023; 22:505-516. [PMID: 37121239 DOI: 10.1016/s1474-4422(23)00031-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 05/02/2023]
Abstract
Seizures are among the most common clinical signs in people with glioblastoma. Advances over the past 5 years, including new clinical trial data, have increased the understanding of why some individuals with glioblastoma are susceptible to seizures, how seizures manifest clinically, and what implications seizures have for patient management. The pathophysiology of epilepsy in people with glioblastoma relates to a combination of intrinsic epileptogenicity of tumour tissue, alterations in the tumour and peritumoural microenvironment, and the physical and functional disturbance of adjacent brain structures. Successful management of epilepsy in people with glioblastoma remains challenging; factors such as drug-drug interactions between cancer therapies and antiseizure medications, and medication side-effects, can affect seizure outcomes and quality of life. Advances in novel therapies provide some promise for people with glioblastoma; however, the effects of these therapies on seizures are yet to be fully determined. Looking forward, insights into electrical activity as a driver of tumour cell growth and the intrinsic hyperexcitability of tumour tissue might represent useful targets for treatment and disease modification. There is a pressing need for large randomised clinical trials in this field.
Collapse
Affiliation(s)
- Elisaveta Sokolov
- Department of Neurosciences, Cleveland Clinic, London, UK; Department of Neurology and Neurophysiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jorg Dietrich
- Cancer and Neurotoxicity Clinic and Brain Repair Research Program, Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew J Cole
- MGH Epilepsy Service, Division of Clinical Neurophysiology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Kumar P. miRNA dysregulation in traumatic brain injury and epilepsy: a systematic review to identify putative biomarkers for post-traumatic epilepsy. Metab Brain Dis 2023; 38:749-765. [PMID: 36715879 DOI: 10.1007/s11011-023-01172-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Traumatic brain injury (TBI) leads to post-traumatic epilepsy (PTE); hence, both TBI and PTE share various similar molecular mechanisms. MicroRNA (miRNA) is a small noncoding RNA that acts as a gene-silencing molecule. Notably, the dysregulation of miRNAs in various neurological diseases, including TBI and epilepsy, has been reported in several studies. However, studies on commonly dysregulated miRNAs and the regulation of shared pathways in both TBI and epilepsy that can identify potential biomarkers of PTE are still lacking. This systematic review covers the peer-review publications of TBI and database studies of epilepsy-dysregulated miRNAs of clinical studies. For TBI, 290 research articles were identified after screening, and 12 provided data for dysregulated miRNAs in humans. The compiled data suggest that 85 and 222 miRNAs are consecutively dysregulated in TBI and epilepsy. In both, 10 miRNAs were found to be commonly dysregulated, implying that they are potentially dysregulated miRNAs for PTE. Furthermore, the targets and involvement of each putative miRNA in different pathways were identified and evaluated. Additionally, clusters of predicted miRNAs were analyzed. Each miRNA's regulatory role was linked with apoptosis, inflammation, and cell cycle regulation pathways. Hence, these findings provide insight for future diagnostic biomarkers.
Collapse
Affiliation(s)
- Prince Kumar
- Department of Central Sophisticated Instrumentation Cell, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
9
|
Saghazadeh A, Rezaei N. MicroRNA expression profiles of peripheral blood and mononuclear cells in myasthenia gravis: A systematic review. Int Immunopharmacol 2022; 112:109205. [PMID: 36087508 DOI: 10.1016/j.intimp.2022.109205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Studies have described the role of microRNAs (miRNAs) in thymic function, along with directly observing the altered expression of miRNAs in thymuses of myasthenia gravis (MG) patients; so, miRNAs became a core component in the pathophysiology of MG. However, because the miRNA analysis results are contradictory, the identification of MG-related miRNAs is daunting. OBJECTIVE We did a systematic review of studies analyzing the miRNA expression profile of peripheral blood and mononuclear cells for patients with MG. METHODS We ran a database search in PubMed, Scopus, and Web of Science on August 17, 2021. Original articles that analyzed miRNA profiles in peripheral blood (serum, plasma, and whole blood) and peripheral blood mononuclear cells (PBMCs) for patients with MG in comparison with a non-MG or healthy control (HC) group were eligible. The quality of studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). RESULTS 26 studies were included. The quality of studies was fair (median score, 5). Among 226 different miRNAs that were deregulated in at least one study (range, 1-87), ten miRNAs were significantly deregulated in three or more studies. Five miRNAs (50%) showed the same deregulation: miR-106b-3p and miR-21-5p were consistently upregulated, and miR-20b, miR-15b, and miR-16 were consistently downregulated. Also, there were five miRNAs that were mostly upregulated, miR-150-5p, miR-146a, miR-30e-5p, and miR-338-3p, or downregulated, miR-324-3p, across studies. CONCLUSION These miRNAs contribute to different pathways, importantly neural apoptosis and autophagy, inflammation, T regulatory cell development, and T helper cell balance. Prior to being used for diagnostic and therapeutic purposes, it is required to pursue molecular mechanisms these consistently and mostly dysregulated miRNAs specifically use in the context of MG.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
