1
|
Eliso MC, Corsi I, Spagnuolo A, Dumollard R. Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Phallusia mammillata Embryos. J Xenobiot 2025; 15:10. [PMID: 39846542 PMCID: PMC11755549 DOI: 10.3390/jox15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Nanoplastics pose a growing threat to marine ecosystems, particularly affecting the early developmental stages of marine organisms. This study investigates the effects of amino-modified polystyrene nanoparticles (PS-NH2, 50 nm) on the embryonic development of Phallusia mammillata, a model ascidian species. Both chorionated and dechorionated embryos were exposed to increasing concentrations of PS-NH2 so morphological alterations could be assessed with a high-content analysis of the phenotypes and genotoxicity. PS-NH2 induced the same morphological alterations in both chorionated and dechorionated embryos, with dechorionated embryos being more sensitive (EC50 = 3.0 μg mL-1) than chorionated ones (EC50 = 6.26 μg mL-1). Interestingly, results from the morphological analysis showed two concentration-dependent mechanisms of action: (i) at concentrations near the EC50, neurodevelopmental abnormalities resembling the ones induced by exposure to known endocrine disruptors (EDs) were observed, and (ii) at higher concentrations (15 μg mL-1 and 7.5 μg mL-1 for chorionated and dechorionated embryos, respectively), a nonspecific toxicity was evident, likely due to general oxidative stress. The phenotypes resulting from the PS-NH2 treatment were not related to DNA damage, as revealed by a genotoxicity assay performed on neurula embryos. Our data suggest that PS-NH2-induced toxicity is primarily mediated through oxidative stress, probably triggered by interactions between the positive charges of the PS NPs and the negative charges on the cell membranes. The lack of a protective chorion further exacerbated these effects, highlighting its role in mitigating/protecting against NP-induced damage.
Collapse
Affiliation(s)
- Maria Concetta Eliso
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy;
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100 Siena, Italy;
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement (LBDV), Institut de la Mer de Villefranche (IMEV), Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), 06230 Villefranche-sur-Mer, France;
| |
Collapse
|
2
|
Yeung KWY, Lai RWS, Zhou GJ, Leung KMY. Concentration-response of six marine species to all-trans-retinoic acid and its ecological risk to the marine environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113455. [PMID: 35358921 DOI: 10.1016/j.ecoenv.2022.113455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Being a class of vitamin A's main derivatives, retinoic acids (RAs) are important to animals' growth and development. Previous studies demonstrated that exposure of excessive amounts of RAs would lead to malformation and abnormal development in aquatic animals such as amphibians and fishes. Currently, there are only limited toxicity data of RAs available for freshwater species, while those for marine species are seriously lacking. This study aimed to fill such data gap by conducting toxicity tests on six marine species (i.e., one microalga, four invertebrates and one fish) towards the exposure to all-trans-RA (at-RA), which is the most widely distributed RA in the environment. Results showed that the embryo of medaka fish Oryzias melastigma was the most sensitive towards the exposure of at-RA while the gastropod Monodonta labio was the least sensitive. A species sensitivity distribution (SSD) was constructed based on the experimental results generated from the present study. An interim marine-specific predicted no-effect concentration (PNEC) of at-RA was derived at 2300 ng/L. By computing the hazard quotients using the interim marine-specific PNEC and available measured and predicted concentrations of RAs, we found the current levels of RAs posed no immediate risks to the marine environment of Hong Kong. The interim marine-specific PNEC was more than 500-fold of freshwater-specific PNEC (i.e., 3.93 ng/L), indicating that marine species were generally less sensitive than their freshwater counterparts towards RAs. This was the first study to document the concentration-response of various marine species towards at-RA exposure and construct the marine-specific SSD for assessing the ecological risk of at-RA towards the marine environment. Since various forms of RAs and their metabolites often coexist in aquatic environments, further studies should investigate their combined toxicity to an array of marine species of different trophic levels with consideration of chronic exposure scenarios.
