1
|
Liu Z, Xu J, Yin C, Han G, Che Y, Fan G, Li X, Xie L, Bao L, Peng Z, Wang J, Chen Y, Zhang F, Ouyang W, Wang S, Guo J, Ma Y, Meng X, Fan T, Zhi A, Dawaciren, Yi K, You T, Yang Y, Liu J, Shi Y, Huang Y, Pan X. Development and External Validation of an Artificial Intelligence-Based Method for Scalable Chest Radiograph Diagnosis: A Multi-Country Cross-Sectional Study. RESEARCH (WASHINGTON, D.C.) 2024; 7:0426. [PMID: 39109248 PMCID: PMC11301699 DOI: 10.34133/research.0426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 03/30/2025]
Abstract
Problem: Chest radiography is a crucial tool for diagnosing thoracic disorders, but interpretation errors and a lack of qualified practitioners can cause delays in treatment. Aim: This study aimed to develop a reliable multi-classification artificial intelligence (AI) tool to improve the accuracy and efficiency of chest radiograph diagnosis. Methods: We developed a convolutional neural network (CNN) capable of distinguishing among 26 thoracic diagnoses. The model was trained and externally validated using 795,055 chest radiographs from 13 datasets across 4 countries. Results: The CNN model achieved an average area under the curve (AUC) of 0.961 across all 26 diagnoses in the testing set. COVID-19 detection achieved perfect accuracy (AUC 1.000, [95% confidence interval {CI}, 1.000 to 1.000]), while effusion or pleural effusion detection showed the lowest accuracy (AUC 0.8453, [95% CI, 0.8417 to 0.8489]). In external validation, the model demonstrated strong reproducibility and generalizability within the local dataset, achieving an AUC of 0.9634 for lung opacity detection (95% CI, 0.9423 to 0.9702). The CNN outperformed both radiologists and nonradiological physicians, particularly in trans-device image recognition. Even for diseases not specifically trained on, such as aortic dissection, the AI model showed considerable scalability and enhanced diagnostic accuracy for physicians of varying experience levels (all P < 0.05). Additionally, our model exhibited no gender bias (P > 0.05). Conclusion: The developed AI algorithm, now available as professional web-based software, substantively improves chest radiograph interpretation. This research advances medical imaging and offers substantial diagnostic support in clinical settings.
Collapse
Affiliation(s)
- Zeye Liu
- Department of Cardiac Surgery,
Peking University People’s Hospital, Peking University, Xicheng District, Beijing, China
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices,
Chinese Academy of Medical Sciences, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital,
Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences,
and Peking Union Medical College, Beijing, China
| | - Chengliang Yin
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
- National Engineering Research Center for Medical Big Data Application Technology, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Guojing Han
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yue Che
- Center for Health Policy Research and Evaluation,
Renmin University of China, Beijing, China
- School of Public Administration and Policy,
Renmin University of China, Beijing, China
| | - Ge Fan
- Lightspeed & Quantum Studios, Tencent Inc., Shenzhen, China
| | - Xiaofei Li
- Department of Cardiology, Fuwai Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lei Bao
- Shenzhen Benevolence Medical Sci&Tech Co. Ltd., Shenzhen, China
| | - Zimin Peng
- Shenzhen Benevolence Medical Sci&Tech Co. Ltd., Shenzhen, China
| | - Jinduo Wang
- University of Science and Technology of China, School of Cyber Science and Technology, Hefei 230000, China
| | - Yan Chen
- University of Science and Technology of China, School of Cyber Science and Technology, Hefei 230000, China
| | - Fengwen Zhang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices,
Chinese Academy of Medical Sciences, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital,
Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Wenbin Ouyang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices,
Chinese Academy of Medical Sciences, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital,
Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Shouzheng Wang
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices,
Chinese Academy of Medical Sciences, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital,
Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Junwei Guo
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yanqiu Ma
- Peking University Third Hospital, Beijing, China
| | - Xiangzhi Meng
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Taibing Fan
- Department of Pediatric Cardiac Surgery,
Zhengzhou University Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| | - Aihua Zhi
- Fuwai Yunnan Cardiovascular Hospital, Department of Medical Imaging, Kunming 650000, China
| | - Dawaciren
- The Autonomous Region People’s Hospital, Xizang, China
| | - Kang Yi
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease, Lanzhou, China
| | - Tao You
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Diagnosis and Treatment of Congenital Heart Disease, Lanzhou, China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences,
and Peking Union Medical College, Beijing, China