10
|
Zeng C, Hu J, Chen F, Huang T, Zhang L. The Coordination of mTOR Signaling and Non-Coding RNA in Regulating Epileptic Neuroinflammation. Front Immunol 2022; 13:924642. [PMID: 35898503 PMCID: PMC9310657 DOI: 10.3389/fimmu.2022.924642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy accounts for a significant proportion of the burden of neurological disorders. Neuroinflammation acting as the inflammatory response to epileptic seizures is characterized by aberrant regulation of inflammatory cells and molecules, and has been regarded as a key process in epilepsy where mTOR signaling serves as a pivotal modulator. Meanwhile, accumulating evidence has revealed that non-coding RNAs (ncRNAs) interfering with mTOR signaling are involved in neuroinflammation and therefore articipate in the development and progression of epilepsy. In this review, we highlight recent advances in the regulation of mTOR on neuroinflammatory cells and mediators, and feature the progresses of the interaction between ncRNAs and mTOR in epileptic neuroinflammation.
Collapse
Affiliation(s)
- Chudai Zeng
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jason Hu
- Department of Neonatology, Yale School of Medicine, New Haven, CT, United States
| | - Fenghua Chen
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| | - Tianxiang Huang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| | - Longbo Zhang
- Departments of Neurosurgery, and National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Fenghua Chen, ; Tianxiang Huang, ; Longbo Zhang,
| |
Collapse
|
11
|
Bai X, Bian Z. MicroRNA-21 Is a Versatile Regulator and Potential Treatment Target in Central Nervous System Disorders. Front Mol Neurosci 2022; 15:842288. [PMID: 35173580 PMCID: PMC8841607 DOI: 10.3389/fnmol.2022.842288] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous, non-coding, single-stranded RNAs with a length of approximately 22 nucleotides that are found in eukaryotes. miRNAs are involved in the regulation of cell differentiation, proliferation, invasion, apoptosis, and metabolism by regulating the expression of their target genes. Emerging studies have suggested that various miRNAs play key roles in the pathogenesis of central nervous system (CNS) disorders and may be viable therapeutic targets. In particular, miR-21 has prominently emerged as a focus of increasing research on the mechanisms of its involvement in CNS disorders. Herein, we reviewed recent studies on the critical roles of miR-21, including its dysregulated expression and target genes, in the regulation of pathophysiological processes of CNS disorders, with a special focus on apoptosis and inflammation. Collectively, miR-21 is a versatile regulator in the progression of CNS disorders and could be a promising biomarker and therapeutic target for these diseases. An in-depth understanding of the mechanisms by which miR-21 affects the pathogenesis of CNS disorders could pave the way for miR-21 to serve as a therapeutic target for these conditions.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhigang Bian,
| |
Collapse
|
12
|
Ghafouri-Fard S, Hussen BM, Abak A, Taheri M, Jalili Khoshnoud R. Aberrant expression of miRNAs in epilepsy. Mol Biol Rep 2022; 49:5057-5074. [PMID: 35088379 PMCID: PMC9262756 DOI: 10.1007/s11033-022-07188-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/21/2022] [Indexed: 12/22/2022]
Abstract
Epilepsy is manifested by intermittent convulsions and alterations in consciousness. This disorder has serious effects on daily functions and physical and mental health of affected patients. A variety of temporary irregularities in the function of brain can results in epilepsy. The molecular mechanism of epilepsy and the underlying causes of abnormal apoptotic responses in neurons, dysregulation of regenerative mechanisms in glial cells and abnormal immune reactions in the context of epilepsy are not clear. microRNAs (miRNAs) as important regulators of cell apoptosis as well as regenerative and immune responses have been shown to affect pathologic events in epilepsy. In the current review, we aimed at defining the role of miRNAs in the pathophysiology of epilepsy. We have listed dysregulated miRNAs in animal models of epilepsy and human subjects. miR-25-3p, miR-494, miR-139-5p, miR-101a-3p, miR-344a, miR-129, miR-298 and miR-187 are among down-regulated miRNAs in epilepsy. Moreover, expressions of miR-132, miR-146a, miR-181a and miR-155 have been reported to be increased in epilepsy. A number of genetic variants within miRNAs can affect risk of epilepsy. We discuss the role of miRNAs in the development of epilepsy.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Jalili Khoshnoud
