1
|
Tsoi SC, Barrientos AC, Vicario DS, Phan ML, Pytte CL. Daily high doses of atorvastatin alter neuronal morphology in a juvenile songbird model. PLoS One 2025; 20:e0314690. [PMID: 40294005 PMCID: PMC12036933 DOI: 10.1371/journal.pone.0314690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/11/2024] [Indexed: 04/30/2025] Open
Abstract
Statins are highly effective and widely prescribed cholesterol lowering drugs. However, statins cross the blood-brain barrier and decrease neural cholesterol in animal models, raising concern that long-term statin use may impact cholesterol-dependent structures and functions in the brain. Cholesterol is a fundamental component of cell membranes and experimentally decreasing membrane cholesterol has been shown to alter cell morphology in vitro. In addition, brain regions that undergo adult neurogenesis rely on local brain cholesterol for the manufacture of new neuronal membranes. Thus neurogenesis may be particularly vulnerable to long-term statin use. Here we asked whether oral statin treatment impacts neurogenesis in juveniles, either by decreasing numbers of new cells formed or altering the structure of new neurons. The use of statins in children and adolescents has received less attention than in older adults, with few studies on potential unintended effects in young brains. We examined neurons in the juvenile zebra finch songbird in telencephalic regions that function in song perception and memory (caudomedial nidopallium, NCM) and song production (HVC). Birds received either 40 mg/kg of atorvastatin in water or water vehicle once daily for 2-3 months until they reached adulthood. We labeled newborn cells using systemic injections of bromodeoxyuridine (BrdU) and quantified cells double-labeled with antibodies for BrdU and the neuron-specific protein Hu 30-32 days post mitosis. We also quantified a younger cohort of new neurons in the same birds using antibody to the neuronal protein doublecortin (DCX). We then compared numbers of new neurons and soma morphology of BrdU + /Hu+ neurons between statin-treated and control birds. We did not find an effect of statins on the density of newly formed neurons in either brain region, suggesting that statin treatment did not impact neurogenesis or young neuron survival in our paradigm. However, we found that neuronal soma morphology differed significantly between statin-treated and control birds. Somata of BrdU + /Hu+ (30-32 day old) neurons were flatter and had more furrowed contours in statin-treated birds relative to controls. In a larger, heterogeneous cohort of non-birthdated BrdU-/Hu+ neurons, largely born prior to statin treatment, somata were smaller in statin-treated birds than in controls. Our findings indicate that atorvastatin may affect neural cytoarchitecture in both newly formed and mature neurons, perhaps as a consequence of decreased cholesterol availability in the brain.
Collapse
Affiliation(s)
- Shuk C. Tsoi
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Alicia C. Barrientos
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
| | - David S. Vicario
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Mimi L. Phan
- Department of Psychology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Carolyn L. Pytte
- CUNY Neuroscience Collaborative, Psychology and Biology Departments, The Graduate Center, City University of New York, New York, New York, United States of America
- Psychology Department, Queens College, City University of New York, Flushing, New York, United States of America
| |
Collapse
|
2
|
Huang S, Liu Y, Zhang Y, Wang Y, Gao Y, Li R, Yu L, Hu X, Fang Q. Analyzing the causal relationship between lipid-lowering drug target genes and epilepsy: a Mendelian randomization study. Front Neurol 2024; 15:1331537. [PMID: 38523609 PMCID: PMC10957583 DOI: 10.3389/fneur.2024.1331537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Background Previous research has yielded conflicting results on the link between epilepsy risk and lipid-lowering medications. The aim of this study is to determine whether the risk of epilepsy outcomes is causally related to lipid-lowering medications predicted by genetics. Methods We used genetic instruments as proxies to the exposure of lipid-lowering drugs, employing variants within or near genes targeted by these drugs and associated with low-density lipoprotein cholesterol (LDL cholesterol) from a genome-wide association study. These variants served as controlling factors. Through drug target Mendelian randomization, we systematically assessed the impact of lipid-lowering medications, including HMG-CoA reductase (HMGCR) inhibitors, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, and Niemann-Pick C1-like 1 (NPC1L1) inhibitors, on epilepsy. Results The analysis demonstrated that a higher expression of HMGCR was associated with an elevated risk of various types of epilepsy, including all types (OR = 1.17, 95% CI:1.03 to 1.32, p = 0.01), focal epilepsy (OR = 1.24, 95% CI:1.08 to 1.43, p = 0.003), and focal epilepsy documented with lesions other than hippocampal sclerosis (OR = 1.05, 95% CI: 1.01 to 1.10, p = 0.02). The risk of juvenile absence epilepsy (JAE) was also associated with higher expression of PCSK9 (OR = 1.06, 95% CI: 1.02 to 1.09, p = 0.002). For other relationships, there was no reliable supporting data available. Conclusion The drug target MR investigation suggests a possible link between reduced epilepsy vulnerability and HMGCR and PCSK9 inhibition.
