1
|
Lasaneya A, Saikia Q, Dutta S, Kalita JC. Impact of endocrine disruptors in cosmetics on reproductive function in males and females. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2025; 43:184-207. [PMID: 40326240 DOI: 10.1080/26896583.2025.2498831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The cosmetic and personal care product (PCP) industries have bloomed in the last ten years. Many new brand names have established themselves with various lucrative advertisements, luring youths into their primary customers. Many chemicals infused into daily day-night creams or shampoo conditioners have been established as Endocrine Disrupting Chemicals (EDC). The unseen side of the coin has been flipped in this article in an attempt to relate the rising infertility issue with these products. The study aims to explore the potential adverse effects and risk assessment of the EDCs of cosmetics and personal care products, which highlights a thorough review to indicate whether chemicals such as parabens, phthalates, or UV filters are safe for reproductive physiology. EDCs may cause severe negative impacts on the reproductive systems of both males and females which include reproductive problems such as polycystic ovarian syndrome, hypospadias, cryptorchidism, ovarian cancer, endometriosis, and poor sperm quality. Despite the widespread usage and purchase of cosmetic products in the present world, little research has been conducted on the possible effects of cosmetic EDCs on health. Consequently, further in-depth research needs to be performed in this field for a better understanding of the reproductive risks caused by cosmetic EDCs.
Collapse
Affiliation(s)
- Ahmed Lasaneya
- Department of Zoology, Gauhati University, Guwahati, India
| | | | - Sagarika Dutta
- Department of Zoology, Gauhati University, Guwahati, India
| | | |
Collapse
|
2
|
da Costa IR, Erthal RP, da Silva Scarton SR, Gonzalez SM, Cerezetti MB, Morotti F, Seneda MM, Fernandes GSA. In vitro exposure to butylparaben impairs the integrity and size of ovarian follicles in a bovine model. Vet Res Commun 2024; 48:3743-3750. [PMID: 39259415 DOI: 10.1007/s11259-024-10531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
There is a growing regulatory and scientific interest in the studies of environmental substances that are capable of interfering with the reproductive system. Among them, parabens stand out due to their widespread use and frequent detection as contaminants in human tissues and biological fluids. Therefore, we evaluated the toxic effects of butylparaben on the viability and follicular staging of bovine ovarian follicles in vitro. Fragments of ovaries from five cyclic bovine females were cultured for 44 h in a minimal essential medium (MEM; control) or MEM supplemented with 50 µg/mL and 100 µg/mL of butylparaben (BP 50 and BP 100 groups, respectively). The ovarian fragments were subjected to follicular staging, morphological analysis, morphometric analysis, estradiol analysis and oxidative profiling. No significant changes were observed between the experimental groups in follicular staging, estradiol analysis and oxidative profile analysis. However, the BP 50 group showed a significant decrease in the number of intact ovarian follicles. Moreover, a decrease in the follicular and oocyte diameters was observed in the groups that were exposed to butylparaben. In conclusion, butylparaben impairs the integrity and size of ovarian follicles in an in vitro bovine model, but does not affect the oxidative profile and steroidogenesis.
Collapse
Affiliation(s)
- Ivana Regina da Costa
- Department of General Biology, Biological Sciences Center, State University of Londrina- UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, 86057-970, Paraná, Brazil
| | - Rafaela Pires Erthal
- Department of General Pathology, Biological Sciences Center, State University of Londrina- UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, 86057-970, Paraná, Brazil
| | - Suellen Ribeiro da Silva Scarton
- Department of General Pathology, Biological Sciences Center, State University of Londrina- UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, 86057-970, Paraná, Brazil
| | - Suellen Miguez Gonzalez
- Department of Veterinary Clinics, Agrarian Sciences Center, State University of Londrina- UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, 86057-970, Paraná, Brazil
| | - Marcela Bortoletto Cerezetti
- Department of Veterinary Clinics, Agrarian Sciences Center, State University of Londrina- UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, 86057-970, Paraná, Brazil
| | - Fábio Morotti
- Department of Veterinary Clinics, Agrarian Sciences Center, State University of Londrina- UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, 86057-970, Paraná, Brazil
| | - Marcelo Marcondes Seneda
- Department of Veterinary Clinics, Agrarian Sciences Center, State University of Londrina- UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, 86057-970, Paraná, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Department of General Biology, Biological Sciences Center, State University of Londrina- UEL, Rodovia Celso Garcia Cid, PR 445, Londrina, 86057-970, Paraná, Brazil.
| |
Collapse
|
3
|
Kley M, Stücheli S, Ruffiner P, Temml V, Boudon S, Schuster D, Odermatt A. Potential antiandrogenic effects of parabens and benzophenone-type UV-filters by inhibition of 3α-hydroxysteroid dehydrogenases. Toxicology 2024; 509:153997. [PMID: 39532263 DOI: 10.1016/j.tox.2024.153997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Parabens and UV-filters are frequently used additives in cosmetics and body care products that prolong shelf-life. They are assessed for potential endocrine disrupting properties. Antiandrogenic effects of parabens and benzophenone-type UV-filters by blocking androgen receptor (AR) activity have been reported. Effects on local androgen formation received little attention. Local 5α-dihydrotestosterone (DHT) production with subsequent AR activation is required for male external genitalia formation during embryogenesis. We investigated whether parabens and benzophenone-type UV-filters might cause potential antiandrogenic effects by inhibiting oxidative 3α-hydroxysteroid dehydrogenases (3α-HSDs) involved in the backdoor pathway of DHT formation. Five different 3α-HSDs were assessed for their efficiency to catalyze the 3α-oxidation reaction to form DHT and activate AR. 17β-hydroxysteroid dehydrogenase type 6 (HSD17B6), retinol dehydrogenases type 5 and 16 were further assessed using a radiometric in vitro activity assay to determine the conversion of 5α-androstane-3α-ol-17-one to 5α-androstane-3,17-dione in lysates of overexpressing HEK-293 cells. All parabens tested, except p-hydroxybenzoic acid (a main metabolite) inhibited HSD17B6 activity. Hexyl- and heptylparaben, as well as benzophenone (BP)-1 and BP-2, showed the highest inhibitory potencies, with nanomolar IC50 values. Molecular modeling predicted binding modes for the inhibitory parabens and BPs and provided an explanation for the observed structure-activity-relationship. Our results propose a novel mechanism of antiandrogenic action for commercially used parabens and BP UV-filters by inhibiting HSD17B6 and lowering DHT synthesis. Follow-up studies should assess BP-3 metabolism after topical application and whether the identified inhibitors reach concentrations in liver, testis, or prostate to inhibit HSD17B6, thereby causing antiandrogenic effects.
Collapse
Affiliation(s)
- Manuel Kley
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Pamela Ruffiner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Veronika Temml
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria
| | - Stéphanie Boudon
- Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland.
| |
Collapse
|
4
|
Chatterjee S, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Roy D, Ganguly A, Nanda S, Rajak P. Parabens as the double-edged sword: Understanding the benefits and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176547. [PMID: 39357765 DOI: 10.1016/j.scitotenv.2024.176547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Parabens are globally employed as important preservatives in pharmaceutical, food, and personal care products. Nonetheless, improper disposal of commercial products comprising parabens can potentially contaminate various environmental components, including the soil and water. Residues of parabens have been detected in surface water, ground water, packaged food materials, and other consumer items. Long-term exposure to parabens through numerous consumer products and contaminated water can harm human health. Paraben can modulate the hormonal and immune orchestra of the body. Recent findings have correlated paraben use with hypersensitivity, obesity, and infertility. Notably, parabens have also been detected in the samples of breast cancer patients, suggesting a potential cross-talk between parabens and carcinogenesis. Therefore, the present article aims to dissect the significance of parabens as a preservative in several consumer products and their impact of chronic exposure to human health. This review encompasses various facets of paraben, including its sources, mechanism of action at the molecular level, and sheds light on its toxicological implications on human health.
Collapse
Affiliation(s)
- Sovona Chatterjee
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India
| | | | - Aritra Chakraborty
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sohini Dutta
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Dipsikha Roy
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Abhratanu Ganguly
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Sayantani Nanda
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Prem Rajak
- Toxicology Research Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
5
|
Okonofua FE, Ntoimo LFC, Unuabonah E, Msagati TAM, Ekwo MC, Ayodeji OF, Aziken ME, Maduako KT, Onoh VI, Omonkhua A, Ohenhen V, Olafusi CO, Alfred MO. Association Between Urinary Parabens and Sperm Quality in Nigerian Men: A Case-Control Study. Int J Gen Med 2024; 17:2767-2779. [PMID: 38887664 PMCID: PMC11182354 DOI: 10.2147/ijgm.s461367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Background Parabens, which are chemicals used as preservatives in cosmetic and pharmaceutical products, have been reported to be associated with low sperm quality in animal and human models. Despite the high exposure of men to paraben-containing products in Nigeria, there are no known studies that investigate the association of parabens with sperm quality in the country. Objective To determine the association of urinary levels of metabolites of parabens with sperm count and quality. Design/Setting A multicenter case-control study among fertile and infertile men in five hospitals in southern Nigeria. A total of 136 men diagnosed with male infertility (cases) were compared with 154 controls with normal fertility. Urinary levels of parabens (ethyl-paraben, methylparaben, propylparaben, and butylparaben) were measured using liquid chromatography mass spectrometry, while semen analysis and hormone assays were carried out using World Health Organization standards and radioimmunoassay, respectively. Data were analyzed with non-parametric statistics and non-parametric linear regression. Results The results showed high levels of parabens in both cases and controls. However, there was no statistically significant difference in urinary levels of ethyl-paraben, methylparaben, propylparaben, and butylparaben between cases and controls. In contrast, propylparaben had a decreasing association with total motility in both groups, but the effect was only statistically significant in the case of male infertility. The results of the regression analysis showed that a unit increase in propylparaben significantly decreased total motility in the cases (infertile men). Similarly, a unit increase in propylparaben decreased morphology significantly in the unadjusted model for infertile men. Only serum testosterone showed an insignificant correlation with urinary parabens. Conclusion We conclude that urinary parabens are associated with features of poor sperm quality - motility, morphology, and volume. Measures to reduce exposure of men to agents containing parabens in Nigeria may reduce the prevalence of male infertility in the country.