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Vyas P, Tulsawani R, Vohora D. Dual Targeting by Inhibition of Phosphoinositide-3-Kinase and Mammalian Target of Rapamycin Attenuates the Neuroinflammatory Responses in Murine Hippocampal Cells and Seizures in C57BL/6 Mice. Front Immunol 2021; 12:739452. [PMID: 34887852 PMCID: PMC8650161 DOI: 10.3389/fimmu.2021.739452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Emerging evidence suggests the association of seizures and inflammation; however, underlying cell signaling mechanisms are still not fully understood. Overactivation of phosphoinositide-3-kinases is associated with both neuroinflammation and seizures. Herein, we speculate the PI3K/Akt/mTOR pathway as a promising therapeutic target for neuroinflammation-mediated seizures and associated neurodegeneration. Firstly, we cultured HT22 cells for detection of the downstream cell signaling events activated in a lipopolysaccharide (LPS)-primed pilocarpine (PILO) model. We then evaluated the effects of 7-day treatment of buparlisib (PI3K inhibitor, 25 mg/kg p.o.), dactolisib (PI3K/mTOR inhibitor, 25 mg/kg p.o.), and rapamycin (mTORC1 inhibitor, 10 mg/kg p.o.) in an LPS-primed PILO model of seizures in C57BL/6 mice. LPS priming resulted in enhanced seizure severity and reduced latency. Buparlisib and dactolisib, but not rapamycin, prolonged latency to seizures and reduced neuronal loss, while all drugs attenuated seizure severity. Buparlisib and dactolisib further reduced cellular redox, mitochondrial membrane potential, cleaved caspase-3 and p53, nuclear integrity, and attenuated NF-κB, IL-1β, IL-6, TNF-α, and TGF-β1 and TGF-β2 signaling both in vitro and in vivo post-PILO and LPS+PILO inductions; however, rapamycin mitigated the same only in the PILO model. Both drugs protected against neuronal cell death demonstrating the contribution of this pathway in the seizure-induced neuronal pyknosis; however, rapamycin showed resistance in a combination model. Furthermore, LPS and PILO exposure enhanced pAkt/Akt and phospho-p70S6/total-p70S6 kinase activity, while buparlisib and dactolisib, but not rapamycin, could reduce it in a combination model. Partial rapamycin resistance was observed possibly due to the reactivation of the pathway by a functionally different complex of mTOR, i.e., mTORC2. Our study substantiated the plausible involvement of PI3K-mediated apoptotic and inflammatory pathways in LPS-primed PILO-induced seizures and provides evidence that its modulation constitutes an anti-inflammatory mechanism by which seizure inhibitory effects are observed. We showed dual inhibition by dactolisib as a promising approach. Targeting this pathway at two nodes at a time may provide new avenues for antiseizure therapies.
Collapse
Affiliation(s)
- Preeti Vyas
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rajkumar Tulsawani
- Defense Institute of Physiology & Allied Science, Defense Research and Development Organization, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Shao LL, Gao MM, Gong JX, Yang LY. DUSP1 regulates hippocampal damage in epilepsy rats via ERK1/2 pathway. J Chem Neuroanat 2021; 118:102032. [PMID: 34562585 DOI: 10.1016/j.jchemneu.2021.102032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate the effects of DUSP1 on the hippocampal injury of young rats with epilepsy (EP) through mediating ERK1/2 signaling pathway. METHODS Young SD rats were selected and divided into Control, EP, EP + LV-GFP, EP + LV-DUSP1, EP + LV-siDUSP1, and EP + LV-siDUSP1 + U0126 groups. Morris Water Maze Test was used to detect the spatial learning and memory. Nissl staining and TUNEL staining were conducted and the inflammatory factors and oxidative stress-related indicators were also measured. Western blotting was utilized to detect the expression of DUSP1 and ERK1/2 pathway. EP cell model was constructed in vitro to verify the in vivo results. RESULTS Compared with Control group, young rats in EP group had decreased spatial learning and memory abilities and increased apoptotic rate and decreased number of Nissl positive cells. Besides, the up-regulated levels in inflammatory factors (IL-1β, IL-6), MDA content, and p-ERK1/2/ERK1/2 protein expression, as well as the down-regulated levels in DUSP1 protein expression and SOD content were also observed in EP rats. The EP rats treated with LV-DUSP1 showed obvious improvements regarding the above indicators, while those treated with LV-siDUSP1 had aggravated injury. But the effect of LV-siDUSP1 can be reversed by the treatment with ERK1/2 pathway inhibitor U0126. Further in vitro investigation verified the in vivo results. CONCLUSION DUSP1 may ameliorate the oxidative stress and inflammatory injury, as well as improve spatial learning and memory abilities via inhibiting ERK1/2 pathway, eventually playing protective roles in hippocampal injury of young rats with EP.