| | - Jue Liu
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital,
Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yi Shi
- Department of Cardiac Surgery,
Peking University People’s Hospital, Peking University, Xicheng District, Beijing, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences,
and Peking Union Medical College, Beijing, China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital,
Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regeneration Medicine, Beijing 100037, China
- Key Laboratory of Innovative Cardiovascular Devices,
Chinese Academy of Medical Sciences, Beijing 100037, China
- National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital,
Chinese Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
2
|
Khalili H, Wimmer MA. Towards Improved XAI-Based Epidemiological Research into the Next Potential Pandemic. Life (Basel) 2024; 14:783. [PMID: 39063538 PMCID: PMC11278356 DOI: 10.3390/life14070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
By applying AI techniques to a variety of pandemic-relevant data, artificial intelligence (AI) has substantially supported the control of the spread of the SARS-CoV-2 virus. Along with this, epidemiological machine learning studies of SARS-CoV-2 have been frequently published. While these models can be perceived as precise and policy-relevant to guide governments towards optimal containment policies, their black box nature can hamper building trust and relying confidently on the prescriptions proposed. This paper focuses on interpretable AI-based epidemiological models in the context of the recent SARS-CoV-2 pandemic. We systematically review existing studies, which jointly incorporate AI, SARS-CoV-2 epidemiology, and explainable AI approaches (XAI). First, we propose a conceptual framework by synthesizing the main methodological features of the existing AI pipelines of SARS-CoV-2. Upon the proposed conceptual framework and by analyzing the selected epidemiological studies, we reflect on current research gaps in epidemiological AI toolboxes and how to fill these gaps to generate enhanced policy support in the next potential pandemic.
Collapse
Affiliation(s)
- Hamed Khalili
- Research Group E-Government, Faculty of Computer Science, University of Koblenz, D-56070 Koblenz, Germany;
| | | |
Collapse
|
3
|
Gheisari M, Ghaderzadeh M, Li H, Taami T, Fernández-Campusano C, Sadeghsalehi H, Afzaal Abbasi A. Mobile Apps for COVID-19 Detection and Diagnosis for Future Pandemic Control: Multidimensional Systematic Review. JMIR Mhealth Uhealth 2024; 12:e44406. [PMID: 38231538 PMCID: PMC10896318 DOI: 10.2196/44406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 08/18/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND In the modern world, mobile apps are essential for human advancement, and pandemic control is no exception. The use of mobile apps and technology for the detection and diagnosis of COVID-19 has been the subject of numerous investigations, although no thorough analysis of COVID-19 pandemic prevention has been conducted using mobile apps, creating a gap. OBJECTIVE With the intention of helping software companies and clinical researchers, this study provides comprehensive information regarding the different fields in which mobile apps were used to diagnose COVID-19 during the pandemic. METHODS In this systematic review, 535 studies were found after searching 5 major research databases (ScienceDirect, Scopus, PubMed, Web of Science, and IEEE). Of these, only 42 (7.9%) studies concerned with diagnosing and detecting COVID-19 were chosen after applying inclusion and exclusion criteria using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) protocol. RESULTS Mobile apps were categorized into 6 areas based on the content of these 42 studies: contact tracing, data gathering, data visualization, artificial intelligence (AI)-based diagnosis, rule- and guideline-based diagnosis, and data transformation. Patients with COVID-19 were identified via mobile apps using a variety of clinical, geographic, demographic, radiological, serological, and laboratory data. Most studies concentrated on using AI methods to identify people who might have COVID-19. Additionally, symptoms, cough sounds, and radiological images were used more frequently compared to other data types. Deep learning techniques, such as convolutional neural networks, performed comparatively better in the processing of health care data than other types of AI techniques, which improved the diagnosis of COVID-19. CONCLUSIONS Mobile apps could soon play a significant role as a powerful tool for data collection, epidemic health data analysis, and the early identification of suspected cases. These technologies can work with the internet of things, cloud storage, 5th-generation technology, and cloud computing. Processing pipelines can be moved to mobile device processing cores using new deep learning methods, such as lightweight neural networks. In the event of future pandemics, mobile apps will play a critical role in rapid diagnosis using various image data and clinical symptoms. Consequently, the rapid diagnosis of these diseases can improve the management of their effects and obtain excellent results in treating patients.
