1
|
Pérez-Pérez D, Monío-Baca C, von Rüden EL, Buchecker V, Wagner A, Schönhoff K, Zvejniece L, Klimpel D, Potschka H. Preclinical efficacy profiles of the sigma-1 modulator E1R and of fenfluramine in two chronic mouse epilepsy models. Epilepsia 2024; 65:2470-2482. [PMID: 39119787 DOI: 10.1111/epi.18037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Given its key homeostatic role affecting mitochondria, ionotropic and metabotropic receptors, and voltage-gated ion channels, sigma-1 receptor (Sig1R) represents an interesting target for epilepsy management. Antiseizure effects of the positive allosteric modulator E1R have already been reported in acute seizure models. Although modulation of serotonergic neurotransmission is considered the main mechanism of action of fenfluramine, its interaction with Sig1R may be of additional relevance. METHODS To further explore the potential of Sig1R as a target, we assessed the efficacy and tolerability of E1R and fenfluramine in two chronic mouse models, including an amygdala kindling paradigm and the intrahippocampal kainate model. The relative contribution of the interaction with Sig1R was analyzed using combination experiments with the Sig1R antagonist NE-100. RESULTS Whereas E1R exerted pronounced dose-dependent antiseizure effects at well-tolerated doses in fully kindled mice, only limited effects were observed in response to fenfluramine, without a clear dose dependency. In the intrahippocampal kainate model, E1R failed to influence electrographic seizure activity. In contrast, fenfluramine significantly reduced the frequency of electrographic seizure events and their cumulative duration. Pretreatment with NE-100 reduced the effects of E1R and fenfluramine in the kindling model. Surprisingly, pre-exposure to NE-100 in the intrahippocampal kainate model rather enhanced and prolonged fenfluramine's antiseizure effects. SIGNIFICANCE In conclusion, the kindling data further support Sig1R as an interesting target for novel antiseizure medications. However, it is necessary to further explore the preclinical profile of E1R in chronic epilepsy models with spontaneous seizures. Despite the rather limited effects in the kindling paradigm, the findings from the intrahippocampal kainate model suggest that it is of interest to further assess a possible broad-spectrum potential of fenfluramine.
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Cristina Monío-Baca
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Amelie Wagner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Dennis Klimpel
- Department of Forensic and Clinical Toxicology, Medizinisches Versorgungszentrum Labor Krone, Bad Salzuflen, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Delmondes GDA, Pereira Lopes MJ, Borges ADS, Bezerra DS, Silva JPD, Souto BS, Costa JGDS, Campos PEDS, Santana TID, Coutinho HDM, Barbosa-Filho JM, Alencar de Menezes IR, Bezerra Felipe CF, Kerntopf MR. Investigation of mechanisms of action involved in the antidepressant-like effect of Trans,trans-farnesol in mice. Chem Biol Interact 2023; 386:110791. [PMID: 37923004 DOI: 10.1016/j.cbi.2023.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
This study aimed to investigate, through in vivo and biochemical methodologies, the effect of trans,trans-farnesol (12.5, 25, 50 or 100 mg/kg, p.o.) acute administration, adopting different behavioral and neurochemical parameters associated with an acute induced-depression model in mice. The initial results showed that, the oral treatment with trans,trans-farnesol, at the dose of 100 mg/kg induced a possible antidepressant-like effect in animals subjected to forced swim test (FST) and reserpine-induced akinesia. In addition, it was observed that the compound in question has an effect size and properties similar to imipramine (prototype of tricyclic antidepressants), but devoid of proconvulsant adverse effect. In biochemical assays, the pretreatment with trans,trans-farnesol, at a dose of 100 mg/kg (p.o.), decreased the hippocampal concentration of thiobarbituric acid reactive substances (TBARS) and restored striatal levels of noradrenaline and serotonin in mice subjected to FST. Altogether, these results suggest that trans,trans-farnesol showed a significant antidepressant-like effect, which seems to be mediated by the antagonism of muscarinic cholinergic receptors, reduction of oxidative stress and the modulation of noradrenaline and serotonin content in the central nervous system.