Collapse
Affiliation(s)
- Friday Ebhodaghe Okonofua
- Centre of Excellence in Reproductive Health Innovation (CERHI), University of Benin, Benin, Edo State, Nigeria
- Department of Obstetrics and Gynaecology, University of Benin Teaching Hospital, University of Benin, Benin, Edo State, Nigeria
- Women’s Health and Action Research Centre (WHARC), Benin City, Edo State, Nigeria
| | - Lorretta Favour Chizomam Ntoimo
- Centre of Excellence in Reproductive Health Innovation (CERHI), University of Benin, Benin, Edo State, Nigeria
- Women’s Health and Action Research Centre (WHARC), Benin City, Edo State, Nigeria
- Department of Demography and Social Statistics, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
| | - Emmanuel Unuabonah
- Department of Chemical Sciences, Redeemer University, Ede, Osun State, Nigeria
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer’s University, Ede, Osun State, Nigeria
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering & Technology, University of South Africa, Pretoria, South Africa
| | | | | | - Michael Emefiele Aziken
- Department of Obstetrics and Gynaecology, University of Benin Teaching Hospital, University of Benin, Benin, Edo State, Nigeria
| | - Kenneth Toby Maduako
- Centre of Excellence in Reproductive Health Innovation (CERHI), University of Benin, Benin, Edo State, Nigeria
- Department of Obstetrics and Gynaecology, University of Benin Teaching Hospital, University of Benin, Benin, Edo State, Nigeria
| | - Vivian Ifunanya Onoh
- Centre of Excellence in Reproductive Health Innovation (CERHI), University of Benin, Benin, Edo State, Nigeria
| | - Akhere Omonkhua
- Centre of Excellence in Reproductive Health Innovation (CERHI), University of Benin, Benin, Edo State, Nigeria
- Department of Medical Biochemistry, School of Basic Medical Sciences, University of Benin, Benin, Edo State, Nigeria
| | - Victor Ohenhen
- Department of Obstetrics and Gynaecology, Central Hospital, Benin, Edo State, Nigeria
| | - Celestina Oluwaseun Olafusi
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ilaje, Ondo, Nigeria
| | - Moses O Alfred
- Department of Chemical Sciences, Redeemer University, Ede, Osun State, Nigeria
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer’s University, Ede, Osun State, Nigeria
| |
Collapse
|
6
|
Wang L, Ye X, Liu J. Effects of pharmaceutical and personal care products on pubertal development: Evidence from human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123533. [PMID: 38341062 DOI: 10.1016/j.envpol.2024.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Pharmaceutical and personal care products (PPCPs) include a wide range of drugs, personal care products and household chemicals that are produced and used in significant quantities. The safety of PPCPs has become a growing concern in recent decades due to their ubiquitous presence in the environment and potential risks to human health. PPCPs have been detected in various human biological samples, including those from children and adolescents, at concentrations ranging from several ng/L to several thousand μg/L. Epidemiological studies have shown associations between exposure to PPCPs and changes in the timing of puberty in children and adolescents. Animal studies have shown that exposure to PPCPs results in advanced or delayed pubertal onset. Mechanisms by which PPCPs regulate pubertal development include alteration of the hypothalamic kisspeptin and GnRH networks, disruption of steroid hormones, and modulation of metabolic function and epigenetics. Gaps in knowledge and further research needs include the assessment of environmental exposure to pharmaceuticals in children and adolescents, low-dose and long-term effects of exposure to PPCPs, and the modes of action of PPCPs on pubertal development. In summary, this comprehensive review examines the potential effects of exposure to PPCPs on pubertal development based on evidence from human and animal studies.
Collapse
Affiliation(s)
- Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Wu X, Khan I, Ai X, Zhang J, Shi H, Li D, Hong M. Effects of butyl paraben on behavior and molecular mechanism of Chinese striped-necked turtle (Mauremys sinensis). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106841. [PMID: 38320419 DOI: 10.1016/j.aquatox.2024.106841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Butyl paraben (BuP) is widely used in cosmetics, drugs, and food preservation. Recently it is an identified new pollutant that affects various aspects of reproduction, lipid metabolism, and nervous system. Behavioral activity serves as a pre-warning biomarker for predicting water quality. So, in this study, the changes in some behaviors and its neurotransmitters and cell apoptosis in the brain of Chinese striped-necked turtles (Mauremys sinensis) were studied when the turtles were exposed to BuP concentrations of 0, 5, 50, 500, and 5000 µg/L for 21 weeks. The results showed that, the basking time and altering scores to external stimuli in the groups of 50, 500, and 5000 µg/L were significantly reduced, while the time for body-righting was significantly increased, compared with the control (0 µg/L), indicating that the turtles exhibited depression and inactive behavior. The analysis of neurotransmitter in the brain showed that 5-hydroxytryptamine (5-HT) contents in the groups of 500 and 5000 µg/L were significantly higher than the other groups, which was due to an increase in the mRNA relative expression levels of the 5-HT receptor gene (5-HTR), neurotransmitter transporter genes (Drd4, Slc6a4), and neurotransmitter synthase tryptophan hydroxylase (TPH). Furthermore, GABA transaminase (GABA-T) activity increased in the 500 and 5000 µg/L groups, and tyrosine hydroxylase (TH) activity increased dramatically in the 5000 µg/L group. However, acetyl-CoA (AChE) activity was significantly reduced in these four BuP exposure groups. These changes could be attributed to decreased movement velocity and increased inactivity. Meanwhile, the mRNA expression level of BAX, Bcl-2, caspase-9 and TUNEL assay indicated the occurrence of cell apoptosis in the brains of the higher BuP exposed groups, which may play an important role in neuronal death inducing behavior change. In summary, these findings offer fundamental insights into turtle ecotoxicology and serve as a foundation for a comprehensive assessment of the ecological and health risks associated with BuP.
Collapse
Affiliation(s)
- Xia Wu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, No. 99 South Longkun Road, Haikou, Hainan, PR China
| | - Ijaz Khan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, No. 99 South Longkun Road, Haikou, Hainan, PR China
| | - Xiaoqi Ai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, No. 99 South Longkun Road, Haikou, Hainan, PR China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, No. 99 South Longkun Road, Haikou, Hainan, PR China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, No. 99 South Longkun Road, Haikou, Hainan, PR China
| | - Ding Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, No. 99 South Longkun Road, Haikou, Hainan, PR China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, No. 99 South Longkun Road, Haikou, Hainan, PR China.
| |
Collapse
|
8
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
9
|
Zhang Y, Sun L, Zhang D, Gao Y, Ma H, Xue Y, Zhang M. Butylparaben weakens female fertility via causing oocyte meiotic arrest and fertilization failure in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115561. [PMID: 37837697 DOI: 10.1016/j.ecoenv.2023.115561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Butylparaben is an ubiquitous environmental endocrine disruptor, that is commonly used in cosmetics and personal care product due to its anti-microbial properties. Butylparaben has been shown to cause developmental toxicity, endocrine and metabolic disorders and immune diseases. However, little is known about the impact on female fertility, especially oocyte quality. In the present study, we reported that butylparaben influenced female fertility by showing the disturbed oocyte meiotic capacity and fertilization potential. Specifically, butylparaben results in the oocyte maturation arrest by impairing spindle/chromosome structure and microtubule stability. Besides, butylparaben results in fertilization failure by impairing the dynamics of Juno and ovastacin and the sperm binding ability. Last, single-cell transcriptome analysis showed that butylparaben-induced oocyte deterioration was caused by mitochondrial dysfunction, which led to the accumulation of ROS and occurrence of apoptosis. Collectively, our study indicates that mitochondrial dysfunction and redox perturbation is the major cause of the weakened female fertility expoesd to butylparaben.
Collapse
Affiliation(s)
- Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Zhang
- Department of Reproductive Medicine, General Hospital of WanBei Coal Group, Suzhou 234000, China
| | - Yang Gao
- School of Life Sciences, Hefei Normal University, Hefei 230036, China; Department of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Huijie Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Ko Y, Kim EH, Kim D, Choi S, Gil J, Park HJ, Shin Y, Kim W, Bae ON. Butylparaben promotes phosphatidylserine exposure and procoagulant activity of human red blood cells via increase of intracellular calcium levels. Food Chem Toxicol 2023; 181:114084. [PMID: 37816477 DOI: 10.1016/j.fct.2023.114084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
Parabens are widely used as preservatives, added to products commonly used by humans, and to which individuals are exposed orally or dermally. Once absorbed into the body, parabens move into the bloodstream and travel through the systemic circulation. We investigated the potential impact of parabens on the enhanced generation of thrombin by red blood cells (RBCs), which are the principal cellular components of blood. We tested the effects of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), butylparaben (BuP), and p-hydroxybenzoic acid on freshly isolated human RBCs. BuP and simultaneous exposure to BuP and PrP significantly increased phosphatidylserine (PS) externalization to the outer membranes of RBCs. PS externalization by BuP was found to be mediated by increasing intracellular Ca2+ levels in RBCs. The morphological changes in BuP-treated RBCs were observed under an electron microscope. The BuP-exposed RBCs showed increased thrombin generation and adhesion to endothelial cells. Additionally, the externalization of PS exposure and thrombin generation in BuP-treated RBCs were more susceptible to high shear stress, which mimics blood turbulence under pathological conditions. Collectively, we observed that BuP induced morphological and functional changes in RBCs, especially under high shear stress, suggesting that BuP may contribute to the thrombotic risk via procoagulant activity in RBCs.
Collapse
Affiliation(s)
- Yeonju Ko
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Eun-Hye Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Sungbin Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Junkyung Gil
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Han Jin Park
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Yusun Shin
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Wondong Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
11
|
Shen X, Zhan M, Wang Y, Tang W, Zhang Q, Zhang J. Exposure to parabens and semen quality in reproductive-aged men. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115453. [PMID: 37688867 DOI: 10.1016/j.ecoenv.2023.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Parabens are common preservatives in personal care products, cosmetics, and medical goods. In the past few years, animal studies showed the male reproductive toxicity associated with some parabens. Yet, epidemiological studies have generated inconsistent findings and research rarely has focused on the mixture effects of the parabens. We aimed to explore the associations between individual paraben exposure as well as the mixture and semen quality parameters. METHODS A total of 795 male partners from preconception couples were included in the study. Their urine samples were analyzed for the concentrations of six parabens, namely methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP), butyl paraben (BuP), benzyl paraben (BzP) and heptyl paraben (HeP). Multiple linear regression models and weighted quantile sum regression (WQS) models were utilized to assess the relationships between individual paraben exposure and paraben mixture with semen quality parameters, respectively. RESULTS After adjusting for covariates, exposure to a paraben mixture was significantly associated with declining sperm concentration, total sperm count, and progressive motility, among which BuP was identified as the main contributor to sperm concentration and total sperm count while MeP to progressive motility. Results from multiple linear regression models were generally in line with the WQS analysis. CONCLUSIONS Our results suggest negative associations between paraben mixture and sperm concentration, total sperm count, and sperm motility among reproductive-aged men.
Collapse
Affiliation(s)
- Xiaoli Shen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhan
- Pudong New Area Center for Disease Control and Prevention, Shanghai 200136, China
| | - Yuqing Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianlong Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Iacobelli S, Commins M, Lorrain S, Gouyon B, Ramful D, Richard M, Grondin A, Gouyon JB, Bonsante F. Paraben exposure through drugs in the neonatal intensive care unit: a regional cohort study. Front Pharmacol 2023; 14:1200521. [PMID: 37361223 PMCID: PMC10285404 DOI: 10.3389/fphar.2023.1200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Background and objectives: Environmental factors influence the development of very preterm infants (VPIs, born at less than 32 weeks of gestation). It is important to identify all potential sources of paraben exposure in these vulnerable infants. We aimed to quantify paraben exposure via drug administration in a cohort of VPI cared for in neonatal intensive care units (NICUs). Methods: A prospective, observational study was carried out over a five-year period in a regional setting (two NICUs using the same computerized order-entry system). The main outcome was exposure to paraben-containing drugs. The secondary outcomes were: time of the first exposure, daily intake, number of infants exceeding paraben acceptable daily intake (ADI: 0-10 mg/kg/d), duration of exposure, and cumulative dose. Results: The cohort consisted of 1,315 VPIs [BW 1129.9 (±360.4) g]. Among them, 85.5% were exposed to paraben-containing drugs. In 40.4% of infants, the first exposure occurred during the second week of life. Mean paraben intake and duration of exposure were, respectively, 2.2 (±1.4) mg/kg/d and 33.1 (±22.3) days. The cumulative paraben intake was 80.3 (±84.6) mg/kg. The ADI was exceeded in 3.5% of exposed infants. Lower GA was associated with higher intake and longer exposure (p < 0.0001). The main molecules involved in paraben exposure were: sodium iron feredetate, paracetamol, furosemide, and sodium bicarbonate + sodium alginate. Conclusion: Commonly used drugs are potential source of parabens, and ADI can be easily exceeded in VPIs cared for in NICUs. Efforts are needed to identify paraben-free alternative formulations for these vulnerable infants.