Collapse
Affiliation(s)
- Mehdi Gheisari
- Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China
- Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Mustafa Ghaderzadeh
- School of Nursing and Health Sciences of Boukan, Urmia University of Medical Sciences, Urmia, Iran
| | - Huxiong Li
- Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China
| | - Tania Taami
- Florida State University, Tallahassee, FL, United States
| | | | | | - Aaqif Afzaal Abbasi
- Department of Earth and Marine Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Wen R, Xu P, Cai Y, Wang F, Li M, Zeng X, Liu C. A Deep Learning Model for the Diagnosis and Discrimination of Gram-Positive and Gram-Negative Bacterial Pneumonia for Children Using Chest Radiography Images and Clinical Information. Infect Drug Resist 2023; 16:4083-4092. [PMID: 37388188 PMCID: PMC10305772 DOI: 10.2147/idr.s404786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/29/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose This study aimed to develop a deep learning model based on chest radiography (CXR) images and clinical data to accurately classify gram-positive and gram-negative bacterial pneumonia in children to guide the use of antibiotics. Methods We retrospectively collected CXR images along with clinical information for gram-positive (n=447) and gram-negative (n=395) bacterial pneumonia in children from January 1, 2016, to June 30, 2021. Four types of machine learning models based on clinical data and six types of deep learning algorithm models based on image data were constructed, and multi-modal decision fusion was performed. Results In the machine learning models, CatBoost, which only used clinical data, had the best performance; its area under the receiver operating characteristic curve (AUC) was significantly higher than that of the other models (P<0.05). The incorporation of clinical information improved the performance of deep learning models that relied solely on image-based classification. Consequently, AUC and F1 increased by 5.6% and 10.2% on average, respectively. The best quality was achieved with ResNet101 (model accuracy: 0.75, recall rate: 0.84, AUC: 0.803, F1: 0.782). Conclusion Our study established a pediatric bacterial pneumonia model that utilizes CXR and clinical data to accurately classify cases of gram-negative and gram-positive bacterial pneumonia. The results confirmed that the addition of image data to the convolutional neural network model significantly improved its performance. While the CatBoost-based classifier had greater advantages owing to a smaller dataset, the quality of the Resnet101 model trained using multi-modal data was comparable to that of the CatBoost model, even with a limited number of samples.
Collapse
Affiliation(s)
- Ru Wen
- Medical College, Guizhou University, Guizhou, 550000, People’s Republic of China
- Department of Medical Imaging, Guizhou Provincial People Hospital, Guiyang City, Guizhou Province, 550000, People’s Republic of China
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Peng Xu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Yimin Cai
- Medical College, Guizhou University, Guizhou, 550000, People’s Republic of China
| | - Fang Wang
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Mengfei Li
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| | - Xianchun Zeng
- Department of Medical Imaging, Guizhou Provincial People Hospital, Guiyang City, Guizhou Province, 550000, People’s Republic of China
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People’s Republic of China
| |
Collapse
|
5
|
Utilizing CNN-LSTM techniques for the enhancement of medical systems. ALEXANDRIA ENGINEERING JOURNAL 2023; 72:323-338. [PMCID: PMC10105249 DOI: 10.1016/j.aej.2023.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/04/2024]
Abstract
COVID-19 is one of the most chronic and serious infections of recent years due to its worldwide spread. Determining who was genuinely affected when the disease spreads more widely is challenging. More than 60% of affected individuals report having a dry cough. In many recent studies, diagnostic models were developed using coughing and other breathing sounds. With the development of technology, body sounds are now collected using digital techniques for respiratory and cardiovascular tests. Early research on identifying COVID-19 utilizing speech and diagnosing signs yielded encouraging findings. The gathering of extensive, multi-group, airborne acoustical sound data is used in the developed framework to conduct an efficient assessment to test for COVID-19. An effective classification model is created to assess COVID-19 utilizing deep learning methods. The MIT-Covid-19 dataset is used as the input, and the Weiner filter is used for pre-processing. Following feature extraction done by Mel-frequency cepstral coefficients, the classification is performed using the CNN-LSTM approach. The study compared the performance of the developed framework with other techniques such as CNN, GRU, and LSTM. Study results revealed that CNN-LSTM outperformed other existing approaches by 97.7%.