Collapse
Affiliation(s)
- Gyllyandeson de Araújo Delmondes
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Nursing Collegiate, Federal University of São Francisco Valley, Petrolina, PE, Brazil.
| | | | - Alex de Sousa Borges
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Daniel Souza Bezerra
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Natural Products Pharmacology Laboratory, Regional University of Cariri, Crato, CE, Brazil
| | - Jairo Pessoa da Silva
- Nursing Collegiate, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | - Bruna Silva Souto
- Nursing Collegiate, Federal University of São Francisco Valley, Petrolina, PE, Brazil
| | | | | | | | | | | | | | | | - Marta Regina Kerntopf
- Postgraduate Program in Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil; Natural Products Pharmacology Laboratory, Regional University of Cariri, Crato, CE, Brazil
| |
Collapse
|
3
|
Vavers E, Zvejniece L, Dambrova M. Sigma-1 receptor and seizures. Pharmacol Res 2023; 191:106771. [PMID: 37068533 PMCID: PMC10176040 DOI: 10.1016/j.phrs.2023.106771] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; University of Tartu, Faculty of Science and Technology, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; Riga Stradiņš University, Faculty of Pharmacy, Konsula 21, LV-1007, Riga, Latvia
| |
Collapse
|
4
|
Singh T, Mishra A, Goel RK. PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metab Brain Dis 2021; 36:1573-1590. [PMID: 34427842 DOI: 10.1007/s11011-021-00823-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022]
Abstract
Pentylenetetrazole (PTZ)-induced seizure is one of the gold standard mouse models for rapid evaluation of novel anticonvulsants. Synchronically, PTZ induced kindling in mice is also a simple and well accepted model of chronic epilepsy. PTZ kindling has been explored for studying epileptogenesis, epilepsy-associated comorbidities, and refractory epilepsy. This review summarizes the potential of PTZ kindling in mice and its modifications for its face, construct, and predictive validity to screen antiepileptogenic drugs, combined or add on novel and safe therapies for treatment of epilepsy-associated depression and cognitive impairment as well as effective interventions for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Awanish Mishra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
- Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research , Guwahati , Changsari, Kamrup , 781101 , Assam , India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
5
|
Voronin MV, Vakhitova YV, Tsypysheva IP, Tsypyshev DO, Rybina IV, Kurbanov RD, Abramova EV, Seredenin SB. Involvement of Chaperone Sigma1R in the Anxiolytic Effect of Fabomotizole. Int J Mol Sci 2021; 22:5455. [PMID: 34064275 PMCID: PMC8196847 DOI: 10.3390/ijms22115455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sigma-1 receptor (chaperone Sigma1R) is an intracellular protein with chaperone functions, which is expressed in various organs, including the brain. Sigma1R participates in the regulation of physiological mechanisms of anxiety (Su, T. P. et al., 2016) and reactions to emotional stress (Hayashi, T., 2015). In 2006, fabomotizole (ethoxy-2-[2-(morpholino)-ethylthio]benzimidazole dihydrochloride) was registered in Russia as an anxiolytic (Seredenin S. and Voronin M., 2009). The molecular targets of fabomotizole are Sigma1R, NRH: quinone reductase 2 (NQO2), and monoamine oxidase A (MAO-A) (Seredenin S. and Voronin M., 2009). The current study aimed to clarify the dependence of fabomotizole anxiolytic action on its interaction with Sigma1R and perform a docking analysis of fabomotizole interaction with Sigma1R. An elevated plus maze (EPM) test revealed that the anxiolytic-like effect of fabomotizole (2.5 mg/kg i.p.) administered to male BALB/c mice 30 min prior EPM exposition was blocked by Sigma1R antagonists BD-1047 (1.0 mg/kg i.p.) and NE-100 (1.0 mg/kg i.p.) pretreatment. Results of initial in silico study showed that fabomotizole locates in the active center of Sigma1R, reproducing the interactions with the site's amino acids common for established Sigma1R ligands, with the ΔGbind value closer to that of agonist (+)-pentazocine in the 6DK1 binding site.