Collapse
Affiliation(s)
- Silvia Iacobelli
- Néonatologie, Réanimation Néonatale et Pédiatrique, CHU La Réunion, Site Sud, Saint Pierre, France
- Centre d’Études Périnatales de l’Océan Indien, Université de la Réunion, Saint-Pierre, France
| | - Marie Commins
- Centre d’Études Périnatales de l’Océan Indien, Université de la Réunion, Saint-Pierre, France
| | - Simon Lorrain
- Centre d’Études Périnatales de l’Océan Indien, Université de la Réunion, Saint-Pierre, France
| | - Beatrice Gouyon
- Centre d’Études Périnatales de l’Océan Indien, Université de la Réunion, Saint-Pierre, France
| | - Duksha Ramful
- Service de Réanimation Néonatale, CHU La Réunion, Saint-Denis, France
| | - Magali Richard
- Néonatologie, Réanimation Néonatale et Pédiatrique, CHU La Réunion, Site Sud, Saint Pierre, France
| | - Anthony Grondin
- Service de Réanimation Néonatale, CHU La Réunion, Saint-Denis, France
| | - Jean-Bernard Gouyon
- Centre d’Études Périnatales de l’Océan Indien, Université de la Réunion, Saint-Pierre, France
| | - Francesco Bonsante
- Néonatologie, Réanimation Néonatale et Pédiatrique, CHU La Réunion, Site Sud, Saint Pierre, France
- Centre d’Études Périnatales de l’Océan Indien, Université de la Réunion, Saint-Pierre, France
| |
Collapse
|
13
|
Bräuner EV, Uldbjerg CS, Beck AL, Lim YH, Boye H, Frederiksen H, Andersson AM, Jensen TK. Prenatal paraben exposures and birth size: Sex-specific associations in a healthy population - A study from the Odense Child Cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161748. [PMID: 36709902 DOI: 10.1016/j.scitotenv.2023.161748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES To investigate the sex-specific associations between maternal paraben concentrations in second trimester urine and birth size of the offspring. METHODS A prospective cohort study of 529 mother-child pairs within the Odense Child Cohort. Pregnant women were recruited to the cohort from 2010 to 2012 and provided fasting spot urine samples in second trimester (median 28.7 weeks). Concentrations of methylparaben (MeP), ethylparaben (EtP), iso-propylparaben (i-PrP), n-propylparaben (n-PrP), n-butylparaben (n-BuP) and benzylparaben (BzP) were analyzed by isotope diluted liquid-chromatography tandem-mass-spectrometry and osmolality adjusted. Exposures were categorized into tertiles or above/below level of detection. Data on maternal and birth characteristics were extracted from hospital records. Sex-stratified multiple linear regression analyses were performed according to relevant birth outcomes (length, weight, head/abdominal circumference) adjusting for a priori defined confounders. RESULTS Higher paraben levels were detected in pregnant women who were older, more obese, who smoked and were primigravidae. Generally, higher maternal paraben exposure was consistently associated with lower birth size in female but not in male offspring, but with few substantial or statistically significant. Higher maternal exposure to n-BuP during pregnancy was associated with a statistically significant lower birth size in female offspring only [birth weight: -137 g (95 % CI -256; -19), head circumference: -0.48 cm (95 % CI -0.90; -0.05), abdominal circumference: -0.65 cm (95 % CI -1.21; -0.08)]. No differences in birth size were observed for other parabens. CONCLUSION Higher maternal exposure to n-butylparaben was associated with lower birth size in female but not male offspring.
Collapse
Affiliation(s)
- Elvira V Bräuner
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Cecilie S Uldbjerg
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Astrid L Beck
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Henriette Boye
- Odense University Hospital, Hans Christian Andersen Children's Hospital, Odense Child Cohort, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tina K Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark; Odense University Hospital, Hans Christian Andersen Children's Hospital, Odense Child Cohort, Odense, Denmark.
| |
Collapse
|
14
|
Guerra MT, Erthal RP, Punhagui-Umbelino APF, Trinque CM, Torres de Bari MA, Nunes TDM, Costa WF, Cleto PH, Fernandes GSA. Reproductive toxicity of maternal exposure to di(2-ethylhexyl)phthalate and butyl paraben (alone or in association) on both male and female Wistar offspring. J Appl Toxicol 2023; 43:242-261. [PMID: 35962557 DOI: 10.1002/jat.4377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 01/17/2023]
Abstract
Parabens and phthalates are commonly found as contaminants in human fluids and are able to provoke reproductive toxicity, being considered endocrine disruptors. To evaluate the effects of phthalate and paraben, alone or in combination, on reproductive development of the offspring, female pregnant Wistar rats were allocated in six experimental groups: Three control groups (gavage [CG], subcutaneous [CS], and gavage + subcutaneous) received corn oil as vehicle, and the remaining groups were exposed to di(2-ethylhexyl)phthalate (DEHP) (500 mg/kg, gavage), butyl paraben (BP) (100 mg/kg, subcutaneously), or MIX (DEHP + BP), from Gestational Day 12 until Postnatal Day (PND) 21. The following parameters were assessed on the offspring: anogenital distance and weight at PND 1, nipple counting at PND 13, puberty onset, estrous cycle, weights of reproductive and detoxifying organs, histological evaluation of reproductive organs, and sperm evaluations (counts, morphology, and motility). Female pups from MIX group presented reduced body weight at PND 1, lower AGD, and decreased endometrium thickness. Male animals showed decreased body weight at PND 1 and lower number of Sertoli cells on DEHP and MIX groups, MIX group revealed increase of abnormal seminiferous tubules, DEHP animals presented delayed preputial separation and higher percentage of immotile sperms, and BP males presented diminished number of Leydig cells. In conclusion, the male offspring was more susceptible to DEHP toxicity; even when mixed to paraben, the main negative effects observed seem to be due to antiandrogenic phthalate action. On the other hand, DEHP seems to be necessary to improve the effects of BP on reducing estrogen-dependent and increasing androgen-dependent events.
Collapse
Affiliation(s)
| | - Rafaela Pires Erthal
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina-UEL, Londrina, Brazil
| | | | - Camila Moreira Trinque
- Department of General Biology, Biological Sciences Center, State University of Londrina-UEL, Londrina, Brazil
| | | | | | - Wagner Ferrari Costa
- Department of General Biology, Biological Sciences Center, State University of Londrina-UEL, Londrina, Brazil
| | - Pedro Horácio Cleto
- Department of General Biology, Biological Sciences Center, State University of Londrina-UEL, Londrina, Brazil
| | | |
Collapse
|
15
|
Dai J, Zhang L, Xu J, Peng F, Wu Z, Fu L, Guo Y, Chang B, Lu W, Ding C. Determination of Parabens and Their Metabolites in Seminal Plasma from Chinese Men by Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). TOXICS 2023; 11:131. [PMID: 36851005 PMCID: PMC9962888 DOI: 10.3390/toxics11020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Parabens are endocrine-disrupting chemicals (EDCs) that have estrogen-like activities and may cause male reproductive disorders. Here, we developed a method for the simultaneous determination of four parabens (MeP, EtP, n-PrP, n-BuP) and two metabolites (4-HB and 3,4-DHB) in human seminal plasma by UPLC-MS/MS. The method was used to analyze 144 seminal plasma samples from Chinese males. MeP, EtP, n-PrP, and 4-HB were the dominant compounds. MeP, EtP, and n-PrP were significantly correlated to each other. In addition, 4-HB was significantly correlated to MeP, EtP, n-PrP, and 3,4-DHB, respectively. The results provide direct evidence that parabens and their metabolites are widely distributed in the male reproductive system. The study presents the paraben metabolites levels in human seminal plasma for the first time.
Collapse
Affiliation(s)
- Jing Dai
- National Center for Occupational Safety and Health, National Health Commission of the People’s Republic of China, Beijing 102308, China
| | - Linyuan Zhang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jianfeng Xu
- National Research Institute for Family Planning and WHO Collaborating Centre for Research in Human Reproduction, Beijing 100081, China
- National Health Commission Key Laboratory of Male Reproductive Health, Beijing 100730, China
| | - Fangda Peng
- National Center for Occupational Safety and Health, National Health Commission of the People’s Republic of China, Beijing 102308, China
| | - Zhijun Wu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Longlong Fu
- National Research Institute for Family Planning and WHO Collaborating Centre for Research in Human Reproduction, Beijing 100081, China
- National Health Commission Key Laboratory of Male Reproductive Health, Beijing 100730, China
| | - Ying Guo
- National Research Institute for Family Planning and WHO Collaborating Centre for Research in Human Reproduction, Beijing 100081, China
- National Health Commission Key Laboratory of Male Reproductive Health, Beijing 100730, China
| | - Bing Chang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Wenhong Lu
- National Research Institute for Family Planning and WHO Collaborating Centre for Research in Human Reproduction, Beijing 100081, China
- National Health Commission Key Laboratory of Male Reproductive Health, Beijing 100730, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, National Health Commission of the People’s Republic of China, Beijing 102308, China
| |
Collapse
|
16
|
Svobodova L, Kejlova K, Rucki M, Chrz J, Kubincova P, Dvorakova M, Kolarova H, Jirova D. Health safety of parabens evaluated by selected in vitro methods. Regul Toxicol Pharmacol 2022; 137:105307. [PMID: 36455707 DOI: 10.1016/j.yrtph.2022.105307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Seven selected parabens (4 allowed, 3 banned in cosmetics) were tested in order to confirm and expand historical data on their toxicological properties and safety. The aim was to apply novel in vitro methods, which have been sufficiently technically and scientifically validated for the purposes of toxicological testing of chemicals. The study included several toxicological endpoints such as skin/eye irritation, skin sensitization, endocrine disruption and genotoxicity. The battery of selected methods comprised regulatory accepted EpiDerm™ skin model (OECD TG 439); EpiOcular™ corneal model (OECD TG 492) and scientifically valid test method HET-CAM (DB-ALM Protocol No. 47); in chemico test DPRA (OECD TG 442C); in vitro test LuSens (OECD TG 442D) and in vitro test h-CLAT (OECD TG 442E); Ames MPF™ (Xenometrix) and XenoScreen YES/YAS (Xenometrix). Overall, none of the 4 allowed parabens exhibited skin/eye irritation or genotoxicity. However, all allowed parabens in cosmetics were predicted as samples with potentially sensitizing properties in the LuSens and h-CLAT test methods, but not confirmed by DPRA. Endocrine disruption was recorded only at high concentrations, whereas methyl paraben and ethyl paraben exhibited the lowest activity. This study confirmed the safety of use of the allowed parabens in the highest recommended concentrations in cosmetics or pharmaceuticals.