Collapse
Affiliation(s)
- Li-Li Shao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China.
| | - Miao-Miao Gao
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Jing-Xin Gong
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou 061000, PR China
| | - Li-Yong Yang
- Department of Diagnostic CT, Cangzhou Central Hospital Yanshan Branch, Cangzhou 061399, PR China
| |
Collapse
|
15
|
Zhang W, Liu Z, Liu B, Jiang M, Yan S, Han X, Shen H, Na M, Wang Y, Ren Z, Liu B, Jiang Z, Gao Y, Lin Z. GNG5 is a novel oncogene associated with cell migration, proliferation, and poor prognosis in glioma. Cancer Cell Int 2021; 21:297. [PMID: 34098960 PMCID: PMC8186147 DOI: 10.1186/s12935-021-01935-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Background Although many biomarkers have been reported for detecting glioma, the prognosis for the disease remains poor, and therefore, new biomarkers need to be identified. GNG5, which is part of the G-protein family, has been associated with different malignant tumors, though the role of GNG5 in glioma has not been studied. Therefore, we aimed to identify the relationship between GNG5 and glioma prognosis and identify a new biomarker for the diagnosis and treatment of gliomas. Methods We used data on more than a thousand gliomas from multiple databases and clinical data to determine the expression of GNG5 in glioma. Based on clinical data and CGGA database, we identified the correlation between GNG5 and multiple molecular and clinical features and prognosis using various analytical methods. Co-expression analysis and GSEA were performed to detect GNG5-related genes in glioma and possible signaling pathways involved. ESTIMATE, ssGSEA, and TIMER were used to detect the relationship between GNG5 and the immune microenvironment. Functional experiments were performed to explore the function of GNG5 in glioma cells. Results GNG5 is highly expressed in gliomas, and its expression level is positively correlated with pathological grade, histological type, age, and tumor recurrence and negatively correlated with isocitrate dehydrogenase mutation, 1p/19 co-deletion, and chemotherapy. Moreover, GNG5 as an independent risk factor was negatively correlated with the overall survival time. GSEA revealed the potential signaling pathways involved in GNG5 function in gliomas, including cell adhesion molecules signaling pathway. The ssGSEA, ESTIMATE, and TIMER based analysis indicated a correlation between GNG5 expression and various immune cells in glioma. In vivo and in vitro experiments showed that GNG5 could participate in glioma cell proliferation and migration. Conclusions Based on the large data platform and the use of different databases to corroborate results obtained using various datasets, as well as in vitro and in vivo experiments, our study reveals for the first time that GNG5, as an oncogene, is overexpressed in gliomas and can inhibit the proliferation and migration of glioma cells and lead to poor prognosis of patients. Thus, GNG5 is a potential novel biomarker for the clinical diagnosis and treatment of gliomas. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01935-7.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China.,Department of Orthopaedics, Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Zhendong Liu
- Department of Orthopaedics, Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Binchao Liu
- Department of Neurosurgery of Xing, Tai People's Hospital, Xing Tai, China
| | - Miaomiao Jiang
- Department of the Pathology, The First Affiliate Hospital of Harbin Medical University, Harbin, China
| | - Shi Yan
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Xian Han
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Hong Shen
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Yanbiao Wang
- Department of Orthopaedics, Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Zhishuai Ren
- Department of Orthopaedics, Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Binfeng Liu
- Department of Orthopaedics, Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Yanzheng Gao
- Department of Orthopaedics, Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliate Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
16
|
CDDO-Me Attenuates Astroglial Autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K/AKT-Mediated Signaling Pathways in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2021; 10:antiox10050655. [PMID: 33922531 PMCID: PMC8145743 DOI: 10.3390/antiox10050655] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial death showing extensive swollen cell bodies with vacuoles and disintegrated/beaded processes. This astroglial degeneration is closely relevant to the synchronous epileptiform discharges. However, the underlying molecular mechanisms and the roles of clasmatodendrosis in spontaneous seizure activity are still unknown. The 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is one of the activators for nuclear factor-erythroid 2-related factor 2 (Nrf2) that is a redox-sensitive transcription factor. In the present study, we explored the effects of CDDO-Me on clasmatodendrosis in chronic epilepsy rats, which could prevent epilepsy-related complications. In the present study, clasmatodendritic astrocytes showed reduced Nrf2 expression and its nuclear accumulation, which were restored by CDDO-Me. CDDO-Me also abrogated heat shock protein 25 (HSP25) upregulation in clasmatodendritic astrocytes by regulating extracellular signal-related kinases 1/2 (ERK1/2)-specificity protein 1 (SP1)- and Src-casein kinase 2 (CK2)-phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-phosphatidylinositol-3-kinase (PI3K)-AKT-glycogen synthase kinase 3β (GSK3β)-bax-interacting factor 1 (Bif-1)-mediated signaling pathways in chronic epilepsy rats. In addition, CDDO-Me ameliorated spontaneous seizure duration, but not seizure frequency and behavioral seizure severity. Therefore, our findings suggest that clasmatodendrosis may affect seizure duration in chronic epilepsy rats, and that CDDO-Me may attenuate autophagic astroglial degeneration by regulating various signaling pathways.
