1
|
Cao Y, Xu X, Zhi S, Phyu K, Wang H, Liu J, Chang CC, Zhang K. Microalgal-bacterial system responses to nitrogen forms in dairy farm wastewater: Focusing on the phycosphere and nitrogen transformation. ENVIRONMENTAL RESEARCH 2025; 276:121451. [PMID: 40122500 DOI: 10.1016/j.envres.2025.121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
As an environmentally friendly medium, microalgae are often used in wastewater treatment. However, few studies have examined the effects of different nitrogen forms on microalgae and bacteria, particularly regarding material and gene transfer and nitrogen metabolic pathways in phycosphere and various extracellular polymeric substance layers. To address this research gap, Chlorella vulgaris was used to treat the dairy farm wastewater with different nitrogen additives. The results showed that the dry weight and chlorophyll a production were lowest at high ammonia nitrogen concentrations (0.460 g/L and 0.883 mg/L, respectively). The ability of microalgae to remove total phosphorus and ammonia nitrogen was significantly enhanced at appropriate nitrogen concentrations. There were clear differences in community abundance between phycosphere and different extracellular polymeric substance layers bacteria. Nitrate nitrogen promoted electron transfer in photosynthesis, while organic nitrogen facilitated the synthesis of siderophores. In high-ammonia nitrogen wastewater, ammonia nitrogen conversion primarily occurred through the action of nitrifying bacteria, whereas denitrification promoted nitrate nitrogen conversion. There is an interaction between nitrogen forms and microalgal-bacterial system. The study provided critical insights for microalgae treatment of dairy farm wastewater, contributing to environmental friendly and resource recycling wastewater management.
Collapse
Affiliation(s)
- Yuang Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiaoyu Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Low-Carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| | - Khinkhin Phyu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Han Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Jiahua Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Chein-Chi Chang
- Washington D.C. Water and Sewer Authority, Ellicott City, MD, 21042, USA
| | - Keqiang Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; Key Laboratory of Low-Carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| |
Collapse
|
2
|
Díaz V, Antiñolo L, Poyatos JM, Muñío MDM, Martín-Pascual J. Effect of hydraulic retention time and treated urban wastewater ratio on progressive adaptation of an inoculated microalgae in membrane photobioreactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123005. [PMID: 39476682 DOI: 10.1016/j.jenvman.2024.123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Currently, there is a growing concern about water scarcity. The rising demand for wastewater treatment systems that facilitate the reuse of wastewater has resulted in a focus on the use of microalgae in sustainable treatments. These methods not only eliminate nutrients from the wastewater but also produce biomass that can be used to obtain high-value products. This study aimed to observe the effect of different hydraulic retention times (HRTs) and treated urban wastewater (TUWW) percentages on the growth of microalgae biomass and nutrient consumption in membrane photobioreactors. Microalgae biomass growth increases with HRT regardless of the percentage of TUWW. Biomass concentration stabilises at between 40% and 60% TUWW but significantly increases when 100% TUWW is used, resulting in the highest biomass concentrations. As HRT increases, ammonium and total nitrogen consumption also rise. A positive trend in ammonium consumption was observed with increasing TUWW, reaching its peak with 100% TUWW. The optimal conditions for biomass growth and nutrient removal are achieved with a 7-day HRT and 100% TUWW as influent, which was confirmed as optimal with the response surface methodology.
Collapse
Affiliation(s)
- Verónica Díaz
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - Laura Antiñolo
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - José Manuel Poyatos
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| | - María Del Mar Muñío
- Institute of Water Research, University of Granada 18071, Granada, Spain; Department of Chemical Engineering, University of Granada 18071, Granada, Spain.
| | - Jaime Martín-Pascual
- Department of Civil Engineering, University of Granada 18071, Granada, Spain; Institute of Water Research, University of Granada 18071, Granada, Spain.