Collapse
Affiliation(s)
- L Svobodova
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic; Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Czech Republic.
| | - K Kejlova
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic.
| | - M Rucki
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic.
| | - J Chrz
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic; Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Czech Republic.
| | - P Kubincova
- Research Institute for Organic Syntheses Inc., GLP Test Facility - Centre of Ecology, Toxicology and Analytics (CETA), No. 296, 533 54, Rybitví, Czech Republic.
| | - M Dvorakova
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic.
| | - H Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Czech Republic.
| | - D Jirova
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic.
| |
Collapse
|
17
|
Huang PC, Chen HC, Chou WC, Lin HW, Chang WT, Chang JW. Cumulative risk assessment and exposure characteristics of parabens in the general Taiwanese using multiple hazard indices approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156821. [PMID: 35738379 DOI: 10.1016/j.scitotenv.2022.156821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Parabens, a group of endocrine disrupting chemicals (EDCs), are well known preservatives in pharmaceuticals and personal care products (PPCPs). However, studies on parabens exposure and their cumulative effects in Asian population are limited. This study aimed to identify the exposure characteristics and estimate the cumulative risk of four parabens in the general Taiwanese. We have collected urine samples including 271 adults (18-97 yrs old) and 95 minors (7-17 yrs old), from Taiwan Environmental Survey for Toxicants 2013, and analyzed for four urinary parabens including methyl (MeP)-, ethyl (EtP)-, propyl (PrP)-, and butylparaben (BuP) by using ultraperformance liquid chromatography-tandem mass spectrometry. The health-based guidance value (HBGV) and the antiandrogenic properties of parabens were used to calculate the hazard index (HI) for cumulative risk. MeP and PrP were most abundant compounds and startlingly higher than those in other countries. Adults had a higher geometric mean level of four parabens than minors (adults: MeP, 381.7; PrP, 108.6; EtP, 39.6 and BuP 6.3 ng/mL; minors: MeP, 65.7; PrP, 7.9, EtP, 2.6 and BuP 2.2 ng/mL). Participants who used a higher number of personal care products had a significantly higher risk with higher concentrations of PrP (above 75th %tile) [adjusted odds ratio (aOR): 1.79, 95 % CI: 1.01-3.15] and BuP [aOR: 1.78, 95 % CI: 1.03-3.07]. The median and 95th %tile HI (the sum of the HQs of each paraben) was as 1.10 and 4.39-fold higher than acceptable cumulative threshold (HI <1) and PrP accounted for 90 % of the HI. Our results indicate omnipresent exposure to parabens among the Taiwanese population, which might cause certain level of concerns. These significant increasing trends of HI with age dependence were observed, which mainly driven by PPCPS used. Routine survey of parabens in PPCPs and continued biomonitoring needs to be urgently addressed.
Collapse
Affiliation(s)
- Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung, Taiwan
| | - Wei-Chun Chou
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32608, USA
| | - Hui-Wen Lin
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
18
|
Kim JL, Kim SS, Hwang KS, Park HC, Cho SH, Bae MA, Kim KT. Chronic exposure to butyl-paraben causes photosensitivity disruption and memory impairment in adult zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106279. [PMID: 36044784 DOI: 10.1016/j.aquatox.2022.106279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Limited studies on neurotoxicity following chronic exposure to butyl‑paraben (BuP) have been conducted. In this study, neurobehavior in zebrafish adults was assessed using the novel tank test, photomotor response test, and T-maze test after exposure to BuP for 28 days at concentrations of 0, 0.01, 0.1, and 1.0 mg/L. To comprehensively understand the underlying molecular perturbations in the brain, alterations in transcripts, neurotransmitters, and neurosteroids were measured. We found that BuP penetrated the blood-brain barrier and impaired neurobehavior in photosensitivity at 1.0 mg/L and in memory at 0.1 and 1.0 mg/L. RNA-seq analysis showed that phototransduction, tight junctions, and neuroactive ligand receptor activity were significantly affected, which explains the observed abnormal neurobehaviors. Neurosteroid analysis revealed that BuP increased cortisol levels in a concentration-dependent manner and specifically reduced allopregnanolone levels at all tested concentrations, suggesting that cortisol and allopregnanolone are significant neurosteroid markers associated with photosensitivity and memory deficits. Collectively, we demonstrated that BuP can cross the blood-brain and modulate the levels of transcripts, associated with phototransduction and circadian rhythm, and neurosteroidal cortisol and allopregnanolone, resulting in abnormal neurobehavioral responses to light stimulation and learning and memory.
Collapse
Affiliation(s)
- Jiwon L Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Seong Soon Kim
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Kyu-Seok Hwang
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan 15355, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
19
|
Santaliz Casiano A, Lee A, Teteh D, Madak Erdogan Z, Treviño L. Endocrine-Disrupting Chemicals and Breast Cancer: Disparities in Exposure and Importance of Research Inclusivity. Endocrinology 2022; 163:6553110. [PMID: 35325096 PMCID: PMC9391683 DOI: 10.1210/endocr/bqac034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 01/09/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are known contributors to breast cancer development. Exposures to EDCs commonly occur through food packaging, cookware, fabrics, and personal care products, as well as external environmental sources. Increasing evidence highlights disparities in EDC exposure across racial/ethnic groups, yet breast cancer research continues to lack the inclusion necessary to positively impact treatment response and overall survival in socially disadvantaged populations. Additionally, the inequity in environmental exposures has yet to be remedied. Exposure to EDCs due to structural racism poses an unequivocal risk to marginalized communities. In this review, we summarize recent epidemiological and molecular studies on 2 lesser-studied EDCs, the per- and polyfluoroalkyl substances (PFAS) and the parabens, the health disparities that exist in EDC exposure between populations, and their association with breast carcinogenesis. We discuss the importance of understanding the relationship between EDC exposure and breast cancer development, particularly to promote efforts to mitigate exposures and improve breast cancer disparities in socially disadvantaged populations.
Collapse
Affiliation(s)
- Ashlie Santaliz Casiano
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Annah Lee
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
| | - Dede Teteh
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA
| | - Zeynep Madak Erdogan
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois, College of Medicine, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: Zeynep Madak Erdogan, PhD, Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA.
| | - Lindsey Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
- Correspondence: Lindsey S. Treviño, PhD, Department of Population Sciences, Division of Health Equities, Duarte - Main Campus, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
20
|
Wang Y, Qin M, Wang X, Han J, Chen R, Zhang M, Gu W. Residual behaviors and metabolic pathway of ethylparaben in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113124. [PMID: 34968799 DOI: 10.1016/j.ecoenv.2021.113124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Parabens are commonly used as preservatives in foodstuffs, cosmetics, and pharmaceutical products. The widespread use of parabens has led to their leaking into the environment. Concerns about the safety of parabens have recently increased due to their potential endocrine-disrupting effects as an emerging contaminant. Thus, it is necessary to study the metabolism of parabens in vivo. METHODS In this study, Drosophila melanogaster in males and females were exposed to ethylparaben (EP) concentration group (300 mg/L, 700 mg/L, and 1000 mg/L), and control group (0 mg/L) by the capillary feeding assay (CAFE). We quantified the activity of the detoxification-related carboxylesterase (CarE). The contents of EP metabolites in D. melanogaster, including p-hydroxybenzoic acid (PHBA), methylparaben (MP), and intact EP were carried out by high-performance liquid chromatography (HPLC). The regression model between EP metabolites (PHBA and MP) and CarE was developed using the Fourier series fitting method. RESULTS The general level of EP metabolites (PHBA, MP, and intact EP) accumulation was accounted for 5.6-11.5% in D. melanogaster. As EP accumulated, the activity of CarE increased, and the activity of CarE in females was higher than males, which is inconsistent with the result of EP intake dose. Additionally, there were significant differences in the proportion of EP metabolites between female and male flies, and the results of sex comparison were different depending on the EP treated groups and EP metabolites. In general, PHBA of EP hydrolytic product and MP of EP transesterification product in D. melanogaster were 41.4-63.9% and 10.4-24.6%, respectively. In terms of the rest of the EP existed in intact form and ranged from 22.4% to 34.0%. Moreover, the EP metabolites in the conjugated form were higher than those in the free form. The regression model between EP metabolites and CarE was established, showing that the CarE activity can be used to estimate the content of PHBA and MP. CONCLUSION The result indicates that the EP can accumulate in the body through food. Hydrolysis is the main metabolic pathway of EP in D. melanogaster, and transesterification is another metabolic pathway of EP. Additionally, the EP metabolites in flies mainly exist in conjugated form. Furthermore, the Fourier series fitting method model between EP metabolites and CarE, providing theoretical support to study the dose-effect relationship between metabolites of parabens and CarE. This study not only provides a mathematical basis for the safety evaluation of parabens, but also provides support for the further study of the toxicological effects of parabens.
Collapse
Affiliation(s)
- Yuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Mengbei Qin
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xiao Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Junling Han
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ruidun Chen
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Gu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
21
|
Marí-Bauset S, Peraita-Costa I, Donat-Vargas C, Llopis-González A, Marí-Sanchis A, Llopis-Morales J, Morales Suárez-Varela M. Systematic review of prenatal exposure to endocrine disrupting chemicals and autism spectrum disorder in offspring. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:6-32. [PMID: 34412519 DOI: 10.1177/13623613211039950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LAY ABSTRACT Autism spectrum disorders comprise a complex group with many subtypes of behaviorally defined neurodevelopmental abnormalities in two core areas: deficits in social communication and fixated, restricted, repetitive, or stereotyped behaviors and interests each with potential unique risk factors and characteristics. The underlying mechanisms and the possible causes of autism spectrum disorder remain elusive and while increased prevalence is undoubtable, it is unclear if it is a reflection of diagnostic improvement or emerging risk factors such as endocrine disrupting chemicals. Epidemiological studies, which are used to study the relation between endocrine disrupting chemicals and autism spectrum disorder, can have inherent methodological challenges that limit the quality and strength of their findings. The objective of this work is to systematically review the treatment of these challenges and assess the quality and strength of the findings in the currently available literature. The overall quality and strength were "moderate" and "limited," respectively. Risk of bias due to the exclusion of potential confounding factors and the lack of accuracy of exposure assessment methods were the most prevalent. The omnipresence of endocrine disrupting chemicals and the biological plausibility of the association between prenatal exposure and later development of autism spectrum disorder highlight the need to carry out well-designed epidemiological studies that overcome the methodological challenges observed in the currently available literature in order to be able to inform public policy to prevent exposure to these potentially harmful chemicals and aid in the establishment of predictor variables to facilitate early diagnosis of autism spectrum disorder and improve long-term outcomes.