Collapse
|
17
|
Cong M, Shen M, Wu X, Li Y, Wang L, He Q, Shi H, Ding F. Improvement of sensory neuron growth and survival via negatively regulating PTEN by miR-21-5p-contained small extracellular vesicles from skin precursor-derived Schwann cells. Stem Cell Res Ther 2021; 12:80. [PMID: 33494833 PMCID: PMC7831194 DOI: 10.1186/s13287-020-02125-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Patients with peripheral nerve injury (PNI) often suffer from hypoxic ischemic impairments, in particular when combined with vascular damage, causing neuronal dysfunction and death. Increasing attention has been paid on skin precursor-derived Schwann cells (SKP-SCs), and previous study has shown that SKP-SCs could promote sensory recovery after cell therapy for PNI, resembling the effect of naive SCs, and SKP-SC-derived extracellular vesicles (SKP-SC-EVs) are putatively supposed to be promising therapeutic agents for neural regeneration. Methods SKPs were induced to differentiate towards SCs with cocktail factors (N2, neuregulin-1β, and forskolin) in vitro. SKP-SC-EVs were isolated by exoEasy Maxi Kit and characterized by morphology and phenotypic markers of EVs. Rat sensory neurons from dorsal root ganglions (DRGs) were primarily cultured in regular condition or exposed to oxygen-glucose-deprivation (OGD) condition. SKP-SC-EVs were applied to DRGs or sensory neurons, with LY294002 (a PI3K inhibitor) added; the effect on neurite outgrowth and cell survival was observed. Moreover, microRNA (miR) candidate contained in SKP-SC-EVs was screened out, and miR-mimics were transfected into DRG neurons; meanwhile, the negative regulation of PTEN/PI3K/Akt axis and downstream signaling molecules were determined. Results It was shown that SKP-SC-EVs could improve the neurite outgrowth of DRGs and sensory neurons. Furthermore, SKP-SC-EVs enhanced the survival of sensory neurons after OGD exposure by alleviating neuronal apoptosis and strengthening cell viability, and the expression of GAP43 (a neuron functional protein) in neurons was upregulated. Moreover, the neuro-reparative role of SKP-SC-EVs was implicated in the activation of PI3K/Akt, mTOR, and p70S6k, as well as the reduction of Bax/Bcl-2 ratio, that was compromised by LY294002 to some extent. In addition, transferring miR-21-5p mimics into sensory neurons could partly protect them from OGD-induced impairment. Conclusions Sum up, SKP-SC-EVs could improve neurite outgrowth of DRG sensory neurons in physiological and pathological condition. Moreover, the in vitro therapeutic potential of SKP-SC-EVs on the survival and restoration of OGD-injured sensory neurons was evidenced to be associated with miR-21-5p contained in the small EVs and miR-21-5p/PTEN/PI3K/Akt axis. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02125-4.
Collapse
Affiliation(s)
- Meng Cong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Xia Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Yan Li
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Liting Wang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China
| | - Haiyan Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China. .,Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, 226001, China.