Collapse
Affiliation(s)
- Katie Wan Yee Yeung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Racliffe Weng Seng Lai
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Battistoni M, Mercurio S, Ficetola GF, Metruccio FC, Menegola E, Pennati R. The Ascidian Embryo Teratogenicity assay in Ciona intestinalis as a new teratological screening to test the mixture effect of the co-exposure to ethanol and fluconazole. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:76-85. [PMID: 29223040 DOI: 10.1016/j.etap.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to evaluate the Ascidian Embryo Teratogenicity assay (AET) as new alternative invertebrate model to test the developmental effects of the co-exposure to ethanol and fluconazole. Ciona intestinalis embryos were exposed to the azolic fungicide fluconazole, (FLUCO, 7.8-250μM), to ethanol (Eth, 0.01-0.5%) and to their mixture (0.01% Eth+FLUCO 7.8-250μM) from neurula to larval stage. At the end of the exposure period, larvae were morphologically evaluated and benchmark analysis performed by using the PROAST modelling software. Both compounds were teratogenic in a concentration-related manner, particularly affecting the pigmented organs. The co-exposure to Eth enhanced the effects of FLUCO, the additive hypothesis was not rejected by the modelling. The results demonstrated that AET could be considered a good vertebrate-free alternative model for toxicological investigation in embryos.
Collapse
Affiliation(s)
- Maria Battistoni
- Department of Environmental Sciences and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Silvia Mercurio
- Department of Environmental Sciences and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Gentile Francesco Ficetola
- Department of Environmental Sciences and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | - Francesca Cristiana Metruccio
- International Centre for Pesticides and Health Risk Prevention (ICPS), University Hospital Luigi Sacco, via G.B. Grassi 74, 20157 Milan, Italy
| | - Elena Menegola
- Department of Environmental Sciences and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy.
| | - Roberta Pennati
- Department of Environmental Sciences and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
4
|
Drážovská M, Šiviková K, Holečková B, Dianovský J, Galdíková M, Schwarzbacherová V. Evaluation of potential genotoxic/cytotoxic effects induced by epoxiconazole and fenpropimorph-based fungicide in bovine lymphocytes in vitro. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:769-776. [PMID: 27428828 DOI: 10.1080/03601234.2016.1198643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Potential genotoxic/cytotoxic effects of the epoxiconazole/fenpropimorph-based fungicide were investigated using single cell gel electrophoresis and cytogenetic assays: chromosomal aberrations, sister chromatid exchanges, micronuclei and fluorescence in situ hybridization in cultured bovine lymphocytes. No statistically significant elevations of DNA damage and increases in cytogenetic endpoints were seen. However, evident cytotoxic effect presented as a decrease in mitotic and proliferation indices were recorded after exposure of bovine lymphocytes to the fungicide for 24 and 48 h at concentrations ranging from 3 to 15 µg mL(-1) (P < 0.05, P < 0.01, P < 0.001). Similarly, for 24 h an inhibition in the cytokinesis block proliferation index (CBPI) was obtained after exposure to the fungicide at concentrations ranging from 1.5 to 15 µg mL(-1) (P < 0.01, P < 0.001) in each donor.
Collapse
Affiliation(s)
- Monika Drážovská
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| | - Katarína Šiviková
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| | - Beáta Holečková
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| | - Ján Dianovský
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| | - Martina Galdíková
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| | - Viera Schwarzbacherová
- a Department of Biology and Genetics , University of Veterinary Medicine and Pharmacy in Košice , Košice , Slovak Republic
| |
Collapse
|
5
|
Zega G, Candiani S, Groppelli S, De Bernardi F, Pennati R. Neurotoxic effect of the herbicide paraquat on ascidian larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:24-31. [PMID: 21787578 DOI: 10.1016/j.etap.2009.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 07/06/2009] [Accepted: 09/02/2009] [Indexed: 05/31/2023]
Abstract
Paraquat is an herbicide widely used in agriculture, that proved to have toxic effect on many animal models. Moreover, it is considered a potential etiologic factor of Parkinson's disease. Ascidians are invertebrate chordates, whose larval central nervous system shares basic structural homologies with the vertebrate one. Ascidian larvae exposed to paraquat developed specific alterations of the CNS, that were characterized by histological and immunohistochemical analysis. Tyrosine hydroxylase (TH) expression was examined by "in situ" hybridization. A decrease of dopamine content in anterior CNS of treated larvae was observed. In combined treatments with paraquat and l-ascorbic acid, a common anti-oxidant, the severity of the malformations was significantly reduced, confirming that the oxidative stress is involved in the toxicity mechanism of paraquat on ascidians. For its sensitivity to paraquat and its simple chordate body plan, ascidian larva is a promising animal model to further investigate the molecular mechanism of paraquat neurotoxicity.