Collapse
Affiliation(s)
- Salvador Marí-Bauset
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
| | - Isabel Peraita-Costa
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| | | | - Agustín Llopis-González
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| | | | - Juan Llopis-Morales
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
| | - María Morales Suárez-Varela
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| |
Collapse
|
22
|
Bräuner EV, Uldbjerg CS, Lim YH, Gregersen LS, Krause M, Frederiksen H, Andersson AM. Presence of parabens, phenols and phthalates in paired maternal serum, urine and amniotic fluid. ENVIRONMENT INTERNATIONAL 2022; 158:106987. [PMID: 34991249 PMCID: PMC8739868 DOI: 10.1016/j.envint.2021.106987] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 05/22/2023]
Abstract
OBJECTIVE To examine whether selected endocrine disrupting chemicals were present in pregnant women and passed through the placental barrier to amniotic fluid, potentially exposing the developing fetus. METHODS Paired samples of maternal serum, urine and amniotic fluid were concurrently collected (<1 h) from 200 pregnant women (age >18 years) with a singleton pregnancy and undergoing amniocentesis between gestational weeks 12 - 36. The concentration of six different parabens, seven phenols, 31 metabolites from 15 phthalate diesters and the polychlorinated substance triclocarban were analyzed by isotope diluted TurboFlow-liquid chromatography-tandem mass spectrometry. RESULTS Concentrations of all included compounds were highest in maternal urine followed by serum, and lowest in amniotic fluid. Of the six parabens measured in amniotic fluid, methylparaben (MeP) and ethylparaben (EtP) were detectable most often (87% and 33% of the samples, respectively). Of the seven phenols measured, three (2,4-dichlorphenol, 2,5-dichlorphenol, 2-propylphenol) were detectable in the range of 14-21% of the amniotic fluid samples, at low concentrations (<0.12 ng/ml). Two secondary phthalates metabolites, mono-(2-carboxymethyl-hexyl) phthalate and mono-carboxy-iso-octyl phthalate were each present in ≤15% of the amniotic fluid samples at concentrations 2-5 times lower than in maternal serum and 20-100 times lower than in maternal urine. A modest statistically significant correlation between the levels of MeP and EtP was detected in paired maternal urine-amniotic fluid samples was detected (Spearman rMeP: 0.246; rEtP: 0.364). Likewise, the concentration of mono-ethyl phthalate (MEP) in paired maternal urine and amniotic fluid samples indicated a modest statistically significant correlation (Spearman rMEP: 0.264), driven by detectable levels of MEP in only 3% of the amniotic fluid samples. CONCLUSIONS In general, the included parabens, phenols and phthalates were effectively metabolized and excreted via the urine, which was the matrix that reflected the highest detectable levels. The detectable levels of several included parabens and phthalates in human amniotic fluid calls for further investigations of the toxicokinetic and potential endocrine disrupting properties of individual and multiple endocrine disruptors in order to better assess the risk to the developing fetus.
Collapse
Affiliation(s)
- Elvira V Bräuner
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Cecilie S Uldbjerg
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Laura S Gregersen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Marianna Krause
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, University of Copenhagen, Denmark; The International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| |
Collapse
|
23
|
De Falco M, Laforgia V. Combined Effects of Different Endocrine-Disrupting Chemicals (EDCs) on Prostate Gland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9772. [PMID: 34574693 PMCID: PMC8471191 DOI: 10.3390/ijerph18189772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/26/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) belong to a heterogeneous class of environmental pollutants widely diffused in different aquatic and terrestrial habitats. This implies that humans and animals are continuously exposed to EDCs from different matrices and sources. Moreover, pollution derived from anthropic and industrial activities leads to combined exposure to substances with multiple mechanisms of action on the endocrine system and correlated cell and tissue targets. For this reason, specific organs, such as the prostate gland, which physiologically are under the control of hormones like androgens and estrogens, are particularly sensitive to EDC stimulation. It is now well known that an imbalance in hormonal regulation can cause the onset of various prostate diseases, from benign prostate hyperplasia to prostate cancer. In this review, starting with the description of normal prostate gland anatomy and embryology, we summarize recent studies reporting on how the multiple and simultaneous exposure to estrogenic and anti-androgenic compounds belonging to EDCs are responsible for an increase in prostate disease incidence in the human population.
Collapse
Affiliation(s)
- Maria De Falco
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy;
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), 80055 Portici, Italy
| | - Vincenza Laforgia
- Department of Biology, University of Naples ‘‘Federico II’’, 80126 Naples, Italy;
- National Institute of Biostructures and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
24
|
Lv MQ, Ge P, Zhang J, Yang YQ, Zhou L, Zhou DX. Temporal trends in semen concentration and count among 327 373 Chinese healthy men from 1981 to 2019: a systematic review. Hum Reprod 2021; 36:1751-1775. [PMID: 34046659 DOI: 10.1093/humrep/deab124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
STUDY QUESTION Are there temporal trends of sperm concentration (SC) and total sperm count (TSC) in Chinese healthy males from 1981 to 2019? SUMMARY ANSWER Our result indicated a temporal decrease in SC and TSC among 327 373 healthy Chinese men in the recent four decades. WHAT IS KNOWN ALREADY A review of 61 papers reported a temporal decline in SC and TSC from 1938 to 1990. This trend was later confirmed by a systematic review of 185 published papers from 1981 to 2013. However, the majority of the included individuals were from western countries. In China, whether SC and TSC have declined remains controversial. STUDY DESIGN, SIZE, DURATION This systematic review of published articles used data extracted from Pubmed, Science Direct, Embase, China-National-Knowledge-Infrastructure (CNKI) and Wanfang Data to assess changes in SC and TSC in China from 1981 to 2019. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 111 studies including 327 373 individuals who provided semen samples from 1981 to 2019 were extracted for the present analysis. Study selection and data extraction were performed by two independent researchers. The trends in SC and TSC were analysed using liner-regression and meta-regression before and after adjusting for potential covariates. Moreover, subgroups, categorised based on geographic region, fertility status or recruitment source, were also analysed. MAIN RESULTS AND THE ROLE OF CHANCE SC declined significantly (slope liner-regression = -0.748 million/ml/year; P = 0.005; slope meta-regression = -0.824 million/ml/year; P < 0.001) between 1981 and 2019 in China. Trends for TSC was similar to that for SC (slope liner-regression = -2.073 million/year; P = 0.032; slope meta-regression = -2.188 million/year; P = 0.003). In subgroup meta-regression analyses, males with definite fertility had continuous declines in SC (slope northern group=-2.268, P = 0.009; slope southern group=-1.014, P = 0.009) and TSC (slope northern group=-9.675, P = 0.010; slope southern group=-3.215, P = 0.042). However, in the unselected group, where fertility status was unknown, the obvious downward trend in SC was only seen in males from Northern regions (slope = -0.836, P = 0.003). Another subgroup analysis demonstrated that obvious decreases in SC (slope = -1.432, P < 0.001) and TSC (slope=-4.315, P = 0.001) were only seen in volunteer groups but not in pre-pregnancy examination groups and other recruitment groups. The results changed minimally in multiple sensitivity analyses. LIMITATIONS, REASONS FOR CAUTION The validity of the meta-analysis results was limited mainly by the quality of the included studies. Additionally, our study spanned many decades and the recommended criteria for some semen parameter assessments have significantly changed, which may bring about some unavoidable bias. Moreover, the data remain insufficient especially in some provinces of China. WIDER IMPLICATIONS OF THE FINDINGS The present study is the first study to report significant decreases in SC and TSC in 327 373 healthy Chinese men between 1981 and 2019, indicating a serious reproductive health warning. Further studies on the causes of the declines are urgently needed. STUDY FUNDING/COMPETING INTEREST(S) D.Z. is supported by the National Natural Science Funding of China, Natural Science Funding of Shaanxi Province, Science Funding of Health Department, Shaanxi Province, Fundamental Research Funds for the Central University and the Project of Independent Innovative Experiment for Postgraduates in Medicine in Xi'an Jiaotong University. The authors have no conflicts of interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Jian Zhang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Yan-Qi Yang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Liang Zhou
- Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
25
|
Hajizadeh Y, Moradnia M, Kiani Feizabadi G, Rafiei N, Tahmasbizadeh M, Darvishmotevalli M, Fadaei S, Karimi H. The sex-specific association between maternal urinary paraben levels and offspring size at birth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36029-36038. [PMID: 33683593 DOI: 10.1007/s11356-021-13175-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
Parabens are a group of antimicrobial preservatives applied in an extensive range of products and are suspected to impair fetal growth because of their disrupting effect on the endocrine system. We aimed to examine maternal urinary paraben concentrations and their neonates' outcome indexes. Methylparaben (MP), ethylparaben (EP), propylparaben (PP), and butylparaben (BP) concentrations were measured in 105 maternal urine samples collected before delivery. Length, weight, and head circumference at birth were extracted from the mothers' delivery files. A multivariable linear regression analysis was performed to evaluate the association between paraben levels and neonatal anthropometric indices. The median levels of urinary parabens, especially BP, were higher than those in other countries. Prenatal urinary concentration of MP and BP showed a significantly positive association with birth weight in all neonates (β = 0.79, 95% CI: 0.16, 1.41, and β = 8.56, 95% CI: 3.95, 13.17, respectively), while these chemicals showed a significant negative association with head circumference (β = - 0.002, 95% CI: - 0.004, - 0.000, and β = - 0.016, 95% CI: - 0.030, - 0.002, respectively). A significant positive association between MP and birth length was also found (β = 0.004, 95% CI: 0.00, 0.00) in all the neonates. In sex-stratified adjusted models, MP and BP were found to be associated, respectively, with higher birth length and weight in male neonates (β = 0.008, 95% CI: - 0.001, 0.017, and β = 7.948, 95% CI: 1.045, 14.851). In girls, maternal urinary MP, PP, and BP were associated with increased birth weight (β = 0.831, 95% CI: 0.043, 1.620; β = 4.178, 95% CI: 0.877, 7.480; and β = 10.821, 95% CI: 3.545, 18.097, respectively), and MP and BP were associated with reduced head circumference at birth (β = - 0.003, 95% CI: - 0.005, - 0.001, and β = - 0.035, 95% CI: - 0.055, - 0.016). These results revealed potential impacts between neonatal growth and maternal exposure to parabens. However, these findings should be interpreted while considering the limitations of the present study.
Collapse
Affiliation(s)
- Yaghoub Hajizadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, University of Medical Sciences, Isfahan, Iran
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Moradnia
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghasem Kiani Feizabadi
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Department of Environmental Health Engineering, School of Health, Semnan University of Medical Sciences, Semnan, Iran.
| | - Nasim Rafiei
- Department of Environmental Health Engineering, School of Health, Semnan University of Medical Sciences, Semnan, Iran
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Tahmasbizadeh
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Darvishmotevalli
- Research Center for Health, Safety and Environment (RCHSE), Alborz University of Medical Sciences, Karaj, Iran
| | - Saeid Fadaei
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Karimi
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Jensen TK, Andersson AM, Main KM, Johannsen TH, Andersen MS, Kyhl HB, Juul A, Frederiksen H. Prenatal paraben exposure and anogenital distance and reproductive hormones during mini-puberty: A study from the Odense Child Cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145119. [PMID: 33477047 DOI: 10.1016/j.scitotenv.2021.145119] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Parabens are added to personal care products as antimicrobial preservatives. They have been suggested to have endocrine disrupting abilities. Prenatal exposure to parabens has been associated with reproductive endpoints including reduced male anogenital distance (AGD, distance from anus to genitals), which is sensitive to prenatal anti-androgenic exposure. OBJECTIVES To study the associations between maternal paraben concentrations in second trimester urine and AGD and reproductive hormone concentrations at 3 months of age in offspring. METHODS Pregnant women from Odense, Denmark were included in early pregnancy from 2010 to 12, and their children are being followed up. Fasting spot urine samples from 536 pregnant women were analyzed for methylparaben (MeP), ethyl-paraben (EtP), iso-propylparaben (i-PrP), n-propylparaben (n-PrP), n-butylparaben (n-BuP) and benzylparaben (BzP) by liquid chromatography tandem mass spectrometry and thereafter osmolarity adjusted. Three months after expected date of birth, AGD was measured in 452 children, and serum concentrations of follicle stimulating hormone (FSH), luteinizing (LH), testosterone, dehydroepiandrosterone-sulphate (DHEAS), androstenedione and 17-hydroxyprogesterone (17-OHP) were measured in 198 children. Maternal paraben exposure was categorized into tertiles or below and above level of detection, and sex-stratified multiple linear regression analyses were performed with AGD or reproductive hormones as outcomes. RESULTS Most pregnant women had low concentrations of parabens in urine, but 10% exceeded the threshold for adverse estrogenic effects. Higher maternal paraben exposure was associated with shorter AGD in male offspring and longer AGD in girls, although only significant for MeP in boys. In addition, FSH, LH, DHEAS, 17-OHP concentrations were lower in girls with high prenatal paraben exposure, whereas no consistent pattern was found in boys. DISCUSSION The endocrine disrupting abilities of parabens may affect humans at vulnerable time periods during development, which may have long term impact on reproductive function. This is the first study to find these associations in girls and our findings need confirmation.