| |
Collapse
|
3
|
Shi Y, Ji B, Li A, Zhang X, Liu Y. Enhancing the performance of microalgal-bacterial systems with sodium bicarbonate: A step forward to carbon neutrality of municipal wastewater treatment. WATER RESEARCH 2024; 266:122345. [PMID: 39217640 DOI: 10.1016/j.watres.2024.122345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The microalgal-bacterial granular sludge (MBGS) process, enhanced with sodium bicarbonate (NaHCO3), offers a sustainable alternative for wastewater treatment aiming for carbon neutrality. This study demonstrates that NaHCO3, which can be derived from the flue gases and alkaline textile wastewater, significantly enhances pollutant removal and biomass production. Optimal addition of NaHCO3 was found to achieve an inorganic-to-organic carbon ratio of 1.0 and a total carbon-to-nitrogen ratio of 5.0. Metagenomic analysis and structural equation modeling showed that NaHCO3 addition increased dissolved oxygen concentrations and pH levels, creating a more favorable environment for key microbial communities, including Proteobacteria, Chloroflexi, and Cyanobacteria. Confocal laser scanning microscopy further confirmed enhanced interactions between Cyanobacteria and Proteobacteria/Chloroflexi, facilitating the MBGS process. These microbes harbored functional genes (gap2, GLU, and ppk) critical for removing organics, nitrogen, and phosphorus. Carbon footprint analysis revealed significant reductions in CO2 emissions by the NaHCO3-added MBGS process in representative countries (China, Australia, Canada, Germany, and Morocco), compared to the conventional activated sludge process. These findings highlight the effectiveness of NaHCO3 in optimizing MBGS process, establishing it as a key strategy in achieving carbon-neutral wastewater treatment globally.
Collapse
Affiliation(s)
- Yuting Shi
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoyuan Zhang
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Zhao S, Qian J, Lu B, Tang S, He Y, Liu Y, Yan Y, Jin S. Enhancing treatment performance of Chlorella pyrenoidosa on levofloxacin wastewater through microalgae-bacteria consortia: Mechanistic insights using the transcriptome. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135670. [PMID: 39213769 DOI: 10.1016/j.jhazmat.2024.135670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microalgae-bacteria consortia (MBC) system has been shown to enhance the efficiency of microalgae in wastewater treatment, yet its effectiveness in treating levofloxacin (LEV) wastewater remains unexplored. This study compared the treatment of LEV wastewater using pure Chlorella pyrenoidosa (PA) and its MBC constructed with activated sludge bacteria. The results showed that MBC improved the removal efficiency of LEV from 3.50-5.41 % to 33.62-57.20 % by enhancing the growth metabolism of microalgae. The MBC increased microalgae biomass and extracellular polymeric substance (EPS) secretion, yet reduced photosynthetic pigment content compared to the PA. At the phylum level, Proteobacteria and Actinobacteriota are the major bacteria in MBC. Furthermore, the transcriptome reveals that the growth-promoting effects of MBC are associated with the up-regulation of genes encoding the glycolysis, the citrate cycle (TCA cycle), and the pentose phosphate pathway. Enhanced carbon fixation, coupled with down-regulation of photosynthetic electron transfer processes, suggests an energy allocation mechanism within MBC. The up-regulation of porphyrin and arachidonic acid metabolism, along with the expression of genes encoding LEV-degrading enzymes, provides evidence of MBC's superior tolerance to and degradation of LEV. Overall, these findings lead to a better understanding of the underlying mechanisms through which MBC outperforms PA in treating LEV wastewater.
Collapse
Affiliation(s)
- Shasha Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yuxuan He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yitong Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shuai Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
5
|
Ma F, Chen K, Zhou C, Li X, Fan J, Yan X, Ruan R, Cheng P. Effect of phytohormone on proliferation and accumulation of cellular metabolites of microalgae Isochrysis zhanjiangensis. BIORESOURCE TECHNOLOGY 2024; 410:131299. [PMID: 39153691 DOI: 10.1016/j.biortech.2024.131299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Phytohormones play a role in regulating microalgae cells tolerance to adversity. This paper examines the effects of different temperatures (20 °C, 25 °C, 30 °C and 35 °C) on the physiological characteristics and endogenous phytohormones of the Isochrysis Zhanjiangensis (IZ) and its mutagenic strain (3005). The results showed that the endogenous phytohormones indole acetic acid (IAA) and jasmonic acid (JA) exhibited significant differences (P<0.05) between the two strains. The addition of 0.5 mg·L-1 exogenous JA inhibitor ibuprofen (IBU) improved cell growth of IZ, and was extremely effective in the accumulation of polysaccharides, which accounted for 33.25 %. Transcriptomic analyses revealed that genes involved in photosynthesis, such as PetC and PsbO, exhibited significantly elevated expression of the strain IZ, while the pathways related to JA synthesis may be the factor affecting microalgae temperature tolerance. This study provides a theoretical foundation for elucidating the underlying mechanisms and potential applications for high temperature tolerance in IZ.