Collapse
|
6
|
Yang Y, Xu F, Chen J, Tao C, Li Y, Chen Q, Tang S, Lee HK, Shen W. Artificial intelligence-assisted smartphone-based sensing for bioanalytical applications: A review. Biosens Bioelectron 2023; 229:115233. [PMID: 36965381 DOI: 10.1016/j.bios.2023.115233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Artificial intelligence (AI) has received great attention since the concept was proposed, and it has developed rapidly in recent years with applications in many fields. Meanwhile, newer iterations of smartphone hardware technologies which have excellent data processing capabilities have leveraged on AI capabilities. Based on the desirability for portable detection, researchers have been investigating intelligent analysis by combining smartphones with AI algorithms. Various examples of the application of AI algorithm-based smartphone detection and analysis have been developed. In this review, we give an overview of this field, with a particular focus on bioanalytical detection applications. The applications are presented in terms of hardware design, software algorithms, and specific application areas. We also discuss the existing limitations of AI-based smartphone detection and analytical approaches, and their future prospects. The take-home message of our review is that the application of AI in the field of detection analysis is restricted by the limitations of the smartphone's hardware as well as the model building of AI for detection targets with insufficient data. Nevertheless, at this juncture, while bioanalytical diagnostics and health monitoring have set the pace for AI-based smartphone applicability, the future should see the technology making greater inroads into other fields. In relation to the latter, it is likely that the ordinary or average person will play a greater participatory role.
Collapse
Affiliation(s)
- Yizhuo Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Fang Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Chunxu Tao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Yunxin Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, Fujian Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| |
Collapse
|
7
|
Rodrigues Moreira LF, Moreira R, Travençolo BAN, Backes AR. An Artificial Intelligence-as-a-Service Architecture for deep learning model embodiment on low-cost devices: A case study of COVID-19 diagnosis. Appl Soft Comput 2023; 134:110014. [PMID: 36687763 PMCID: PMC9837155 DOI: 10.1016/j.asoc.2023.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 12/03/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Coronavirus Disease-2019 (COVID-19) causes Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) and has opened several challenges for research concerning diagnosis and treatment. Chest X-rays and computed tomography (CT) scans are effective and fast alternatives to detect and assess the damage that COVID causes to the lungs at different stages of the disease. Although the CT scan is an accurate exam, the chest X-ray is still helpful due to the cheaper, faster, lower radiation exposure, and is available in low-incoming countries. Computer-aided diagnostic systems based on Artificial Intelligence (AI) and computer vision are an alternative to extract features from X-ray images, providing an accurate COVID-19 diagnosis. However, specialized and expensive computational resources come across as challenging. Also, it needs to be better understood how low-cost devices and smartphones can hold AI models to predict diseases timely. Even using deep learning to support image-based medical diagnosis, challenges still need to be addressed once the known techniques use centralized intelligence on high-performance servers, making it difficult to embed these models in low-cost devices. This paper sheds light on these questions by proposing the Artificial Intelligence as a Service Architecture (AIaaS), a hybrid AI support operation, both centralized and distributed, with the purpose of enabling the embedding of already-trained models on low-cost devices or smartphones. We demonstrated the suitability of our architecture through a case study of COVID-19 diagnosis using a low-cost device. Among the main findings of this paper, we point out the performance evaluation of low-cost devices to handle COVID-19 predicting tasks timely and accurately and the quantitative performance evaluation of CNN models embodiment on low-cost devices.