Collapse
Affiliation(s)
- Tina Kold Jensen
- Department of Pharmacology, Clinical Pharmacy and Environmental Medicine, University of Southern Denmark, Odense 5000, Denmark; Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Katharina M Main
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Trine Holm Johannsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Marianne S Andersen
- Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 5000 Odense C, Denmark
| | - Henriette Boye Kyhl
- Odense Child Cohort, Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, 5000 Odense C, Denmark; OPEN Patient data Exploratory Network (OPEN), University of Southern, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
27
|
Czarczyńska-Goślińska B, Grześkowiak T, Frankowski R, Lulek J, Pieczak J, Zgoła-Grześkowiak A. Determination of bisphenols and parabens in breast milk and dietary risk assessment for Polish breastfed infants. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Cargnelutti F, Di Nisio A, Pallotti F, Sabovic I, Spaziani M, Tarsitano MG, Paoli D, Foresta C. Effects of endocrine disruptors on fetal testis development, male puberty, and transition age. Endocrine 2021; 72:358-374. [PMID: 32757113 PMCID: PMC8128728 DOI: 10.1007/s12020-020-02436-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Endocrine disruptors (EDs) are exogenous substances able to impair endocrine system; consequently, they may cause numerous adverse effects. Over the last years, particular focus has been given to their harmful effects on reproductive system, but very little is known, especially in males. The aim of this review is to discuss the detrimental effects of EDs exposure on fetal testis development, male puberty, and transition age. METHODS A search for the existing literature focusing on the impact of EDs on fetal testis development, male puberty, andrological parameters (anogenital distance, penile length, and testicular volume), and testicular cancer with particular regard to pubertal age provided the most current information available for this review. Human evidence-based reports were given priority over animal and in vitro experimental results. Given the paucity of available articles on this subject, all resources were given careful consideration. RESULTS Information about the consequences associated with EDs exposure in the current literature is limited and often conflicting, due to the scarcity of human studies and their heterogeneity. CONCLUSIONS We conclude that current evidence does not clarify the impact of EDs on human male reproductive health, although severe harmful effects had been reported in animals. Despite controversial results, overall conclusion points toward a positive association between exposure to EDs and reproductive system damage. Further long-term studies performed on wide number of subjects are necessary in order to identify damaging compounds and remove them from the environment.
Collapse
Affiliation(s)
- Francesco Cargnelutti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Andrea Di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Francesco Pallotti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Iva Sabovic
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Maria Grazia Tarsitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Carlo Foresta
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
29
|
Fisher BG, Thankamony A, Mendiola J, Petry CJ, Frederiksen H, Andersson AM, Juul A, Ong KK, Dunger DB, Hughes IA, Acerini CL. Maternal serum concentrations of bisphenol A and propyl paraben in early pregnancy are associated with male infant genital development. Hum Reprod 2021; 35:913-928. [PMID: 32325494 DOI: 10.1093/humrep/deaa045] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Are maternal serum phthalate metabolite, phenol and paraben concentrations measured at 10-17 weeks of gestation associated with male infant genital developmental outcomes, specifically cryptorchidism, anogenital distance (AGD), penile length and testicular descent distance, at birth and postnatally? SUMMARY ANSWER Maternal serum bisphenol A (BPA) concentration at 10-17 weeks of gestation was positively associated with congenital or postnatally acquired cryptorchidism, and n-propyl paraben (n-PrP) concentration was associated with shorter AGD from birth to 24 months of age. WHAT IS KNOWN ALREADY Male reproductive disorders are increasing in prevalence, which may reflect environmental influences on foetal testicular development. Animal studies have implicated phthalates, BPA and parabens, to which humans are ubiquitously exposed. However, epidemiological studies have generated conflicting results and have often been limited by small sample size and/or measurement of chemical exposures outside the most relevant developmental window. STUDY DESIGN, SIZE, DURATION Case-control study of cryptorchidism nested within a prospective cohort study (Cambridge Baby Growth Study), with recruitment of pregnant women at 10-17 postmenstrual weeks of gestation from a single UK maternity unit between 2001 and 2009 and 24 months of infant follow-up. Of 2229 recruited women, 1640 continued with the infancy study after delivery, of whom 330 mothers of 334 male infants (30 with congenital cryptorchidism, 25 with postnatally acquired cryptorchidism and 279 unmatched controls) were included in the present analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Maternal blood was collected at enrolment, and serum levels of 16 phthalate metabolites, 9 phenols (including BPA) and 6 parabens were measured using liquid chromatography/tandem mass spectrometry. Logistic regression was used to model the association of cryptorchidism with serum chemical concentrations, adjusting for putative confounders. Additionally, offspring AGD, penile length and testicular descent distance were assessed at 0, 3, 12, 18 and 24 months of age, and age-specific Z scores were calculated. Associations between serum chemical levels and these outcomes were tested using linear mixed models. MAIN RESULTS AND THE ROLE OF CHANCE Maternal serum BPA concentration was associated with offspring all-type cryptorchidism both when considered as a continuous exposure (adjusted odds ratio per log10 μg/l: 2.90, 95% CI 1.31-6.43, P = 0.009) and as quartiles (phet = 0.002). Detection of n-PrP in maternal serum was associated with shorter AGD (by 0.242 standard deviations, 95% CI 0.051-0.433, P = 0.01) from birth to 24 months of age; this reduction was independent of body size and other putative confounders. We did not find any consistent associations with offspring outcomes for the other phenols, parabens, and phthalate metabolites measured. LIMITATIONS, REASONS FOR CAUTION We cannot discount confounding by other demographic factors or endocrine-disrupting chemicals. There may have been misclassification of chemical exposure due to use of single serum measurements. The cohort was not fully representative of pregnant women in the UK, particularly in terms of smoking prevalence and maternal ethnicity. WIDER IMPLICATIONS OF THE FINDINGS Our observational findings support experimental evidence that intrauterine exposure to BPA and n-PrP during early gestation may adversely affect male reproductive development. More evidence is required before specific public health recommendations can be made. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by a European Union Framework V programme, the World Cancer Research Fund International, the Medical Research Council (UK), Newlife the Charity for Disabled Children, the Mothercare Group Foundation, Mead Johnson Nutrition and the National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre. Visiting Fellowship (J.M.): Regional Programme 'Jiménez de la Espada' for Research Mobility, Cooperation and Internationalization, Seneca Foundation-Science and Technology Agency for the Region of Murcia (No. 20136/EE/17). K.O. is supported by the Medical Research Council (UK) (Unit Programme number: MC_UU_12015/2). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- B G Fisher
- Department of Paediatrics, University of Cambridge, Box 116, Level 8, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - A Thankamony
- Department of Paediatrics, University of Cambridge, Box 116, Level 8, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - J Mendiola
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, University of Murcia School of Medicine, IMIB-Arrixaca, Avda. Teniente Flomesta, 5, 30003 Murcia, Spain
| | - C J Petry
- Department of Paediatrics, University of Cambridge, Box 116, Level 8, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - H Frederiksen
- Department of Growth and Reproduction & International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - A M Andersson
- Department of Growth and Reproduction & International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - A Juul
- Department of Growth and Reproduction & International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - K K Ong
- Department of Paediatrics, University of Cambridge, Box 116, Level 8, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.,MRC Epidemiology Unit, University of Cambridge, Box 285, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - D B Dunger
- Department of Paediatrics, University of Cambridge, Box 116, Level 8, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK.,Metabolic Research Laboratories, University of Cambridge, Box 289, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - I A Hughes
- Department of Paediatrics, University of Cambridge, Box 116, Level 8, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - C L Acerini
- Department of Paediatrics, University of Cambridge, Box 116, Level 8, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
30
|
Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. Curr Res Toxicol 2021; 2:179-191. [PMID: 34345859 PMCID: PMC8320613 DOI: 10.1016/j.crtox.2021.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Penis development is regulated by a tight balance of androgens and estrogens. EDCs that impact androgen/estrogen balance during development cause hypospadias. Cross-disciplinary collaborations are needed to define a mechanistic link.
Hypospadias is a defect in penile urethral closure that occurs in approximately 1/150 live male births in developed nations, making it one of the most common congenital abnormalities worldwide. Alarmingly, the frequency of hypospadias has increased rapidly over recent decades and is continuing to rise. Recent research reviewed herein suggests that the rise in hypospadias rates can be directly linked to our increasing exposure to endocrine disrupting chemicals (EDCs), especially those that affect estrogen and androgen signalling. Understanding the mechanistic links between endocrine disruptors and hypospadias requires toxicologists and developmental biologists to define exposures and biological impacts on penis development. In this review we examine recent insights from toxicological, developmental and epidemiological studies on the hormonal control of normal penis development and describe the rationale and evidence for EDC exposures that impact these pathways to cause hypospadias. Continued collaboration across these fields is imperative to understand the full impact of endocrine disrupting chemicals on the increasing rates of hypospadias.