Collapse
Affiliation(s)
- Shicun Huang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Liu
- Department of Neurology, Suzhou Ninth People’s Hospital, Suzhou, China
| | - Yi Zhang
- Department of Neurology, The Affiliated Changzhou NO.2 People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Yiqing Wang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ya Gao
- Department of Neurology, Suzhou Guangci Cancer Hospital, Suzhou, China
| | - Runnan Li
- Department of Neurology, The Dushu Lake Hospital of Soochow University, Suzhou, China
| | - Lidong Yu
- Department of Neurology, The Affiliated Taizhou Second People’s Hospital of Yangzhou University, Yangzhou, China
| | - Xiaowei Hu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Amanlou A, Nassireslami E, Dehpour AR, Rashidian A, Chamanara M. Beneficial Effects of Statins on Seizures Independent of Their Lipid-Lowering Effect: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:13-25. [PMID: 36688200 PMCID: PMC9843460 DOI: 10.30476/ijms.2021.91645.2289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 01/24/2023]
Abstract
Among the many types of central nervous system (CNS) disorders, seizures and epilepsy severely affect the quality of life and routine daily activity of the sufferers. We aimed to review research studies that investigated the effect of statins on the prevention and treatment of seizures and epilepsy. Both animal models and human studies were included in this review. This article starts with a brief introduction about seizure, its prevalence, treatment, and various animal models of seizures and epilepsy. Next, we discuss statin's mechanism of action, side effects, and effects on neurological disorders with a specific focus on seizures. Finally, the effects of different types of statins on seizures are compared. The present review gives a better understanding of the therapeutic effects of statins on neurological disorders in animal models and human studies. This permits researchers to set up study designs to resolve current ambiguities and contradictions on the beneficial effects of statins on neurological disorders.
Collapse
Affiliation(s)
- Arash Amanlou
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran,
Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran,
Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran,
Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran,
Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Hufthy Y, Bharadwaj M, Gupta S, Hussain D, Joseph PJS, Khan A, King J, Lahorgue P, Jayawardena O, Rostami-Hochaghan D, Smith C, Marson A, Mirza N. Statins as antiepileptogenic drugs: analysing the evidence and identifying the most promising statin. Epilepsia 2022; 63:1889-1898. [PMID: 35582761 PMCID: PMC9541605 DOI: 10.1111/epi.17303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/01/2022]
Abstract
Many brain insults and injuries are “epileptogenic”: they increase the risk of developing epilepsy. It is desirable to identify treatments that are “antiepileptogenic”: treatments that prevent the development of epilepsy, if administered after the occurrence of an epileptogenic insult. Current antiepileptic drugs are not antiepileptogenic, but evidence of antiepileptogenic efficacy is accumulating for a growing number of other compounds. From among these candidate compounds, statins are deserving of particular attention because statins are reported to be antiepileptogenic in more published studies and in a wider range of brain insults than any other individual or class of compounds. Although many studies report the antiepileptogenic effect of statins, it is unclear how many studies provide evidence that statins exhibit the following two essential features of a clinically viable antiepileptogenic drug: the drug must exert an antiepileptogenic effect even if it is initiated after the epileptogenic brain insult has already occurred, and the antiepileptogenic effect must endure even after the drug has been discontinued. In the current work, we interrogate published preclinical and clinical studies, to determine if statins fulfill these essential requirements. There are eight different statins in clinical use. To enable the clinical use of one of these statins for antiepileptogenesis, its antiepileptogenic effect will have to be established through future time‐ and resource‐intensive clinical trials. Therefore, it is desirable to review the published literature to determine which of the statins emerges as the most promising candidate for antiepileptogenic therapy. Hence, in the current work, we also collate and analyze published data—clinical and pre‐clinical, direct and indirect—that help to answer the question: Which statin is the most promising candidate to take forward into an antiepileptogenesis clinical trial?
Collapse
Affiliation(s)
- Yousif Hufthy
- School of Medicine, University of Liverpool, Liverpool, UK
| | | | - Shubhi Gupta
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Delwar Hussain
- School of Medicine, University of Liverpool, Liverpool, UK
| | | | - Alizah Khan
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Jessica King
- School of Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | - Chloe Smith
- School of Medicine, University of Liverpool, Liverpool, UK
| | - Anthony Marson
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Nasir Mirza
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Tröscher AR, Gruber J, Wagner JN, Böhm V, Wahl AS, von Oertzen TJ. Inflammation Mediated Epileptogenesis as Possible Mechanism Underlying Ischemic Post-stroke Epilepsy. Front Aging Neurosci 2021; 13:781174. [PMID: 34966269 PMCID: PMC8711648 DOI: 10.3389/fnagi.2021.781174] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Post-stroke Epilepsy (PSE) is one of the most common forms of acquired epilepsy, especially in the elderly population. As people get increasingly older, the number of stroke patients is expected to rise and concomitantly the number of people with PSE. Although many patients are affected by post-ischemic epileptogenesis, not much is known about the underlying pathomechanisms resulting in the development of chronic seizures. A common hypothesis is that persistent neuroinflammation and glial scar formation cause aberrant neuronal firing. Here, we summarize the clinical features of PSE and describe in detail the inflammatory changes after an ischemic stroke as well as the chronic changes reported in epilepsy. Moreover, we discuss alterations and disturbances in blood-brain-barrier leakage, astrogliosis, and extracellular matrix changes in both, stroke and epilepsy. In the end, we provide an overview of commonalities of inflammatory reactions and cellular processes in the post-ischemic environment and epileptic brain and discuss how these research questions should be addressed in the future.
Collapse
Affiliation(s)
| | - Joachim Gruber
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Judith N Wagner
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Vincent Böhm
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| | - Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Tim J von Oertzen
- Neurology I, Neuromed Campus, Kepler Universitätsklinikum, Linz, Austria.,Medical Faculty, Johannes Kepler University, Linz, Austria
| |
Collapse
|