Collapse
Affiliation(s)
- Giuliana Zega
- Dipartimento di Biologia, Università di Milano, Via Celoria 26, 20133, Milano, Italy
| | | | | | | | | |
Collapse
|
6
|
Zega G, De Bernardi F, Groppelli S, Pennati R. Effects of the azole fungicide Imazalil on the development of the ascidian Ciona intestinalis (Chordata, Tunicata): morphological and molecular characterization of the induced phenotype. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 91:255-261. [PMID: 19124165 DOI: 10.1016/j.aquatox.2008.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/18/2008] [Accepted: 11/19/2008] [Indexed: 05/27/2023]
Abstract
Imazalil (IMA) is a fungicide that is used extensively in fruit plantations and post-harvest treatments, but has teratogenic effects on vertebrate development, possibly due to the perturbation of retinoic acid (RA) levels in the embryo. Ascidians are sessile marine invertebrate chordates that develop through a tadpole larva, with a body plan that shares basic homologies with vertebrates. In this work, we tested the effects of IMA on the development of the solitary ascidian Ciona intestinalis by treating two-cell stage embryos with a range of concentrations (0.1, 0.5, 1, 2.5, 5, 10, 20 and 50microThe fungicide significantly altered ascidian development even at low concentrations and its effects were dose-dependent. Probit analysis revealed that the median lethal concentration, LC(50), was 4.87microM and the median teratogenic concentration, TC(50), was 0.73microM. Larvae developing from embryos exposed to IMA showed malformations of the anterior structures, which became more severe as IMA concentration increased. In particular, the anterior nervous system and the sensory vesicle were reduced, and the pigmented organs (the ocellus and the otolith) progressively lost their pigmentation. The larval phenotype induced by 5microM IMA exposure was further characterized by means of molecular analysis, through whole mount in situ hybridization with probes for genes related to the nervous system: Ci-Otp, Ci-GAD, Ci-POU IV, which are markers of the anterior neuro-ectoderm, the central nervous system and the peripheral nervous system respectively, and Ci-Hox-1, a gene specifically activated by RA, and Ci-Aldh2, a gene for aldehyde dehydrogenase, which is involved in RA synthesis. The altered expression of Ci-Otp, Ci-GAD, Ci-POU IV in 5microM IMA-exposed larvae compared to control larvae showed that this fungicide could affect the differentiation of the anterior nervous system, particularly of the sensory vesicle neurons. Recent studies suggest a similarity between IMA- and RA-induced phenotypes in tunicates, indicating that triazoles may also alter RA metabolism in ascidians. The observed Ci-Hox-1 and Ci-Aldh2 expression in control and treated larvae did not allow a direct link between IMA teratogenic potential and RA-dependent morphogenesis to be identified. It is likely that the fungicidal teratogenic mechanism involved RA signalling but that its effects on ascidian development depend on a more complex mechanism.
Collapse
Affiliation(s)
- Giuliana Zega
- Dipartimento di Biologia, Università di Milano, Via Celoria, 26, I-20133 Milano, Italy
| | | | | | | |
Collapse
|
7
|
Genotoxicity testing of fluconazole in vivo and in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2008; 649:155-60. [DOI: 10.1016/j.mrgentox.2007.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 08/08/2007] [Accepted: 08/30/2007] [Indexed: 11/17/2022]
|