Collapse
Key Words
- Androgen
- BBP, benzyl butyl phthalate
- BPA, bisphenol A
- DBP, Σdibutyl phthalate
- DDT, dichlorodiphenyltrichloroethane
- DEHP, Σdi-2(ethylhexyl)-phthalate
- DHT, dihydrotestosterone
- EDC, endocrine disrupting chemicals
- EMT, epithelial to mesenchymal transition
- ER, estrogen receptor
- Endocrine disruptors
- Estrogen
- GT, genital tubercle
- Hypospadias
- NOAEL, no observed adverse effect level
- PBB, polybrominated biphenyl
- PBDE, polybrominated diphenyl ether
- PCB, polychlorinated biphenyl
- PCE, tetrachloroethylene
- Penis
Collapse
|
31
|
Ijaz MU, Tahir A, Samad A, Anwar H. Nobiletin ameliorates nonylphenol-induced testicular damage by improving biochemical, steroidogenic, hormonal, spermatogenic, apoptotic and histological profile. Hum Exp Toxicol 2021; 40:403-416. [PMID: 32815738 DOI: 10.1177/0960327120950007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nonylphenol (NP) is an environmental contaminant, which adversely affects the male fertility due to endocrine disruption and generation of oxidative stress. The current research was planned to assess the effects of nobiletin (NOB), a polymethoxyflavone, on NP-induced testicular damages. Twenty-four male rats were divided into 4 groups: control (0.1% DMSO), NP group (50 mg/kg), NP+NOB group (50 mg/kg + 25 mg/kg), and NOB group (25 mg/kg). Our results revealed that NP brought down the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GSR), while elevated the level of thiobarbituric acid reactive substances (TBARS). Additionally, NP decreased the level of follicle-stimulating hormone (FSH), luteinizing hormone (LH), plasma testosterone, daily sperm production (DSP), epididymal sperm count, viability, motility, gene expression of testicular steroidogenic enzymes (StAR, 3β-HSD and 17β-HSD) and anti-apoptotic protein (Bcl-2), as well as number of spermatogenic cells belonging to various stages. Whereas, sperm (head, mid-piece/neck and tail) abnormalities, expression of apoptotic proteins (Bax and caspase-3), and histopathological damages were increased. However, NOB remarkably reversed all the damages caused by NP. Therefore, it is deduced that NOB could be used as a potential therapeutic to counter the NP-prompted oxidative stress and apoptotic damages in testes.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, 66724University of Agriculture, Faisalabad, Pakistan
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, 66724University of Agriculture, Faisalabad, Pakistan
| | - Abdul Samad
- Department of Zoology, Wildlife and Fisheries, 66724University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, 72594Government College University, Faisalabad, Pakistan
| |
Collapse
|
32
|
Ara C, Butt N, Ali S, Batool F, Shakir HA, Arshad A. Abnormal steroidogenesis, oxidative stress, and reprotoxicity following prepubertal exposure to butylparaben in mice and protective effect of Curcuma longa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6111-6121. [PMID: 32986191 DOI: 10.1007/s11356-020-10819-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Mammalian reproduction is a highly regulated process that can be distorted following exposure to synthetic antimicrobial preservatives like butylparaben (BP). Besides, studies have not investigated the potential antioxidant effects of turmeric on BP-provoked reprotoxicity. The present research was planned on prepubertal mice, orally treated with BP (150 μg/g body weight/day) with and without Curcuma longa (turmeric) (400 μg/mice/day) from postnatal day 35 to 65 routinely. Results showed an insignificant reduction in body weight of both sexes but contrary to these, gonadal weight increased significantly in PB-exposed mice. Additionally, elevated levels of follicle-stimulating hormone and luteinizing hormone while decreased estrogen levels were observed in BP-treated females against control. Sperm count and motility were disturbed, coupled with abnormal sperm morphology in BP-intoxicated group. These findings were synchronized with a decreased testosterone levels in the same group as compared with control. The follicular count revealed reduction in the number of antral follicles while an increase in empty follicles. The BP also significantly increased lipid peroxidation and decreased glutathione content, superoxide dismutase, and catalase activities, while the morphometric, biochemical, and histological deviations were less pronounced in the group, which was co-administered with BP and turmeric. Results indicated that turmeric has antioxidant potential to protect BP-induced oxidative stress and reprotoxicity in mice.
Collapse
Affiliation(s)
- Chaman Ara
- Developmental Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, 54000, Pakistan
| | - Naila Butt
- Developmental Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Farrah Batool
- Developmental Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, 54000, Pakistan
| | - Hafiz Abdullah Shakir
- Developmental Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, 54000, Pakistan
| | - Aqsa Arshad
- Developmental Biology Laboratory, Department of Zoology, University of the Punjab, Lahore, 54000, Pakistan
| |
Collapse
|
33
|
Fayyaz S, Kreiling R, Sauer UG. Application of grouping and read-across for the evaluation of parabens of different chain lengths with a particular focus on endocrine properties. Arch Toxicol 2021; 95:853-881. [PMID: 33459807 PMCID: PMC7904550 DOI: 10.1007/s00204-020-02967-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022]
Abstract
This article presents the outcomes of higher-tier repeated-dose toxicity studies and developmental and reproductive toxicity (DART) studies using Wistar rats requested for methyl paraben and propyl paraben under the European Union chemicals legislation. All studies revealed no-observed adverse effects (NOAELs) at 1000 mg/kg body weight/day. These findings (absence of effects) were then used to interpolate the hazard profile for ethyl paraben, further considering available data for butyl paraben. The underlying read-across hypothesis (all shorter-chained linear n-alkyl parabens are a ‘category’ based on very high structural similarity and are transformed to a common compound) was confirmed by similarity calculations and comparative in vivo toxicokinetics screening studies for methyl paraben, ethyl paraben, propyl paraben and butyl paraben. All four parabens were rapidly taken up systemically following oral gavage administration to rats, metabolised to p-hydroxybenzoic acid, and rapidly eliminated (parabens within one hour; p-hydroxybenzoic acid within 4–8 h). Accordingly, for ethyl paraben, the NOAELs for repeated-dose toxicity and DART were interpolated to be 1000 mg/kg body weight/day. Finally, all evidence was evaluated to address concerns expressed in the literature that parabens might be endocrine disruptors. This evaluation showed that the higher-tier studies do not provide any indication for any endocrine disrupting property. This is the first time that a comprehensive dataset from higher-tier in vivo studies following internationally agreed test protocols has become available for shorter-chained linear n-alkyl parabens. Consistently, the dataset shows that these parabens are devoid of repeated-dose toxicity and do not possess any DART or endocrine disrupting properties.
Collapse
Affiliation(s)
- Susann Fayyaz
- Clariant Produkte (Deutschland) GmbH, Am Unisyspark 1, 65843, Sulzbach, Germany
| | - Reinhard Kreiling
- Clariant Produkte (Deutschland) GmbH, Am Unisyspark 1, 65843, Sulzbach, Germany.
| | - Ursula G Sauer
- Scientific Consultancy-Animal Welfare, Neubiberg, Germany
| |
Collapse
|
34
|
Oliveira MM, Martins F, Silva MG, Correia E, Videira R, Peixoto F. Use of Parabens (Methyl and Butyl) during the Gestation Period: Mitochondrial Bioenergetics of the Testes and Antioxidant Capacity Alterations in Testes and Other Vital Organs of the F1 Generation. Antioxidants (Basel) 2020; 9:antiox9121302. [PMID: 33353071 PMCID: PMC7766258 DOI: 10.3390/antiox9121302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
Since the mid-1920s, parabens have been widely used as antimicrobial preservatives in processed foods and beverages, pharmaceuticals, and cosmetic products. Paraben use continues to generate considerable controversy, both in the general population and in the scientific community itself. The primary purpose of our study was to determine whether parabens (methyl and butyl at concentrations of 100 and 200 mg/kg body weight by subcutaneous injection) during pregnancy of adult female Wistar rats can have an impact on the F1 generation. As far as we know, we are the first to demonstrate that using parabens during pregnancy has negative repercussions on the mitochondrial bioenergetics and antioxidant activity of testicular germ cells in the F1 generation. Our study showed that there was a 48.7 and 59.8% decrease in the respiratory control index with 100 and 200 mg/kg of butylparaben, respectively. Cytochrome c oxidase activity was significantly inhibited (45 and 51%) in both groups. In addition, 200 mg/kg butylparaben promoted a marked decrease in citrate synthase activity, indicating that mitochondrial content decreased in the germ cells, especially spermatocytes and spermatids. Mitochondrial ROS production increased in groups exposed to parabens in a concentration-dependent manner, especially the butyl one (102 and 130%). The groups exposed to butylparaben showed an increase in superoxide dismutase (SOD) and catalase (CAT) activities, while glutathione reductase (GR) and glutathione S-transferase (GST) decreased. With methylparaben, only differences in SOD and GR were observed; for the latter, this only occurred with the highest concentration. The glutathione (GSH)/glutathione disulfide (GSSG) ratio did not undergo any significant change. However, there was a considerable increase in hydroperoxide content in animals exposed to butylparaben, with 100 and 200 mg/kg resulting in 98.6 and 188% increase, respectively. Furthermore, several other organs also showed alterations in antioxidant capacity due to paraben use. In summary, our study demonstrates that paraben use during pregnancy will cause severe changes in the mitochondrial bioenergetics and antioxidant capacity of testicular germ cells and the antioxidant capacity of several other F1 generation organs.
Collapse
Affiliation(s)
- Maria Manuel Oliveira
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (F.M.); (M.G.S.)
- Correspondence: (M.M.O.); (F.P.)
| | - Fátima Martins
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (F.M.); (M.G.S.)
| | - Mónica G. Silva
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (F.M.); (M.G.S.)
| | - Elisete Correia
- Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, IST-UL, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal;
| | - Romeu Videira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, n. 228, 4050-313 Porto, Portugal;
| | - Francisco Peixoto
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (F.M.); (M.G.S.)
- Correspondence: (M.M.O.); (F.P.)
| |
Collapse
|
35
|
Boberg J, Johansson HKL, Axelstad M, Olsen GPM, Johansen M, Holmboe SA, Andersson AM, Svingen T. Using assessment criteria for pesticides to evaluate the endocrine disrupting potential of non-pesticide chemicals: Case butylparaben. ENVIRONMENT INTERNATIONAL 2020; 144:105996. [PMID: 32771829 DOI: 10.1016/j.envint.2020.105996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Regulation of chemicals with endocrine disrupting properties depend on the use of the chemical rather than its intrinsic properties. Within the EU, the only criteria currently in place for identifying an endocrine disrupting chemical (EDC) are those developed for biocidal and plant protection products. We argue that ECHA/EFSA guidance for assessing endocrine disrupting properties of biocidal and plant protection products can be applied to all chemicals independent of their intended use. We have assessed the REACH-registered compound butylparaben (CAS 94-36-8), a preservative used primarily in cosmetics. Based on scientific evidence of adverse reproductive effects and endocrine activity, the open literature suggest that butylparaben is an EDC. By applying the ECHA/EFSA guidance for pesticides and biocides, we identify butylparaben as a compound with endocrine disrupting properties. Even though available data is markedly different from that for biocides and pesticides, it was possible to reach this conclusion. More generally, we propose that the ECHA/EFSA guidance can and should be used for identification of EDC regardless of their intended application.
Collapse
Affiliation(s)
- Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Hanna K L Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gustav P M Olsen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mathias Johansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Stine A Holmboe
- Department of Growth and Reproduction and International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction and International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
36
|
Effects of butylparaben on antioxidant enzyme activities and histopathological changes in rat tissues. Arh Hig Rada Toksikol 2020; 70:315-324. [PMID: 32623865 DOI: 10.2478/aiht-2019-70-3342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022] Open
Abstract
Butyl p-hydroxybenzoic acid, also known as butylparaben (BP), is one of the most common parabens absorbed by the skin and gastrointestinal tract and metabolised in the liver and kidney. Recent in vivo and in vitro studies have raised concern that BP causes reproductive, development, and teratogenic toxicity. However, BP-induced oxidative stress and its relation to tissue damage has not been widely investigated before. Therefore, we aimed to investigate the effects of butyl 4-hydroxybenzoate on enzyme activities related to the pentose phosphate pathway and on glutathione-dependent enzymes such as glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) in kidney, liver, brain, and testis tissues. Male rats were randomly divided into four groups to orally receive corn oil (control) or 200, 400, or 800 mg/kg/day of BP for 14 days. Then we measured G6PD, GR, GST, 6-PGD, and GPx enzyme activities in these tissues and studied histopathological changes. BP treatment caused imbalance in antioxidant enzyme activities and tissue damage in the liver, kidney, brain, and testis. These findings are the first to show the degenerative role of BP on the cellular level. The observed impairment of equivalent homeostasis and antioxidant defence points to oxidative stress as a mechanism behind tissue damage caused by BP.
