1
|
Siddiqui AJ, Adnan M, Saxena J, Alam MJ, Abdelgadir A, Badraoui R, Singh R. Therapeutic Potential of Plant- and Marine-Derived Bioactive Compounds in Prostate Cancer: Mechanistic Insights and Translational Applications. Pharmaceuticals (Basel) 2025; 18:286. [PMID: 40143065 PMCID: PMC11946378 DOI: 10.3390/ph18030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
It is widely recognized that prostate cancer is a multifaceted illness that is the second most common cause of cancer-related fatalities among males. Natural sources from both plants and marine organisms have long been used in treating various diseases and in the discovery of new pharmaceutical compounds. Medicinal plants, in particular, provide bioactive substances like alkaloids, phenolic compounds, terpenes, and steroids. In addition, marine natural products play a crucial role in the search for novel cancer treatments. A substantial number of anticancer drugs have been derived from natural sources, including plants, marine organisms, and microorganisms. In fact, over the past 60 years, 80% of new chemical entities have originated from natural sources, which are generally considered safer than synthetic compounds. This review seeks to emphasize the role of phytochemical compounds derived from both plant and marine sources in prostate cancer, highlighting their potential therapeutic impact. It is also intended to support global researchers working on the identification of natural-based treatments for prostate cancer.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara 391760, Gujarat, India;
| | - Mohammad Jahoor Alam
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Abdelmushin Abdelgadir
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Ha’il, Ha’il P.O. Box 2440, Saudi Arabia; (M.A.); (M.J.A.); (A.A.); (R.B.)
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| |
Collapse
|
2
|
Guo X, Fan A, Qi X, Liu D, Huang J, Lin W. Indoloquinazoline alkaloids suppress angiogenesis and inhibit metastasis of melanoma cells. Bioorg Chem 2023; 141:106873. [PMID: 37734192 DOI: 10.1016/j.bioorg.2023.106873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Metastasis is the leading cause of cancer-related mortality, targeting angiogenesis emerges as a therapeutic strategy for the treatment of melanoma metastasis. Discovery of new antiangiogenic compounds with specific mechanism of action is still desired. In present study, a bioassay-guidance uncovers the EtOAc extract of a marine-derived fungus Aspergillus clavutus LZD32-24 with significant inhibitory activity against the angiogenesis in Tg (fli1a: EGFP) zebrafish model. Extensive chromatographic fractionation led to the isolation of 48 indoloquinazoline alkaloids, including 21 new analogues namely clavutoines A-U (1-21). Their structures were determined by the spectroscopic data, including the ECD, single crystal X-ray diffraction and quantum chemical calculation for the configurational assignments. Among the bioactive analogues, quinadoline B (QB) showed the most efficacy to suppress the zebrafish vascular outgrowth in zebrafish embryos. QB markedly inhibited the migration, invasion and tube formation with weak cytotoxicity in human umbilical vein endothelial cells (HUVECs). Investigation of the mode of action revealed QB suppressed the ROCK/MYPT1/MLC2/coffin and FAK /Src signaling pathways, and subsequently disrupted actin cytoskeletal organization. In addition, QB reduced the number of new vessels sprouting from the ex vivo chick chorioallantoic membrane (CAM), and inhibited the metastasis of B16F10 melanoma cells in lung of C57BL/6 mice through suppressing angiogenesis. These findings suggest that QB is a potential lead for the development of new antiangiogenic agent to inhibit melanoma metastasis.