Collapse
Affiliation(s)
- Feifei Ma
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Kang Chen
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Chengxu Zhou
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiaohui Li
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| | - Pengfei Cheng
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China; Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA.
| |
Collapse
|
6
|
Xiao Z, Meng H, Li S, Ning W, Song Y, Han J, Chang JS, Wang Y, Ho SH. Insights into the removal of antibiotics from livestock and aquaculture wastewater by algae-bacteria symbiosis systems. ENVIRONMENTAL RESEARCH 2024; 257:119326. [PMID: 38849002 DOI: 10.1016/j.envres.2024.119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.
Collapse
Affiliation(s)
- Zhihua Xiao
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Hao Meng
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weihao Ning
- Xinrui Environmental Protection Technology Co., Ltd, Yantai, 264000, China
| | - Youliang Song
- Shaoxing Academy of Agricultural Sciences, Shaoxing, 312003, China
| | - Jinglong Han
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
7
|
He Y, Wei W, Wang M, Wang H, Jia J, Gong Y, Hu Q. Systematic study of microzooplankton in mass culture of the green microalga Scenedesmus acuminatus and quantitative assessment of its impact on biomass productivity throughout a year. BIORESOURCE TECHNOLOGY 2024; 408:131149. [PMID: 39053600 DOI: 10.1016/j.biortech.2024.131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
The green microalgae Scenedesmus spp. can grow rapidly and produce significant amounts of protein or lipid. However, frequent microzooplankton contamination leading to reduced biomass productivity has hindered the microalgae commercialization. Here, a comprehensive investigation into harmful microzooplankton species in mass cultures of a commercially promising species Scenedesmus acuminatus were conducted throughout the year. Twenty-five microzooplankton species were identified, with the amoeba Vannella sp. and the ciliate Vorticella convallaria being the most harmful to algal cells. The results indicated that it was the harmful grazers, rather than the overall microzooplankton diversity, led to culture deterioration and reduced biomass yield. Increasing the concentration of algal inoculants or reducing culture temperature during hot summer days were found to be effective in mitigating the impact of these harmful grazers. The findings will contribute to the best management protocol for monitoring and controlling the harmful microzooplankton in mass cultures of S. acuminatus.
Collapse
Affiliation(s)
- Yue He
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wei Wei
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; SDIC Biotech Corporation, Beijing 100142, China
| | - Mengyun Wang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hongxia Wang
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jing Jia
- SDIC Biotech Corporation, Beijing 100142, China
| | - Yingchun Gong
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; SDIC Biotech Corporation, Beijing 100142, China.
| | - Qiang Hu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; School of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, China.
| |
Collapse
|
8
|
Ende S, Henjes J, Spiller M, Elshobary M, Hanelt D, Abomohra A. Recent advances in recirculating aquaculture systems and role of microalgae to close system loop. BIORESOURCE TECHNOLOGY 2024; 407:131107. [PMID: 39009051 DOI: 10.1016/j.biortech.2024.131107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
In recirculating aquaculture systems (RAS), waste management of nutrient-rich byproducts accounts for 30-50% of the whole production costs. Integrating microalgae into RAS offers complementary solutions for transforming waste streams into valuable co-products. This review aims to provide an overview of recent advances in microalgae application to enhance RAS performance and derive value from all waste streams by using RAS effluents as microalgal nutrient sources. Aquaculture solid waste can be converted by hydrothermal liquefaction (HTL), then the resultant aqueous phase of HTL can be used for microalgae cultivation. In addition, microalgae generate the required oxygen while sequestering carbon dioxide. The review suggests a novel integrated system focusing on oxygenation and carbon dioxide capture along with recent technological developments concerning efficient microalgae cultivation and nutrient recovery techniques. In such system, microalgae-based biorefineries provide environmentally-conscious and economically-viable pathways for enhanced RAS performance and conversion of effluents into high-value products.