Collapse
Affiliation(s)
| | - Rodrigo Moreira
- Institute of Exacts and Technological Sciences (IEP), Federal University of Viçosa, Rio Paranaíba, Minas Gerais, Brazil
| | | | - André Ricardo Backes
- Department of Computing (DC), Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
8
|
Khanjani Z, Watson G, Janeja VP. Audio deepfakes: A survey. Front Big Data 2023; 5:1001063. [PMID: 36700137 PMCID: PMC9869423 DOI: 10.3389/fdata.2022.1001063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/14/2022] [Indexed: 01/11/2023] Open
Abstract
A deepfake is content or material that is synthetically generated or manipulated using artificial intelligence (AI) methods, to be passed off as real and can include audio, video, image, and text synthesis. The key difference between manual editing and deepfakes is that deepfakes are AI generated or AI manipulated and closely resemble authentic artifacts. In some cases, deepfakes can be fabricated using AI-generated content in its entirety. Deepfakes have started to have a major impact on society with more generation mechanisms emerging everyday. This article makes a contribution in understanding the landscape of deepfakes, and their detection and generation methods. We evaluate various categories of deepfakes especially in audio. The purpose of this survey is to provide readers with a deeper understanding of (1) different deepfake categories; (2) how they could be created and detected; (3) more specifically, how audio deepfakes are created and detected in more detail, which is the main focus of this paper. We found that generative adversarial networks (GANs), convolutional neural networks (CNNs), and deep neural networks (DNNs) are common ways of creating and detecting deepfakes. In our evaluation of over 150 methods, we found that the majority of the focus is on video deepfakes, and, in particular, the generation of video deepfakes. We found that for text deepfakes, there are more generation methods but very few robust methods for detection, including fake news detection, which has become a controversial area of research because of the potential heavy overlaps with human generation of fake content. Our study reveals a clear need to research audio deepfakes and particularly detection of audio deepfakes. This survey has been conducted with a different perspective, compared to existing survey papers that mostly focus on just video and image deepfakes. This survey mainly focuses on audio deepfakes that are overlooked in most of the existing surveys. This article's most important contribution is to critically analyze and provide a unique source of audio deepfake research, mostly ranging from 2016 to 2021. To the best of our knowledge, this is the first survey focusing on audio deepfakes generation and detection in English.
Collapse
Affiliation(s)
| | | | - Vandana P. Janeja
- Department of Information System, University of Maryland Baltimore County, Baltimore, MD, United States
| |
Collapse
|
9
|
Visuña L, Yang D, Garcia-Blas J, Carretero J. Computer-aided diagnostic for classifying chest X-ray images using deep ensemble learning. BMC Med Imaging 2022; 22:178. [PMID: 36243705 PMCID: PMC9568999 DOI: 10.1186/s12880-022-00904-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Nowadays doctors and radiologists are overwhelmed with a huge amount of work. This led to the effort to design different Computer-Aided Diagnosis systems (CAD system), with the aim of accomplishing a faster and more accurate diagnosis. The current development of deep learning is a big opportunity for the development of new CADs. In this paper, we propose a novel architecture for a convolutional neural network (CNN) ensemble for classifying chest X-ray (CRX) images into four classes: viral Pneumonia, Tuberculosis, COVID-19, and Healthy. Although Computed tomography (CT) is the best way to detect and diagnoses pulmonary issues, CT is more expensive than CRX. Furthermore, CRX is commonly the first step in the diagnosis, so it's very important to be accurate in the early stages of diagnosis and treatment. RESULTS We applied the transfer learning technique and data augmentation to all CNNs for obtaining better performance. We have designed and evaluated two different CNN-ensembles: Stacking and Voting. This system is ready to be applied in a CAD system to automated diagnosis such a second or previous opinion before the doctors or radiology's. Our results show a great improvement, 99% accuracy of the Stacking Ensemble and 98% of accuracy for the the Voting Ensemble. CONCLUSIONS To minimize missclassifications, we included six different base CNN models in our architecture (VGG16, VGG19, InceptionV3, ResNet101V2, DenseNet121 and CheXnet) and it could be extended to any number as well as we expect extend the number of diseases to detected. The proposed method has been validated using a large dataset created by mixing several public datasets with different image sizes and quality. As we demonstrate in the evaluation carried out, we reach better results and generalization compared with previous works. In addition, we make a first approach to explainable deep learning with the objective of providing professionals more information that may be valuable when evaluating CRXs.