Collapse
Affiliation(s)
- Xingchen Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Xinyi Qi
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China.
| |
Collapse
|
3
|
Exploring the Antiangiogenic Potential of Solomonamide A Bioactive Precursors: In Vitro and in Vivo Evidences of the Inhibitory Activity of Solo F-OH During Angiogenesis. Mar Drugs 2019; 17:md17040228. [PMID: 30991727 PMCID: PMC6520732 DOI: 10.3390/md17040228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Marine sponges are a prolific source of bioactive compounds. In this work, the putative antiangiogenic potential of a series of synthetic precursors of Solomonamide A, a cyclic peptide isolated from a marine sponge, was evaluated. By means of an in vitro screening, based on the inhibitory activity of endothelial tube formation, the compound Solo F-OH was selected for a deeper characterization of its antiangiogenic potential. Our results indicate that Solo F-OH is able to inhibit some key steps of the angiogenic process, including the proliferation, migration, and invasion of endothelial cells, as well as diminish their capability to degrade the extracellular matrix proteins. The antiangiogenic potential of Solo F-OH was confirmed by means of two different in vivo models: the chorioallantoic membrane (CAM) and the zebrafish yolk membrane (ZFYM) assays. The reduction in ERK1/2 and Akt phosphorylation in endothelial cells treated with Solo F-OH denotes that this compound could target the upstream components that are common to both pathways. Taken together, our results show a new and interesting biological activity of Solo F-OH as an inhibitor of the persistent and deregulated angiogenesis that characterizes cancer and other pathologies.
Collapse
|
4
|
Baharara J, Amini E, Musavi M. Anti-Vasculogenic Activity of a Polysaccharide Derived from Brittle Star via Inhibition of VEGF, Paxillin and MMP-9. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:179-185. [PMID: 29845067 DOI: 10.15171/ijb.1208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
Abstract
Background: Bioactive compounds such as terpenoids, chondroitin sulfate, and polysaccharides with added value can be found in prestine marine creatures. These compounds often do have highly valuable therapeutic applications such as being antioxidant, antitumorogenic, anti-inflammatory and anti-angiogenic. For the latter, varieties of angiogenesis factors can suppress this issue within the bodily tissues. Objectives: The anti-angiogenic and anti-metastatic capacity of a polysaccharide derived from brittle star was investigated. Material and Methods: The anti-proliferative effect of derived polysaccharide on umbilical vein endothelial cells (HUVEC) was measured using MTT (dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. The anti-angiogenic effect of the isolated polysaccharide was examined by Chorioallantoic membrane (CAM) assay. The transcriptional expression of VEGF (Vascular Endothelial Growth Factor) was evaluated by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). The anti-metastatic activity was investigated via scratch-wound healing assay. The levels of Paxillin and Matrix Metalloproteinase-9 (MMP-9) expression were analyzed by RT-PCR. Statistical analysis and mean comparisons (p< 0.05) were carried out by SPSS 16. Results: Our results elucidated that the brittle star isolated polysaccharide exerted a dose dependent cytotoxic effect on the HUVEC endothelial cells. The CAM assay exhibited potent anti-angiogenic activity in vivo. The RT-PCR analysis showed that the extracted polysaccharide (40, 60 µg.mL-1) down-regulated the VEGF expression. Further, the diminished attachment of endothelial cells demonstrated that the anti-invasiveness of the derived polysaccharide (25, 50 µg.mL-1) was administrated via down-regulation of paxillin and MMP-9 mRNA expression. Conclusions: Taken together, these results indicated that the polysaccharide extracted from brittle star was able to decrease the viability of the HUVEC cells, to suppress angiogenesis, and possibly act as a natural anti-angiogenic and anti-metastatic marine organic compound against angiogenesis related pathologies.