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, 226001, China. .,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
18
|
Evolving targets for anti-epileptic drug discovery. Eur J Pharmacol 2020; 887:173582. [DOI: 10.1016/j.ejphar.2020.173582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022]
|
19
|
Venø MT, Reschke CR, Morris G, Connolly NMC, Su J, Yan Y, Engel T, Jimenez-Mateos EM, Harder LM, Pultz D, Haunsberger SJ, Pal A, Heller JP, Campbell A, Langa E, Brennan GP, Conboy K, Richardson A, Norwood BA, Costard LS, Neubert V, Del Gallo F, Salvetti B, Vangoor VR, Sanz-Rodriguez A, Muilu J, Fabene PF, Pasterkamp RJ, Prehn JHM, Schorge S, Andersen JS, Rosenow F, Bauer S, Kjems J, Henshall DC. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc Natl Acad Sci U S A 2020; 117:15977-15988. [PMID: 32581127 PMCID: PMC7355001 DOI: 10.1073/pnas.1919313117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-β signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-β signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.
Collapse
Affiliation(s)
- Morten T Venø
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Cristina R Reschke
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gareth Morris
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Niamh M C Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Junyi Su
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Yan Yan
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Eva M Jimenez-Mateos
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Lea M Harder
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Dennis Pultz
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Stefan J Haunsberger
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ajay Pal
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Janosch P Heller
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Aoife Campbell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Karen Conboy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Amy Richardson
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Braxton A Norwood
- Department of Neuroscience, Expesicor Inc, Kalispell, MT 59901
- Diagnostics Development, FYR Diagnostics, Missoula, MT 59801
| | - Lara S Costard
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Valentin Neubert
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, 18051, Germany
| | - Federico Del Gallo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - Beatrice Salvetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - Vamshidhar R Vangoor
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Juha Muilu
- Research and Development, BC Platforms, FI-02130, Espoo, Finland
| | - Paolo F Fabene
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 8 - 37134, Verona, Italy
| | - R Jeroen Pasterkamp
- Affiliated Partner of the European Reference Network EpiCARE, Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
- UCL School of Pharmacy, University College London, London, WC1N 1AX, United Kingdom
| | - Jens S Andersen
- Center for Experimental Bioinformatics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Felix Rosenow
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Sebastian Bauer
- Epilepsy Center, Department of Neurology, Philipps University Marburg, 35043, Marburg, Germany
- Epilepsy Center Frankfurt Rhine-Main, Neurocenter, University Hospital Frankfurt and Center for Personalized Translational Epilepsy Research, Goethe University Frankfurt, 60528, Frankfurt, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland;
- FutureNeuro, The Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| |
Collapse
|
20
|
Effect of adenovirus-mediated overexpression of PTEN on brain oxidative damage and neuroinflammation in a rat kindling model of epilepsy. Chin Med J (Engl) 2020; 132:2628-2635. [PMID: 31658159 PMCID: PMC6846256 DOI: 10.1097/cm9.0000000000000496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Epilepsy is a chronic and severe neurological disorder. Phosphatase and tensin homolog deleted on chromosome ten (PTEN)-deficient mice exhibit learning and memory deficits and spontaneous epilepsy. The aim of this study was to investigate the role of PTEN in brain oxidative damage and neuroinflammation in a rat model of epilepsy. Methods: An adenovirus (Ad)-PTEN vector was constructed, and status epilepticus (SE) was induced in 41 model rats using lithium chloride-pilocarpine. Thirty-six SE rats were then allocated into the Ad-PTEN, Ad-LacZ, and SE groups, those were administered intracerebroventricular injections of Ad-PTEN, Ad-enhanced green fluorescent protein, and phosphate buffer saline, respectively. The normal group was comprised of healthy Sprague-Dawley rats. Nissl staining was conducted to evaluate neuronal damage, and immunohistochemistry was conducted to observe the morphology of cells in the hippocampal CA1 region and the distribution of ionized calcium-binding adaptor molecule 1 (Iba1) and ED1 (rat homologue of human CD68). Levels of apoptosis-related proteins, inflammatory-related factors, and oxidative stress-related markers (reactive oxygen species [ROS], glutathione [GSH], superoxide dismutase [SOD], and malondialdehyde [MDA]) were measured. Comparisons between multiple groups were conducted using one-way analysis of variance (ANOVA), and pairwise comparisons after ANOVA were conducted using the Tukey multiple comparisons test. Results: After SE induction, PTEN expression in the rat brain exhibited a four-fold decrease (P = 0.000) and the expression of both Iba1 and ED1 increased. Furthermore, significant neuronal loss, oxidative damage, and neuroinflammation were observed in the SE rat brain. After intracerebroventricular injection of Ad-PTEN, PTEN expression exhibited a three-fold increase (P = 0.003), and the expression of both Iba1 and ED1 decreased. Additionally, neurons were restored and neuronal apoptosis was inhibited. Furthermore, ROS and MDA levels decreased, GSH level and SOD activity increased, and neuroinflammation was reduced. Conclusion: Our study demonstrated that brain oxidative damage and neuroinflammation in SE rats were ameliorated by intracerebroventricular injection of Ad-PTEN.