Collapse
Affiliation(s)
- Lara Visuña
- Department of Computer Science and Engineering, University Carlos III, Madrid, Spain
| | - Dandi Yang
- Beijing Electro-Mechanical Engineering Institute, Beijing, China
| | - Javier Garcia-Blas
- Department of Computer Science and Engineering, University Carlos III, Madrid, Spain
| | - Jesus Carretero
- Department of Computer Science and Engineering, University Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Koh SJT, Nafea M, Nugroho H. Towards edge devices implementation: deep learning model with visualization for COVID-19 prediction from chest X-ray. ADVANCES IN COMPUTATIONAL INTELLIGENCE 2022; 2:33. [PMID: 36187081 PMCID: PMC9516511 DOI: 10.1007/s43674-022-00044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/17/2022] [Accepted: 09/01/2022] [Indexed: 10/29/2022]
Abstract
Due to the outbreak of COVID-19 disease globally, countries around the world are facing shortages of resources (i.e. testing kits, medicine). A quick diagnosis of COVID-19 and isolating patients are crucial in curbing the pandemic, especially in rural areas. This is because the disease is highly contagious and can spread easily. To assist doctors, several studies have proposed an initial detection of COVID-19 cases using radiological images. In this paper, we propose an alternative method for analyzing chest X-ray images to provide an efficient and accurate diagnosis of COVID-19 which can run on edge devices. The approach acts as an enabler for the deep learning model to be deployed in practical application. Here, the convolutional neural network models which are fine-tuned to predict COVID-19 and pneumonia infection from chest X-ray images are developed by adopting transfer learning techniques. The developed model yielded an accuracy of 98.13%, sensitivity of 97.7%, and specificity of 99.1%. To highlight the important regions in the X-ray images which directs the model to its decision/prediction, we adopted the Gradient Class Activation Map (Grad-CAM). The generated heat maps from the Grad-CAM were then compared with the annotated X-ray images by board-certified radiologists. Results showed that the findings strongly correlate with clinical evidence. For practical deployment, we implemented the trained model in edge devices (NCS2) and this has achieved an improvement of 90% in inference speed compared to CPU. This shows that the developed model has the potential to be implemented on the edge, for example in primary care clinics and rural areas which are not well-equipped or do not have access to stable internet connections.
Collapse
Affiliation(s)
- Shaline Jia Thean Koh
- Present Address: Department of Electrical and Electronic Engineering, University of Nottingham Malaysia, Semenyih, 43500 Malaysia
| | - Marwan Nafea
- Present Address: Department of Electrical and Electronic Engineering, University of Nottingham Malaysia, Semenyih, 43500 Malaysia
| | - Hermawan Nugroho
- Present Address: Department of Electrical and Electronic Engineering, University of Nottingham Malaysia, Semenyih, 43500 Malaysia
| |
Collapse
|
11
|
Karpiel I, Starcevic A, Urzeniczok M. Database and AI Diagnostic Tools Improve Understanding of Lung Damage, Correlation of Pulmonary Disease and Brain Damage in COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166312. [PMID: 36016071 PMCID: PMC9414394 DOI: 10.3390/s22166312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic caused a sharp increase in the interest in artificial intelligence (AI) as a tool supporting the work of doctors in difficult conditions and providing early detection of the implications of the disease. Recent studies have shown that AI has been successfully applied in the healthcare sector. The objective of this paper is to perform a systematic review to summarize the electroencephalogram (EEG) findings in patients with coronavirus disease (COVID-19) and databases and tools used in artificial intelligence algorithms, supporting the diagnosis and correlation between lung disease and brain damage, and lung damage. Available search tools containing scientific publications, such as PubMed and Google Scholar, were comprehensively evaluated and searched with open databases and tools used in AI algorithms. This work aimed to collect papers from the period of January 2019-May 2022 including in their resources the database from which data necessary for further development of algorithms supporting the diagnosis of the respiratory system can be downloaded and the correlation between lung disease and brain damage can be evaluated. The 10 articles which show the most interesting AI algorithms, trained by using open databases and associated with lung diseases, were included for review with 12 articles related to EEGs, which have/or may be related with lung diseases.