Collapse
Affiliation(s)
- Javad Baharara
- Department of Biology, Research Center For Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, 9183897194, Iran
| | - Elaheh Amini
- Department of Cellular & Molecular Biology, Faculty of Biology, Kharazmi University, Tehran, 14911-15719, Iran
| | - Marziyeh Musavi
- Department Faculty of Biological Science, Mashhad Branch, Islamic Azad University, Mashhad, 9183897194, Iran
| |
Collapse
|
5
|
Mioso R, Marante FJT, Bezerra RDS, Borges FVP, Santos BVDO, Laguna IHBD. Cytotoxic Compounds Derived from Marine Sponges. A Review (2010-2012). Molecules 2017; 22:E208. [PMID: 28134844 PMCID: PMC6155849 DOI: 10.3390/molecules22020208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Abstract: This extensive review covers research published between 2010 and 2012 regarding new compounds derived from marine sponges, including 62 species from 60 genera belonging to 33 families and 13 orders of the Demospongia class (Porifera). The emphasis is on the cytotoxic activity that bioactive metabolites from sponges may have on cancer cell lines. At least 197 novel chemical structures from 337 compounds isolated have been found to support this work. Details on the source and taxonomy of the sponges, their geographical occurrence, and a range of chemical structures are presented. The compounds discovered from the reviewed marine sponges fall into mainly four chemical classes: terpenoids (41.9%), alkaloids (26.2%), macrolides (8.9%) and peptides (6.3%) which, along with polyketides, sterols, and others show a range of biological activities. The key sponge orders studied in the reviewed research were Dictyoceratida, Haplosclerida, Tetractinellida, Poecilosclerida, and Agelasida. Petrosia, Haliclona (Haplosclerida), Rhabdastrella (Tetractinellida), Coscinoderma and Hyppospongia (Dictyioceratida), were found to be the most promising genera because of their capacity for producing new bioactive compounds. Several of the new compounds and their synthetic analogues have shown in vitro cytotoxic and pro-apoptotic activities against various tumor/cancer cell lines, and some of them will undergo further in vivo evaluation.
Collapse
Affiliation(s)
- Roberto Mioso
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Francisco J Toledo Marante
- Department of Chemistry, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain.
| | - Ranilson de Souza Bezerra
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Flávio Valadares Pereira Borges
- Post-Graduation Program in Natural Products and Synthetic Bioactives, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| | - Bárbara V de Oliveira Santos
- Post-Graduation Program in Development and Technological Innovation in Medicines, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Paraíba, Brazil.
| | | |
Collapse
|
6
|
García-Caballero M, Blacher S, Paupert J, Quesada AR, Medina MA, Noël A. Novel application assigned to toluquinol: inhibition of lymphangiogenesis by interfering with VEGF-C/VEGFR-3 signalling pathway. Br J Pharmacol 2016; 173:1966-87. [PMID: 27018653 DOI: 10.1111/bph.13488] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Lymphangiogenesis is an important biological process associated with the pathogenesis of several diseases, including metastatic dissemination, graft rejection, lymphoedema and other inflammatory disorders. The development of new drugs that block lymphangiogenesis has become a promising therapeutic strategy. In this study, we investigated the ability of toluquinol, a 2-methyl-hydroquinone isolated from the culture broth of the marine fungus Penicillium sp. HL-85-ALS5-R004, to inhibit lymphangiogenesis in vitro, ex vivo and in vivo. EXPERIMENTAL APPROACH We used human lymphatic endothelial cells (LECs) to analyse the effect of toluquinol in 2D and 3D in vitro cultures and in the ex vivo mouse lymphatic ring assay. For in vivo approaches, the transgenic Fli1:eGFPy1 zebrafish, mouse ear sponges and cornea models were used. Western blotting and apoptosis analyses were carried out to search for drug targets. KEY RESULTS Toluquinol inhibited LEC proliferation, migration, tubulogenesis and sprouting of new lymphatic vessels. Furthermore, toluquinol induced apoptosis of LECs after 14 h of treatment in vitro, blocked the development of the thoracic duct in zebrafish and reduced the VEGF-C-induced lymphatic vessel formation and corneal neovascularization in mice. Mechanistically, we demonstrated that this drug attenuates VEGF-C-induced VEGFR-3 phosphorylation in a dose-dependent manner and suppresses the phosphorylation of Akt and ERK1/2. CONCLUSIONS AND IMPLICATIONS Based on these findings, we propose toluquinol as a new candidate with pharmacological potential for the treatment of lymphangiogenesis-related pathologies. Notably, its ability to suppress corneal neovascularization paves the way for applications in vascular ocular pathologies.
