1
|
Yuan Y, Zhang L, Zhang Y, Lee K, Liu Y. Resilience and response of anaerobic digestion systems to short-term hydraulic loading shocks: Focusing on total and active microbial community dynamics. ENVIRONMENTAL RESEARCH 2025; 269:120801. [PMID: 39793868 DOI: 10.1016/j.envres.2025.120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Anaerobic digestion is known to be sensitive to operational changes, such as hydraulic loading shock, yet the impact on the microbiome, particularly the active RNA-based community, has not been fully understood. This study aimed to investigate the performance of anaerobic reactors and their microbial communities under short-term hydraulic loading shocks. Using synthetic wastewater, the reactor was subjected to 24-h shocks at three-fold and seven-fold the baseline loading rate, followed by DNA and RNA analyses to assess the system's resiliency and microbial responses. The research focused on shifts in major microbial groups and their functions, paying close attention to the active RNA community during loading shock events to better reflect the system's immediate condition. Findings indicated that although the microbial community structure, particularly among the archaea, was altered, the reactor quickly regained its balance. Differences were observed between DNA and RNA profiles and between regular and shock loadings; however, the alpha diversity and functions of the overall community were sustained. This study offers important insights for the design and operation of wastewater treatment plants, with the goal of achieving stable and efficient anaerobic digestion systems.
Collapse
Affiliation(s)
- Yiyang Yuan
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lei Zhang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Korris Lee
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
2
|
Mu L, Ding J, Wang Y, Peng H, Tao J, Pulkkinen E, Si H, Zhang L, Li A, Li J. Anaerobic biodegradation of PLA at mesophilic and thermophilic temperatures: methanation potential and associated microbial community. ENVIRONMENTAL TECHNOLOGY 2025:1-13. [PMID: 39933550 DOI: 10.1080/09593330.2024.2449267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/26/2024] [Indexed: 02/13/2025]
Abstract
Polylactic acid (PLA) is the most promising bio-based alternative to traditional petrochemical plastics across diverse applications. In this study, the biodegradation performance of PLA plastic under two potential end-of-life scenarios: mesophilic and thermophilic anaerobic digestion (AD) were investigated. The biotic and abiotic influence factors were evaluated through short-time exposure experiments. The potential bacteria and archaea involved in PLA anaerobic biodegradation were identified by high-throughput 16S rRNA sequencing analysis. The results showed that PLA had different biodegradation performance at mesophilic and thermophilic digestion (the biogas yield: 36.70 ± 0.2vs 398.6 ± 1.1 mL/g VS). The increased temperature at thermophilic conditions improved the biodegradability of PLA, but an attack by microorganisms was more crucial for biodegradation. The bacteria engaged in PLA hydrolysis and acidification were closely associated with proteolytic microbes. Mesophilic biodegradation of PLA involved Clostridia (14.94%), Anaerolineae (22.6%) and acetoclastic Methanothrix (53.0%). Thermophilic biodegradation of PLA was mainly accomplished by syntrophic microbes, Clostridia (38.2%), Synergistia (18.99%) and Thermotogae (17.82%), in tandem with hydrogenotrophic Methanothermobacter (20.5%). The results provide some insights for understanding mechanisms governing PLA biodegradation under AD conditions.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Jingxuan Ding
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Hao Peng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, People's Republic of China
| | | | - Hang Si
- Company of Metern, Helsinki, Finland
| | - Lei Zhang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Aimin Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, People's Republic of China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin, People's Republic of China
| |
Collapse
|
3
|
Pan X, Liu Q, Wang Y, Shao M, Wei Y, Li X, Huang M, Cheng L, Xu Q, Zhou X, Yan B. A cell-based exploration of environmental and health impacts of food waste digestate for its sustainable reutilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123795. [PMID: 39708690 DOI: 10.1016/j.jenvman.2024.123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Anaerobic digestion of food waste is increasingly utilized for bioenergy generation, producing a byproduct known as food waste digestate (FWD), which has potential applications as a fertilizer within the circular economy. However, accumulating numerous pollutants in FWD poses significant challenges to environmental management and human health. The complex nature of these pollutants complicates both targeted and non-targeted chemical analyses, making safety evaluations difficult. To address this, we developed a toxicity evaluation protocol based on comprehensive cellular effects to assess the safety profile of FWD. Our study found that human FHC cells were significantly more sensitive to FWD solutions, with 1.2-, 1.8-, and 1.7-fold greater sensitivity than GES-1, HepG2, and HEK293 cells. We identified oxidative stress levels and the activation of the NF-κB signaling pathway as crucial and sensitive indicators of FWD-induced toxicity. Metabolomics analysis revealed that FWD triggered the activation of the inflammatory mediator regulation of the transient receptor potential channels pathway, indicating a cellular response aimed at mitigating damage through immune repair mechanisms. By comprehensively assessing these cellular and molecular indicators, we can better predict the potential human and environmental risks associated with FWD. This knowledge is essential for establishing safety guidelines and appropriate dilution ratios for FWD reutilization, enhancing environmental management practices within a circular economy framework.