Collapse
Affiliation(s)
- Mikhail V. Voronin
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (I.P.T.); (D.O.T.); (I.V.R.); (R.D.K.); (E.V.A.)
| | - Yulia V. Vakhitova
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (I.P.T.); (D.O.T.); (I.V.R.); (R.D.K.); (E.V.A.)
| | | | | | | | | | | | - Sergei B. Seredenin
- Department of Pharmacogenetics, Federal State Budgetary Institution “Research Zakusov Institute of Pharmacology”, Baltiyskaya Street 8, 125315 Moscow, Russia; (I.P.T.); (D.O.T.); (I.V.R.); (R.D.K.); (E.V.A.)
| |
Collapse
|
6
|
Singh T, Goel RK. Epilepsy Associated Depression: An Update on Current Scenario, Suggested Mechanisms, and Opportunities. Neurochem Res 2021; 46:1305-1321. [PMID: 33665775 DOI: 10.1007/s11064-021-03274-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022]
Abstract
Depression is one of the most frequent psychiatric comorbidities associated with epilepsy having a major impact on the patient's quality of life. Several screening tools are available to identify and follow up psychiatric disorders in epilepsy. Out of various psychiatric disorders, people with epilepsy (PWE) are at greater risk of developing depression. This bidirectional relationship further hinders pharmacotherapy of comorbid depression in PWE as some antiepileptic drugs (AEDs) worsen associated depression and coadministration of existing antidepressants (ADs) to alleviate comorbid depression has been reported to worsen seizures. Selective serotonin reuptake inhibitors (SSRIs) and selective serotonin and norepinephrine reuptake inhibitors (SNRIs) are first choice of ADs and are considered safe in PWE, but there are no high-quality evidences. Similar to observations in people with depression, PWE also showed pharmacoresistant to available SSRI/SNRIs, which further complicates the disease prognosis. Randomized double-blind placebo-controlled clinical trials are necessary to report efficacy and safety of available ADs in PWE. We should also move beyond ADs, and therefore, we reviewed common pathological mechanisms such as neuroinflammation, dysregulated hypothalamus pituitary adrenal (HPA) axis, altered neurogenesis, and altered tryptophan metabolism responsible for coexistent relationship of epilepsy and depression. Based on these common pertinent pathways involved in the genesis of epilepsy and depression, we suggested novel targets and therapeutic approaches for safe management of comorbid depression in epilepsy.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
7
|
Alachkar A, Ojha SK, Sadeq A, Adem A, Frank A, Stark H, Sadek B. Experimental Models for the Discovery of Novel Anticonvulsant Drugs: Focus on Pentylenetetrazole-Induced Seizures and Associated Memory Deficits. Curr Pharm Des 2020; 26:1693-1711. [PMID: 32003682 DOI: 10.2174/1381612826666200131105324] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by irregular, excessive neuronal excitability, and recurrent seizures that affect millions of patients worldwide. Currently, accessible antiepileptic drugs (AEDs) do not adequately support all epilepsy patients, with around 30% patients not responding to the existing therapies. As lifelong epilepsy treatment is essential, the search for new and more effective AEDs with an enhanced safety profile is a significant therapeutic goal. Seizures are a combination of electrical and behavioral events that can induce biochemical, molecular, and anatomic changes. Therefore, appropriate animal models are required to evaluate novel potential AEDs. Among the large number of available animal models of seizures, the acute pentylenetetrazole (PTZ)-induced myoclonic seizure model is the most widely used model assessing the anticonvulsant effect of prospective AEDs, whereas chronic PTZ-kindled seizure models represent chronic models in which the repeated administration of PTZ at subconvulsive doses leads to the intensification of seizure activity or enhanced seizure susceptibility similar to that in human epilepsy. In this review, we summarized the memory deficits accompanying acute or chronic PTZ seizure models and how these deficits were evaluated applying several behavioral animal models. Furthermore, major advantages and limitations of the PTZ seizure models in the discovery of new AEDs were highlighted. With a focus on PTZ seizures, the major biochemicals, as well as morphological alterations and the modulated brain neurotransmitter levels associated with memory deficits have been illustrated. Moreover, numerous medicinal compounds with concurrent anticonvulsant, procognitive, antioxidant effects, modulating effects on several brain neurotransmitters in rodents, and several newly developed classes of compounds applying computer-aided drug design (CADD) have been under development as potential AEDs. The article details the in-silico approach following CADD, which can be utilized for generating libraries of novel compounds for AED discovery. Additionally, in vivo studies could be useful in demonstrating efficacy, safety, and novel mode of action of AEDs for further clinical development.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Shreesh K Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Adel Sadeq
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| |
Collapse
|