Collapse
|
21
|
Yang S, Li B, Zhang Y, Duan M, Liu S, Zhang Y, Feng X, Tan R, Huang L, Zhou F. Selection of features for patient-independent detection of seizure events using scalp EEG signals. Comput Biol Med 2020; 119:103671. [PMID: 32339116 DOI: 10.1016/j.compbiomed.2020.103671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
|
22
|
LncRNA CASC2 inhibits astrocytic activation and adenosine metabolism by regulating PTEN in pentylenetetrazol-induced epilepsy model. J Chem Neuroanat 2020; 105:101749. [PMID: 31958564 DOI: 10.1016/j.jchemneu.2020.101749] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Growing evidence has indicated that long noncoding RNAs (lncRNAs) are closely implicated in the progress of epilepsy. However, the expression profile and potential function of long noncoding RNAs cancer susceptibility candidate 2 (lncRNA CASC2) in epilepsy are poorly studied. The aim of this study was to testify the influence of lncRNA CASC2 on epilepsy in rat and cell models of epileptic seizure. We adopted qRT-PCR on the hippocampus of rats following pentylenetetrazol (PTZ)-stimulated epilepsy. To further examine the correlation between lncRNA CASC2 and Phosphatase and tensin homolog (PTEN), we detected the effects of lncRNA CASC2 on PTEN expression. We found that lncRNA CASC2 and PTEN expression were positively correlated in PTZ-induced epileptic rat. Overexpression of lncRNA CASC2 prolonged the latency and reduced the frequency of epileptic seizure, suppressed the activation of astrocytes and the release of adenosine in epileptic rat, whereas downregulation of lncRNA CASC2 exhibited the opposite effects. Meanwhile, lncRNA CASC2 decreased the adenosine metabolism related proteins expression of p38, Equilibrative nucleoside transporter 1 (ENT1) and Adenosine Kinase (ADK). In PTZ-treated astrocytes, PTEN was found to be a direct target of lncRNA CASC2. Additionally, downregulation of PTEN attenuated the protective effect of lncRNA CASC2 overexpression in epileptic seizure. Our findings manifested the key role of lncRNA CASC2 in the occurrence of epilepsy by targeting PTEN, which provided a novel target for epilepsy therapy.
Collapse
|
23
|
Qin S, Wang H, Liu G, Mei H, Chen M. miR‑21‑5p ameliorates hyperoxic acute lung injury and decreases apoptosis of AEC II cells via PTEN/AKT signaling in rats. Mol Med Rep 2019; 20:4953-4962. [PMID: 31702805 PMCID: PMC6854583 DOI: 10.3892/mmr.2019.10779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Inhibiting apoptosis of type II alveolar epithelial cells (AEC II) is an effective way to decrease hyperoxic acute lung injury (HALI); however, the specific underlying molecular mechanisms have not yet been fully elucidated. Although miRNA‑21‑5p has previously been reported to decrease H2O2‑induced AEC II apoptosis by targeting PTEN in vitro, whether miR‑21‑5p can decrease HALI in vivo and the downstream molecular mechanisms remain unclear. In the present study, rats were endotracheally administered with an miR‑21‑5p‑encoding (AAV‑6‑miR‑21‑5p) or a negative control adenovirus vector, and then a HALI model was established by exposure to hyperoxia. At 3 weeks following the administration of AAV‑6‑miR‑21‑5p, the severity of HALI was decreased, as evidenced by the improved outcome of the oxygenation index, respiratory index, wet/dry weight ratio and pathological scores of the HALI lungs. To further investigate the underlying mechanisms, AEC II cells were isolated from the lungs of the experimental rats and cultured. The expression levels of miR‑21‑5p and its target gene, PTEN, were detected, as well as the levels of phosphorylated and total AKT. In addition, the apoptosis rate of AEC II was detected by flow cytometry. The results demonstrated that AAV‑6‑miR‑21‑5p administration increased the miR‑21‑5p levels in primary AEC II cells, while it decreased the expression levels of PTEN. miR‑21‑5p overexpression also increased AKT phosphorylation in AEC II cells from the HALI lungs compared with that of the HALI alone group and the control virus group. The present study indicated that miR‑21‑5p ameliorated HALI in vivo, which may have resulted from the inhibition of PTEN/AKT‑induced apoptosis of AEC II cells. These findings suggest that miR‑21‑5p and PTEN/AKT signaling might serve as potential targets for HALI treatment.