Collapse
Affiliation(s)
- M García-Caballero
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - S Blacher
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - J Paupert
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| | - A R Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Andalucía Tech, Málaga, Spain.,Unidad 741 de CIBER "de Enfermedades Raras", Málaga, Spain
| | - M A Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Universidad de Málaga, Andalucía Tech, Málaga, Spain.,Unidad 741 de CIBER "de Enfermedades Raras", Málaga, Spain
| | - A Noël
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliqué-Cancer (GIGA-Cancer), University of Liège, Liège, Belgium
| |
Collapse
|
7
|
Brömme D, Panwar P, Turan S. Cathepsin K osteoporosis trials, pycnodysostosis and mouse deficiency models: Commonalities and differences. Expert Opin Drug Discov 2016; 11:457-72. [DOI: 10.1517/17460441.2016.1160884] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dieter Brömme
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Preety Panwar
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Istanbul, Turkey
| |
Collapse
|
8
|
Apoptosis-Inducing Activity of Marine Sponge Haliclona sp. Extracts Collected from Kosrae in Nonsmall Cell Lung Cancer A549 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:717959. [PMID: 26236382 PMCID: PMC4508479 DOI: 10.1155/2015/717959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/07/2015] [Accepted: 06/10/2015] [Indexed: 11/18/2022]
Abstract
Although various anticancer drugs have been developed for the treatment of nonsmall cell lung cancer, chemotherapeutic efficacy is still limited. Natural products such as phytochemicals have been screened as novel alternative materials, but alternative funds such as marine bioresources remain largely untapped. Of these resources, marine sponges have undergone the most scrutiny for their biological activities, including antiinflammatory, antiviral, and anticancer properties. However, the biological mechanisms of the activities of these marine sponges are still unclear. We investigated the anticancer activity of marine sponges collected from Kosrae in Micronesia and examined their mechanisms of action using nonsmall cell lung cancer A549 cells as a model system. Of 20 specimens, the Haliclona sp. (KO1304-328) showed both dose- and time-dependent cytotoxicity. Further, methanol extracts of Haliclona sp. significantly inhibited cell proliferation and cell viability. A549 cells treated with Haliclona sp. demonstrated induced expression of c-Jun N-terminal kinase (JNK), p53, p21, caspase-8, and caspase-3. The percentage of apoptotic cells significantly increased in A549 cultures treated with Haliclona sp. These results indicate that Haliclona sp. induces apoptosis via the JNK-p53 pathway and caspase-8, suggesting that this marine sponge is a good resource for the development of drugs for treatment of nonsmall cell lung cancer.
Collapse
|
9
|
García-Godoy MJ, López-Camacho E, García-Nieto J, Aldana-Montes AJNJF. Solving molecular docking problems with multi-objective metaheuristics. Molecules 2015; 20:10154-83. [PMID: 26042856 PMCID: PMC6272647 DOI: 10.3390/molecules200610154] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/21/2015] [Indexed: 12/02/2022] Open
Abstract
Molecular docking is a hard optimization problem that has been tackled in the past with metaheuristics, demonstrating new and challenging results when looking for one objective: the minimum binding energy. However, only a few papers can be found in the literature that deal with this problem by means of a multi-objective approach, and no experimental comparisons have been made in order to clarify which of them has the best overall performance. In this paper, we use and compare, for the first time, a set of representative multi-objective optimization algorithms applied to solve complex molecular docking problems. The approach followed is focused on optimizing the intermolecular and intramolecular energies as two main objectives to minimize. Specifically, these algorithms are: two variants of the non-dominated sorting genetic algorithm II (NSGA-II), speed modulation multi-objective particle swarm optimization (SMPSO), third evolution step of generalized differential evolution (GDE3), multi-objective evolutionary algorithm based on decomposition (MOEA/D) and S-metric evolutionary multi-objective optimization (SMS-EMOA). We assess the performance of the algorithms by applying quality indicators intended to measure convergence and the diversity of the generated Pareto front approximations. We carry out a comparison with another reference mono-objective algorithm in the problem domain (Lamarckian genetic algorithm (LGA) provided by the AutoDock tool). Furthermore, the ligand binding site and molecular interactions of computed solutions are analyzed, showing promising results for the multi-objective approaches. In addition, a case study of application for aeroplysinin-1 is performed, showing the effectiveness of our multi-objective approach in drug discovery.