Collapse
Affiliation(s)
- Ilona Karpiel
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
- Correspondence:
| | - Ana Starcevic
- Laboratory for Multimodal Neuroimaging, Institute of Anatomy, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirella Urzeniczok
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
| |
Collapse
|
12
|
Application of artificial intelligence technology in financial data inspection and manufacturing bond default prediction in small and medium-sized enterprises (SMEs). OPERATIONS MANAGEMENT RESEARCH 2022. [DOI: 10.1007/s12063-022-00314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Ali H, Shah Z. Combating COVID-19 Using Generative Adversarial Networks and Artificial Intelligence for Medical Images: Scoping Review. JMIR Med Inform 2022; 10:e37365. [PMID: 35709336 PMCID: PMC9246088 DOI: 10.2196/37365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Research on the diagnosis of COVID-19 using lung images is limited by the scarcity of imaging data. Generative adversarial networks (GANs) are popular for synthesis and data augmentation. GANs have been explored for data augmentation to enhance the performance of artificial intelligence (AI) methods for the diagnosis of COVID-19 within lung computed tomography (CT) and X-ray images. However, the role of GANs in overcoming data scarcity for COVID-19 is not well understood. OBJECTIVE This review presents a comprehensive study on the role of GANs in addressing the challenges related to COVID-19 data scarcity and diagnosis. It is the first review that summarizes different GAN methods and lung imaging data sets for COVID-19. It attempts to answer the questions related to applications of GANs, popular GAN architectures, frequently used image modalities, and the availability of source code. METHODS A search was conducted on 5 databases, namely PubMed, IEEEXplore, Association for Computing Machinery (ACM) Digital Library, Scopus, and Google Scholar. The search was conducted from October 11-13, 2021. The search was conducted using intervention keywords, such as "generative adversarial networks" and "GANs," and application keywords, such as "COVID-19" and "coronavirus." The review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines for systematic and scoping reviews. Only those studies were included that reported GAN-based methods for analyzing chest X-ray images, chest CT images, and chest ultrasound images. Any studies that used deep learning methods but did not use GANs were excluded. No restrictions were imposed on the country of publication, study design, or outcomes. Only those studies that were in English and were published from 2020 to 2022 were included. No studies before 2020 were included. RESULTS This review included 57 full-text studies that reported the use of GANs for different applications in COVID-19 lung imaging data. Most of the studies (n=42, 74%) used GANs for data augmentation to enhance the performance of AI techniques for COVID-19 diagnosis. Other popular applications of GANs were segmentation of lungs and superresolution of lung images. The cycleGAN and the conditional GAN were the most commonly used architectures, used in 9 studies each. In addition, 29 (51%) studies used chest X-ray images, while 21 (37%) studies used CT images for the training of GANs. For the majority of the studies (n=47, 82%), the experiments were conducted and results were reported using publicly available data. A secondary evaluation of the results by radiologists/clinicians was reported by only 2 (4%) studies. CONCLUSIONS Studies have shown that GANs have great potential to address the data scarcity challenge for lung images in COVID-19. Data synthesized with GANs have been helpful to improve the training of the convolutional neural network (CNN) models trained for the diagnosis of COVID-19. In addition, GANs have also contributed to enhancing the CNNs' performance through the superresolution of the images and segmentation. This review also identified key limitations of the potential transformation of GAN-based methods in clinical applications.