Collapse
Affiliation(s)
- Song Qin
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hongliang Wang
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guoyue Liu
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hong Mei
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Miao Chen
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
24
|
Kwon JY, Jeon MT, Jung UJ, Kim DW, Moon GJ, Kim SR. Perspective: Therapeutic Potential of Flavonoids as Alternative Medicines in Epilepsy. Adv Nutr 2019; 10:778-790. [PMID: 31111873 PMCID: PMC6743823 DOI: 10.1093/advances/nmz047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/05/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022] Open
Abstract
Epilepsy is a chronic neurological disorder that affects many people worldwide. Temporal lobe epilepsy is the most common and most studied type of epilepsy, but the pathological mechanisms underlying this condition are poorly understood. More than 20 antiepileptic drugs (AEDs) have been developed and used for the treatment of epilepsy; however, 30% of patients still experience uncontrolled epilepsy and associated comorbidities, which impair their quality of life. In addition, various side effects have been reported for AEDs, such as drowsiness, unsteadiness, dizziness, blurred or double vision, tremor (shakiness), greater risk of infections, bruising, and bleeding. Thus, critical medical needs remain unmet for patients with uncontrolled epilepsy. Flavonoids belong to a subclass of polyphenols that are widely present in fruits, vegetables, and certain beverages. Recently, many studies have reported that some flavonoids elicit various beneficial effects in patients with epilepsy without causing the side effects associated with conventional medical therapies. Moreover, flavonoids may have a property of regulating microRNA expression associated with inflammation and cell survival. These findings suggest that flavonoids, which are more effective but impose fewer adverse effects than conventional AEDs, could be used in the treatment of epilepsy.
Collapse
Affiliation(s)
- Jae Young Kwon
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Tae Jeon
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Dong Woon Kim
- Department of Medical Science,Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Gyeong Joon Moon
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea,Address correspondence to GJM (e-mail: )
| | - Sang Ryong Kim
- School of Life Sciences, BK21 plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea,Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea,Address correspondence to SRK (e-mail: )
| |
Collapse
|
25
|
Tang C, Wang H, Wu H, Yan S, Han Z, Jiang Z, Na M, Guo M, Lu D, Lin Z. The MicroRNA Expression Profiles of Human Temporal Lobe Epilepsy in HS ILAE Type 1. Cell Mol Neurobiol 2019; 39:461-470. [PMID: 30790096 PMCID: PMC11469846 DOI: 10.1007/s10571-019-00662-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Temporal lobe epilepsy (TLE) is associated with neurodegeneration, often leading to hippocampal sclerosis (HS). Type 1 HS, which is characterized by severe neuronal loss and gliosis predominantly in regions CA1 and CA4, is the most common subtype and is associated with the best prognosis according to the ILAE classification system. MiRNAs participate in the biological processes underlying many nervous system diseases, including epilepsy. However, the miRNA expression profile of HS ILAE type 1 is not completely understood. A total of 14 patients were identified as having the ILAE subtype, as determined by NeuN immunohistochemistry (ILAE type 1 = 7; no-HS = 7). Next-generation sequencing and reverse transcription polymerase chain reaction technology were used to validate the dysregulated miRNAs. Bioinformatics analysis of the predicted target genes was conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. In total, 1643 mature miRNAs were detected in this study, along with 5 miRNAs that were upregulated and 2 miRNAs that were downregulated in the type 1 group. Bioinformatics analysis showed that 1545 target genes were predicted using the miRDB and Targetscan databases and that these predicted genes showed enrichment in pathways associated with nucleic acid binding, intracellular and cellular macromolecule metabolic processes, and the PI3K-Akt signaling pathway. This study is the first to report the miRNA expression profile of HS ILAE type 1 compared with those of no-HS. These results provide new insights into the neuronal loss pathology of type 1 HS.
Collapse
Affiliation(s)
- Chongyang Tang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Haiyang Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Hongmei Wu
- Department of Pathology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Shi Yan
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Zhenfeng Jiang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Mian Guo
- Department of Neurosurgery, the Second Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Dunyue Lu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.
| |
Collapse
|
26
|
Li X, Giri V, Cui Y, Yin M, Xian Z, Li J. LncRNA FTX inhibits hippocampal neuron apoptosis by regulating miR-21-5p/SOX7 axis in a rat model of temporal lobe epilepsy. Biochem Biophys Res Commun 2019; 512:79-86. [DOI: 10.1016/j.bbrc.2019.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/14/2022]
|