Collapse
Affiliation(s)
- Stephan Ende
- Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany
| | - Joachim Henjes
- Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany
| | - Marc Spiller
- Research Group of Sustainable Energy, Air and Water technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; VITO WaterClimateHub, Wetenschapspark 1, 8400 Oostende, Belgium
| | - Mostafa Elshobary
- Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany; Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Abdelfatah Abomohra
- Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany.
| |
Collapse
|
9
|
Hu Z, Li J, Qian J, Liu J, Zhou W. Efficacy and mechanisms of rotating algal biofilm system in remediation of soy sauce wastewater. BIORESOURCE TECHNOLOGY 2024; 406:131047. [PMID: 38942212 DOI: 10.1016/j.biortech.2024.131047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
This study investigated the efficacy of the rotating algal biofilm (RAB) for treating soy sauce wastewater (SW) and its related treatment mechanisms. The RAB system demonstrated superior nutrient removal (chemical oxygen demand, ammonium nitrogen, total nitrogen, and phosphorus for 92 %, 94 %, 91 %, and 82 %, respectively) and biofilm productivity (14 g m-2 d-1) at optimized 5-day harvest time and 2-day hydraulic retention time. This was mainly attributed to the synergistic interactions within the algae-fungi (Apiotrichum)-bacteria (Acinetobacter and Rhizobia) consortium, which effectively assimilated certain extracellular polymeric substances into biomass to enhance algal biofilm growth. Increased algal productivity notably improved protein and essential amino acid contents in the biomass, suggesting a potential for animal feed applications. This study not only demonstrates a sustainable approach for managing SW but also provides insight into the nutrient removal and biomass conversion, offering a viable strategy for large-scale applications in nutrient recovery and wastewater treatment.
Collapse
Affiliation(s)
- Zimin Hu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China.
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
10
|
Bhatt P, Brown PB, Huang JY, Hussain AS, Liu HT, Simsek H. Algae and indigenous bacteria consortium in treatment of shrimp wastewater: A study for resource recovery in sustainable aquaculture system. ENVIRONMENTAL RESEARCH 2024; 250:118447. [PMID: 38341075 DOI: 10.1016/j.envres.2024.118447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Shrimp production facilities produce large quantities of wastewater, which consists of organic and inorganic pollutants. High concentrations of these pollutants in shrimp wastewater cause serious environmental problems and, therefore, a method of treating this wastewater is an important research topic. This study investigated the impact of algae and indigenous bacteria on treating shrimp wastewater. A total of four different microalgae cultures, including Chlorococcum minutus, Porphyridum cruentum, Chlorella vulgaris and Chlorella reinhardtii along with two cyanobacterial cultures, Microcystis aeruginosa and Fishcherella muscicola were used with indigenous bacterial cultures to treat shrimp wastewater. The highest soluble chemical oxygen demand (sCOD) removal rate (95%) was observed in the samples that were incubated using F. muscicola. Total dissolved nitrogen was degraded >90% in the C. vulgaris, M. aeruginosa, and C. reinhardtii seeded samples. Dissolved organic nitrogen removal was significantly higher for C. vulgaris (93%) as compared to other treatments. Similarly, phosphate degradation was very successful for all the algae-bacteria consortium (>99%). Moreover, the degradation kinetics were calculated, and the lowest half-life (t1/2) for sCOD (5 days) was recorded for the samples seeded with M. aeruginosa. Similarly, treatment with F. muscicola and C. reinhardtii showed the lowest t1/2 of NH3-N (2.9 days) and phosphate (2.7 days) values. Overall, the results from this study suggest that the symbiotic relationship between indigenous bacteria and algae significantly enhanced the process of shrimp wastewater treatment within 21 days of incubation. The outcome of this study supports resource recovery in the aquaculture sector and could be beneficial to treat a large-scale shrimp facility's wastewater worldwide.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Paul B Brown
- Department of Forestry and Natural Resources, Purdue University, W. Lafayette, IN, USA
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, W. Lafayette, IN, USA
| | - Aya S Hussain
- Department of Forestry and Natural Resources, Purdue University, W. Lafayette, IN, USA; Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Henry T Liu
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA.
| |
Collapse
|