Collapse
Affiliation(s)
- Hazrat Ali
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| | - Zubair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
14
|
Radiology's "Smart New Deal". J Digit Imaging 2022; 35:1358-1361. [PMID: 35441279 PMCID: PMC9017963 DOI: 10.1007/s10278-022-00626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
|
15
|
Villavicencio CN, Macrohon JJ, Inbaraj XA, Jeng JH, Hsieh JG. Development of a Machine Learning Based Web Application for Early Diagnosis of COVID-19 Based on Symptoms. Diagnostics (Basel) 2022; 12:diagnostics12040821. [PMID: 35453869 PMCID: PMC9026809 DOI: 10.3390/diagnostics12040821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Detecting the presence of a disease requires laboratory tests, testing kits, and devices; however, these were not always available on hand. This study proposes a new approach in disease detection using machine learning algorithms by analyzing symptoms experienced by a person without requiring laboratory tests. Six supervised machine learning algorithms such as J48 decision tree, random forest, support vector machine, k-nearest neighbors, naïve Bayes algorithms, and artificial neural networks were applied in the “COVID-19 Symptoms and Presence Dataset” from Kaggle. Through hyperparameter optimization and 10-fold cross validation, we attained the highest possible performance of each algorithm. A comparative analysis was performed according to accuracy, sensitivity, specificity, and area under the ROC curve. Results show that random forest, support vector machine, k-nearest neighbors, and artificial neural networks outweighed other algorithms by attaining 98.84% accuracy, 100% sensitivity, 98.79% specificity, and 98.84% area under the ROC curve. Finally, we developed a web application that will allow users to select symptoms currently being experienced, and use it to predict the presence of COVID-19 through the developed prediction model. Based on this mechanism, the proposed method can effectively predict the presence or absence of COVID-19 in a person immediately without using laboratory tests, kits, and devices in a real-time manner.
Collapse
Affiliation(s)
- Charlyn Nayve Villavicencio
- Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan; (J.J.M.); (X.A.I.); (J.-H.J.)
- College of Information and Communications Technology, Bulacan State University, Malolos City 3000, Philippines
- Correspondence: ; Tel.: +886-958-450-028
| | - Julio Jerison Macrohon
- Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan; (J.J.M.); (X.A.I.); (J.-H.J.)
| | - Xavier Alphonse Inbaraj
- Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan; (J.J.M.); (X.A.I.); (J.-H.J.)
| | - Jyh-Horng Jeng
- Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan; (J.J.M.); (X.A.I.); (J.-H.J.)
| | - Jer-Guang Hsieh
- Department of Electrical Engineering, I-Shou University, Kaohsiung City 84001, Taiwan;
| |
Collapse
|
16
|
Classification of Diseases Using Machine Learning Algorithms: A Comparative Study. MATHEMATICS 2021. [DOI: 10.3390/math9151817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Machine learning in the medical area has become a very important requirement. The healthcare professional needs useful tools to diagnose medical illnesses. Classifiers are important to provide tools that can be useful to the health professional for this purpose. However, questions arise: which classifier to use? What metrics are appropriate to measure the performance of the classifier? How to determine a good distribution of the data so that the classifier does not bias the medical patterns to be classified in a particular class? Then most important question: does a classifier perform well for a particular disease? This paper will present some answers to the questions mentioned above, making use of classification algorithms widely used in machine learning research with datasets relating to medical illnesses under the supervised learning scheme. In addition to state-of-the-art algorithms in pattern classification, we introduce a novelty: the use of meta-learning to determine, a priori, which classifier would be the ideal for a specific dataset. The results obtained show numerically and statistically that there are reliable classifiers to suggest medical diagnoses. In addition, we provide some insights about the expected performance of classifiers for such a task.
Collapse
|
17
|
COVID-19 Prediction Applying Supervised Machine Learning Algorithms with Comparative Analysis Using WEKA. ALGORITHMS 2021. [DOI: 10.3390/a14070201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early diagnosis is crucial to prevent the development of a disease that may cause danger to human lives. COVID-19, which is a contagious disease that has mutated into several variants, has become a global pandemic that demands to be diagnosed as soon as possible. With the use of technology, available information concerning COVID-19 increases each day, and extracting useful information from massive data can be done through data mining. In this study, authors utilized several supervised machine learning algorithms in building a model to analyze and predict the presence of COVID-19 using the COVID-19 Symptoms and Presence dataset from Kaggle. J48 Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbors and Naïve Bayes algorithms were applied through WEKA machine learning software. Each model’s performance was evaluated using 10-fold cross validation and compared according to major accuracy measures, correctly or incorrectly classified instances, kappa, mean absolute error, and time taken to build the model. The results show that Support Vector Machine using Pearson VII universal kernel outweighs other algorithms by attaining 98.81% accuracy and a mean absolute error of 0.012.
Collapse
|