Collapse
Affiliation(s)
- Xiujiao Pan
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; Guangdong Nantian Institute of Forensic Science, Shenzhen, 518045, China
| | - Qingmeng Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yukun Wang
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yongyi Wei
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Xin Li
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Miao Huang
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Lianghong Cheng
- Guangdong Nantian Institute of Forensic Science, Shenzhen, 518045, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| | - Xiaoxia Zhou
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Zhang F, Zhao F, Chen Y, Wu Y, Feng Q, Guo R. Comparative study on the effects of anionic, cationic, and nonionic polyacrylamide surface modified magnetic micro-particles (MMP) for anaerobic digestion treatment of vegetable waste water (VWW). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122160. [PMID: 39208750 DOI: 10.1016/j.jenvman.2024.122160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Anaerobic digestion provides a solution for the treatment of vegetable waste water (VWW), but there are currently limited targeted treatment methods available. Building upon previous studies, this research investigated the effects of polyacrylamide-modified magnetic micro-particles (MMP) on anaerobic digestion (AD) of VWW. Three variations of these particles were created by grafting anionic, cationic, and non-ionic polyacrylamide (PAM) onto the MMPs' surfaces, resulting in aPAM-MMP, cPAM-MMP, and nPAM-MMP, respectively. In AD experiments, the addition of aPAM-MMP notably enhanced the degradation of chemical oxygen demand (COD) in VWW. COD decreased to 1290 mg/L in the reactor with aPAM-MMP by day 12 and remained low, while the other reactors had COD concentrations of 4137.5, 5510, and 3010 mg/L on the same day, decreasing thereafter. This modification also improved the production and utilization of hydrogen gas and volatile fatty acids (VFAs), along with the conversion of methane. When tested for bioaffinity using fluorescent GFP-E.coli bacteria, the aPAM-MMP, cPAM-MMP, and nPAM-MMP demonstrated increases in fluorescence intensity by 51.66%, 36.13%, and 37.02%, respectively, compared to unmodified MMP when attached with GFP-E.coli. Further analyses of microbial community revealed that the reactor with aPAM-MMP had the highest microbial richness and enriched bacteria capable of organic matter degradation, such as Bacteroidota, Synergistota, Chloroflexi, Halobacterota phyla, and Parabacteroides, Muribaculaceae, and Azotobacter genera. In conclusion, our experiment verifies that APAM-MMP promotes anaerobic treatment of VWW and provides a novel reference point for enhancing VWW degradation.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Feng Zhao
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Ying Chen
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Yanjun Wu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China.
| |
Collapse
|
5
|
He Y, Wang S, Shen C, Wang Z, Liu Y, Meng X, Li X, Zhao X, Chen J, Xu J, Yu J, Cai Y, Ying H. Biochar accelerates methane production efficiency from Baijiu wastewater: Some viewpoints considering direct interspecies electron transfer. CHEMICAL ENGINEERING JOURNAL 2024; 497:154527. [DOI: 10.1016/j.cej.2024.154527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|
6
|
Geng H, Xu Y, Liu R, Yang D, Dai X. Cation exchange resins enhance anaerobic digestion of sewage sludge: Roles in sequential recovery of hydrogen and methane. WATER RESEARCH 2024; 248:120897. [PMID: 38007883 DOI: 10.1016/j.watres.2023.120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
The recovery of renewable bioenergy from anaerobic digestion (AD) of sludge is a promising method to alleviate the energy problem. Although methane can be effectively recovered through sludge pretreatment by cation exchange resin (CER), the simultaneous enhancement of hydrogen and methane generation from AD using CER has not been extensively investigated. Herein, the effect of CER on the sequential recovery of hydrogen and methane and the corresponding mechanisms were investigated. When CER is introduced, the maximum increases for the hydrogen and methane production are 104.7 % and 35.3 %, respectively, confirming the sequential enhancement effects of CER on the hydrogen and methane production. Analyses of the variations in the main biochemical components with and without the effect of CER demonstrate that CER promotes sludge organic solubilisation, hydrolysis, and acidification in both hydrogen- and methane-production stages. Moreover, investigations of variations in the solid-liquid interfacial thermodynamics and removal rates of main multivalent metals of sludge reveal that the ion exchange reactions between the CER and sludge in the hydrogen-production stage provide the direct driving force of effective contact between bacteria and organic particulates. Additionally, the residual effect of the CER during methane production reduces the energy barrier for mass transfer and provides a driving force for this transfer. Further analyses of the microbial community structure and metagenomics indicate that CER directly drives the enrichment of hydrogen-producing bacteria (+ 15.1 %) and key genes encoding enzymes in the hydrogen-production stage. Moreover, CER indirectly induces the enrichment of methane-producing anaerobes (e.g. Methanosaeta: + 16.7 %, Methanosarcina: + 316.5 %); enhances the bioconversion of different substrates into methyl-coenzyme M; and promotes the metabolism pathway of acetoclastic process and CO2 reduction in the methane-production stage. This study can provide valuable insights for simultaneously enhancing the production of hydrogen and methane from AD through sequential recovery.