Collapse
Affiliation(s)
- María Jesús García-Godoy
- Khaos Research Group, Departament of Computer Sciences, University of Málaga (UMA), ETSI Informática, Campus de Teatinos, Málaga 29071, Spain.
| | - Esteban López-Camacho
- Khaos Research Group, Departament of Computer Sciences, University of Málaga (UMA), ETSI Informática, Campus de Teatinos, Málaga 29071, Spain.
| | - José García-Nieto
- Khaos Research Group, Departament of Computer Sciences, University of Málaga (UMA), ETSI Informática, Campus de Teatinos, Málaga 29071, Spain.
| | | |
Collapse
|
10
|
Su TR, Liao ZJ, Lu MC, Wu YJ, Su JH. Cytotoxic Monocarbocyclic Sesterterpenoids from a Marine Sponge Luffariella sp. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20140251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tzu-Rong Su
- Department of Beauty Science, Meiho University
- Antai Medical Care Cooperation, Antai Tian-Sheng Memorial Hospital
| | - Zuo-Jian Liao
- Graduate Institute of Marine Biology, National Dong Hwa University
- National Museum of Marine Biology & Aquarium
| | - Mei-Chin Lu
- Graduate Institute of Marine Biology, National Dong Hwa University
- National Museum of Marine Biology & Aquarium
| | - Yu-Jen Wu
- Department of Beauty Science, Meiho University
| | - Jui-Hsin Su
- Graduate Institute of Marine Biology, National Dong Hwa University
- National Museum of Marine Biology & Aquarium
| |
Collapse
|
11
|
Do MT, Na M, Kim HG, Khanal T, Choi JH, Jin SW, Oh SH, Hwang IH, Chung YC, Kim HS, Jeong TC, Jeong HG. Ilimaquinone induces death receptor expression and sensitizes human colon cancer cells to TRAIL-induced apoptosis through activation of ROS-ERK/p38 MAPK-CHOP signaling pathways. Food Chem Toxicol 2014; 71:51-9. [PMID: 24930757 DOI: 10.1016/j.fct.2014.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/01/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
Abstract
TRAIL induces apoptosis in a variety of tumor cells. However, development of resistance to TRAIL is a major obstacle to more effective cancer treatment. Therefore, novel pharmacological agents that enhance sensitivity to TRAIL are necessary. In the present study, we investigated the molecular mechanisms by which ilimaquinone isolated from a sea sponge sensitizes human colon cancer cells to TRAIL. Ilimaquinone pretreatment significantly enhanced TRAIL-induced apoptosis in HCT 116 cells and sensitized colon cancer cells to TRAIL-induced apoptosis through increased caspase-8, -3 activation, PARP cleavage, and DNA damage. Ilimaquinone also reduced the cell survival proteins Bcl2 and Bcl-xL, while strongly up-regulating death receptor (DR) 4 and DR5 expression. Induction of DR4 and DR5 by ilimaquinone was mediated through up-regulation of CCAAT/enhancer-binding protein homologous protein (CHOP). The up-regulation of CHOP, DR4 and DR5 expression was mediated through activation of extracellular-signal regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. Finally, the generation of ROS was required for CHOP and DR5 up-regulation by ilimaquinone. These results demonstrate that ilimaquinone enhanced the sensitivity of human colon cancer cells to TRAIL-induced apoptosis through ROS-ERK/p38 MAPK-CHOP-mediated up-regulation of DR4 and DR5 expression, suggesting that ilimaquinone could be developed into an adjuvant chemotherapeutic drug.
Collapse
Affiliation(s)
- Minh Truong Do
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - MinKyun Na
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Gyun Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Tilak Khanal
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seok Hoon Oh
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - In Hyun Hwang
- Department of Chemistry, University of Iowa, Iowa City, USA
| | - Young Chul Chung
- Department of Food and Medicine, International University of Korea, Jinju, Republic of Korea
| | - Hee Suk Kim
- Department of Food Science and Culinary, International University of Korea, Jinju, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea.
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|