Collapse
Affiliation(s)
- Hui Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ying Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
7
|
Zhang F, Chen Y, Zhao F, Yuan P, Lu M, Qin K, Qin F, Fu S, Guo R, Feng Q. Use of magnetic powder to effectively improve the denitrification employing the activated sludge fermentation liquid as carbon source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119049. [PMID: 37837762 DOI: 10.1016/j.jenvman.2023.119049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Nitrogen removal is often limited in municipal wastewater treatment due to the lack of sufficient carbon source. Utilizing volatile fatty acids (VFAs) from waste activated sludge (WAS) fermentation broth as a carbon source is an ideal alternative to reduce the cost for wastewater treatment plants (WWTPs) and improve denitrification efficiency simultaneously. In this study, an anaerobic system was applied for simultaneous denitrification and WAS fermentation and the addition of magnetic microparticles (MMP) were confirmed to enhance both denitrification and WAS fermentation. Firstly, the addition of MMP increased the nitrate reduction rate by over 25.36% and improve the production of N2. Additionally, the equivalent chemical oxygen demand (COD) of the detected VFAs increased by 7.06%-14.53%, suggesting that MMP promoted the WAS fermentation. The electron transfer efficiency of denitrifies was accelerated by MMP via electron-transporting system (ETS) activity and cyclic voltammetry (CV) experiments, which might result in the promotional denitrification and WAS fermentation performance. Furthermore, the high-throughput sequencing displayed that, MMP enriched key microbes capable of degrading the complex organics (Chloroflexi, Synergistota and Spirochaetota) as well as the typical denitrifies (Bacteroidetes_vadinHA17 and Denitratisoma). Therefore, this study provides a novel strategy to realize simultaneous WAS utilization and denitrification for WWTPs.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Ying Chen
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Feng Zhao
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Peiyao Yuan
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Kang Qin
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Fan Qin
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Shanfei Fu
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China.
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China.
| |
Collapse
|
8
|
Shao M, Zhang C, Cui G, Bai X, Wang N, Wang X, Chen Q, Xu Q. Inhibition insights of hydrothermal liquid digestate in anaerobic digestion: Impact on organics conversion and inhibitor degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132221. [PMID: 37544176 DOI: 10.1016/j.jhazmat.2023.132221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Hydrothermal liquid digestate has been widely accepted as a substrate in anaerobic digestion (AD) for energy recovery. However, the potential negative impacts of hydrothermal liquid digestate on AD remain unclear. In this study, the organic biodegradability of hydrothermal liquid digestate produced from hydrothermal treatment (HTT) at different temperatures was analyzed, and the formation and degradation process of potential inhibitory substances were discussed. Results demonstrated that the AD lag phase of hydrothermal liquid digestate increased from 3 days at raw liquid digestate to 5-21 days. When the HTT temperature reached 220 °C, the methane yield decreased by 48%, and more than 71% of the organics in the hydrothermal liquid digestate were not utilized by AD. Biorefractory substances, such as fulvic and humic acids, accumulate in the hydrothermal liquid digestate. Potential inhibitory substances from Maillard reactions mainly affect the methanogenesis of AD. Most inhibitory substances were degraded within 7-22 days, with the degradation rate following the order of pyrroles > pyrazines > ketones > imidazoles > indoles. The AD community structure and methane conversion were partially re-established after most inhibitory substances were degraded. This study provides valuable information on eliminating the potential negative effects of hydrothermal liquid digestate on AD.
Collapse
Affiliation(s)
- Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Chao Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Guangyu Cui
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Xue Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|