Collapse
|
37
|
Christiansen S, Axelstad M, Scholze M, Johansson HKL, Hass U, Mandrup K, Frandsen HL, Frederiksen H, Isling LK, Boberg J. Grouping of endocrine disrupting chemicals for mixture risk assessment - Evidence from a rat study. ENVIRONMENT INTERNATIONAL 2020; 142:105870. [PMID: 32593051 DOI: 10.1016/j.envint.2020.105870] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 05/25/2023]
Abstract
Exposure to mixtures of endocrine disrupting chemicals may contribute to the rising incidence of hormone-related diseases in humans. Real-life mixtures are complex, comprised of chemicals with mixed modes of action, and essential knowledge is often lacking on how to group such chemicals into cumulative assessment groups, which is an essential prerequisite to conduct a chemical mixture risk assessment. We investigated if mixtures of chemicals with diverse endocrine modes of action can cause mixture effects on hormone sensitive endpoints in developing and adult rat offspring after perinatal exposure. Wistar rats were exposed during pregnancy and lactation simultaneously to either bisphenol A and butylparaben (Emix), diethylhexyl phthalate and procymidone (Amix), or a mixture of all four substances (Totalmix). In male offspring, the anogenital distance was significantly reduced and nipple retention increased in animals exposed to Amix and Totalmix, and the mixture effects were well approximated by the dose addition model. The combination of Amix and Emix responded with more marked changes on these and other endocrine-sensitive endpoints than each binary mixture on its own. Sperm counts were reduced by all exposures. These experimental outcomes suggest that the grouping of chemicals for mixture risk assessment should be based on common health outcomes rather than only similar modes or mechanisms of action. Mechanistic-based approaches such as the concept of Adverse Outcome Pathway (AOP) can provide important guidance if both the information on shared target tissues and the information on shared mode/mechanism of action are taken into account.
Collapse
Affiliation(s)
- Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark.
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| | - Martin Scholze
- Institute of Environment, Health and Societies, Brunel University London, Quad North, Kingston Lane, Uxbridge UB8 3PH, UK
| | - Hanna K L Johansson
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| | - Karen Mandrup
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| | - Henrik Lauritz Frandsen
- Research Group for Analytical Food Chemistry, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, DK-2800 Kgs. Lyngby, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Louise Krag Isling
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
38
|
Cherian P, Zhu J, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Heldreth B. Amended Safety Assessment of Parabens as Used in Cosmetics. Int J Toxicol 2020; 39:5S-97S. [DOI: 10.1177/1091581820925001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 21 parabens as preservatives in cosmetic products. All of these ingredients are reported to function in cosmetics as preservatives; however, 5 are reported to also function as fragrance ingredients. The Panel reviewed relevant data relating to the safety of these ingredients under the reported conditions of use in cosmetic formulations. The Panel concluded that 20 of the 21 parabens included in this report are safe in cosmetics in the present practices of use and concentration described in this safety assessment when the sum of the total parabens in any given formulation does not exceed 0.8%. However, the available data are insufficient to support a conclusion of safety for benzylparaben in cosmetics.
Collapse
Affiliation(s)
- Priya Cherian
- Cosmetic Ingredient Review Scientific Analyst/Writer, Washington, DC, USA
| | - Jinqiu Zhu
- Cosmetic Ingredient Review Toxicologist, Washington, DC, USA
| | - Wilma F. Bergfeld
- Expert Panel for Cosmetic Ingredient Safety Member, Washington, DC, USA
| | - Donald V. Belsito
- Expert Panel for Cosmetic Ingredient Safety Member, Washington, DC, USA
| | - Ronald A. Hill
- Former Expert Panel for Cosmetic Ingredient Safety Member, Washington, DC, USA
| | | | - Daniel C. Liebler
- Expert Panel for Cosmetic Ingredient Safety Member, Washington, DC, USA
| | - James G. Marks
- Expert Panel for Cosmetic Ingredient Safety Member, Washington, DC, USA
| | - Ronald C. Shank
- Expert Panel for Cosmetic Ingredient Safety Member, Washington, DC, USA
| | - Thomas J. Slaga
- Expert Panel for Cosmetic Ingredient Safety Member, Washington, DC, USA
| | - Paul W. Snyder
- Cosmetic Ingredient Review Toxicologist, Washington, DC, USA
| | - Bart Heldreth
- Cosmetic Ingredient Review Executive Director, Washington, DC, USA
| |
Collapse
|
39
|
Hubbard TD, Brix A, Blystone CR, McIntyre BS, Shockley K, Cunny H, Waidyanatha S, Turner KJ, McBride S, Roberts GK. Butylparaben multigenerational reproductive assessment by continuous breeding in Hsd:Sprague Dawley SD rats following dietary exposure. Reprod Toxicol 2020; 96:258-272. [PMID: 32702374 PMCID: PMC7837387 DOI: 10.1016/j.reprotox.2020.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 10/25/2022]
Abstract
Butylparaben (BP) is an antimicrobial agent utilized for decades as a preservative in numerous consumer products. The safety of parabens has recently come under scrutiny based on reports of estrogenic activity and suggested adverse effects upon the reproductive system. Due to the limited availability of studies that address the potential for BP exposure to induce reproductive toxicity, and clear evidence of human exposure, the National Toxicology Program conducted a multigenerational continuous breeding study to evaluate the impact of dietary BP-exposure at 0, 5000, 15,000, or 40,000 ppm on reproductive and developmental parameters in Hsd:Sprague Dawley SD rats. BP-exposure was not associated with adverse alterations of fertility, fecundity, pubertal attainment, or reproductive parameters in F0, F1, or F2 generations. Exposure-dependent increases in liver weights, and incidences of non-neoplastic liver lesions suggest the liver is a target organ of BP toxicity. No findings were observed that would support the purported mechanism of BP-induced endocrine disruption in perinatally-exposed rodents.
Collapse
Affiliation(s)
- Troy D Hubbard
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Amy Brix
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, USA
| | - Chad R Blystone
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Barry S McIntyre
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Keith Shockley
- Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Helen Cunny
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | | | - Sandra McBride
- Social & Scientific Systems, Inc., Research Triangle Park, NC, USA
| | - Georgia K Roberts
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA.
| |
Collapse
|
40
|
Schwartz CL, Vinggaard AM, Christiansen S, Darde TA, Chalmel F, Svingen T. Distinct Transcriptional Profiles of the Female, Male, and Finasteride-Induced Feminized Male Anogenital Region in Rat Fetuses. Toxicol Sci 2020; 169:303-311. [PMID: 30768126 DOI: 10.1093/toxsci/kfz046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A short anogenital distance (AGD) in males is a marker for incomplete masculinization and a predictor of adverse effects on male reproductive health. For this reason, AGD is used to assess the endocrine disrupting potential of chemicals for risk assessment purposes. The molecular mechanisms underpinning this chemically induced shortening of the AGD, however, remains unclear. Although it is clear that androgen receptor-mediated signaling is essential, evidence also suggest the involvement of other signaling pathways. This study presents the first global transcriptional profile of the anogenital tissue in male rat fetuses with chemically induced short AGD, also including comparison to normal male and female control animals. The antiandrogenic drug finasteride (10 mg/kg bw/day) was used to induce short AGD by exposing time-mated Sprague Dawley rats at gestation days 7-21. The AGD was 37% shorter in exposed male fetuses compared with control males at gestation day 21. Transcriptomics analysis on anogenital tissues revealed a sexually dimorphic transcriptional profile. More than 350 genes were found to be differentially expressed between the 3 groups. The expression pattern of 4 genes of particular interest (Esr1, Padi2, Wnt2, and Sfrp4) was also tested by RT-qPCR analyses, indicating that estrogen and Wnt2 signaling play a role in the sexually dimorphic development of the anogenital region. Our transcriptomics profiles provide a stepping-stone for future studies aimed at characterizing the molecular events governing development of the anogenital tissues, as well as describing the detailed Adverse Outcome Pathways for short AGD; an accepted biomarker of endocrine effects for chemical risk assessment.
Collapse
Affiliation(s)
- Camilla Lindgren Schwartz
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas Alain Darde
- INSERM, Université de Rennes, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S1085, Rennes, France
| | - Frederic Chalmel
- INSERM, Université de Rennes, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S1085, Rennes, France
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
41
|
Maske P, Dighe V, Mote C, Vanage G. n-Butylparaben exposure through gestation and lactation impairs spermatogenesis and steroidogenesis causing reduced fertility in the F1 generation male rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:112957. [PMID: 31672375 DOI: 10.1016/j.envpol.2019.112957] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Parabens are class of preservatives used in vast majority of commercial products, and a potential Endocrine Disrupting Chemical (EDC). The present study was undertaken to delineate the effects of n-butylparaben on F1 male progeny exposed maternally through gestation and lactation via subcutaneous route. The F0 dams were given subcutaneous injections of n-butylparaben from gestation day (GD) 6 to postnatal day (PND) 21 with doses of 10, 100, 1000 mg/kg Bw/day in corn oil. The F1 male rats were monitored for pubertal development and sexual maturation; these were sacrificed on PND 30, 45 and 75. On PND 75, these F1 male rats were subjected for fertility assessment with unexposed female rats. A delayed testicular descent at 100 and 1000 mg/kg Bw dose and delayed preputial separation at 10 mg/kg Bw dose was observed in exposed F1 male rats. Decreased sperm count, motility and Daily Sperm Production was observed at 100 mg/kg Bw dose at PND 75. Interestingly, the sperm transit time in the epididymis was accelerated at this dose. Significant perturbed testicular expression of steroid receptors (ERα and β, AR), INSL3 and StAR genes with increased T and LH levels indicates direct effect on spermatogenesis and steroidogenesis. These F1 generation adult rats were sub-fertile with increased (%) pre- and post-implantation loss at 100 and 1000 mg/kg Bw/day dose. This is the first report on n-butylparaben highlighting the involvement of testicular leydig cells with accelerated sperm transit time leading to reduced fertility in the maternally exposed F1 male rats through estrogenic/anti-androgenic action.
Collapse
Affiliation(s)
- Priyanka Maske
- National Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra, India
| | - Chandrashekhar Mote
- Krantisinh Nana Patil College of Veterinary Science, Shirval, Maharashtra, India
| | - Geeta Vanage
- National Centre for Preclinical Reproductive and Genetic Toxicology, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra, India.
| |
Collapse
|
42
|
Tsatsakis A, Docea AO, Constantin C, Calina D, Zlatian O, Nikolouzakis TK, Stivaktakis PD, Kalogeraki A, Liesivuori J, Tzanakakis G, Neagu M. Genotoxic, cytotoxic, and cytopathological effects in rats exposed for 18 months to a mixture of 13 chemicals in doses below NOAEL levels. Toxicol Lett 2019; 316:154-170. [PMID: 31521832 DOI: 10.1016/j.toxlet.2019.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
The present study investigates the genotoxic and cytotoxic effects of long term exposure to low doses of a mixture consisting of methomyl, triadimefon, dimethoate, glyphosate, carbaryl, methyl parathion, aspartame, sodium benzoate, EDTA, ethylparaben, buthylparaben, bisphenol A and acacia gum in rats. Four groups of ten Sprangue Dawley rats (5 males and 5 females per group) were exposed for 18 months to the mixture in doses of 0xNOAEL, 0.0025xNOAEL, 0.01xNOAEL and 0.05xNOAEL (mg/kg bw/day). After 18 months of exposure, the rats were sacrificed and their organs were harvested. Micronuclei frequency was evaluated in bone marrow erythrocytes whereas the organs were cytopathologically examined by the touch preparation technique. The exposure to the mixture caused a genotoxic effect identified only in females. Cytopathological examination showed specific alterations of tissue organization in a tissue-type dependent manner. The observed effects were dose-dependent and correlated to various tissue parameters. Specifically, testes samples revealed degenerative and cellularity disorders, liver hepatocytes exhibited decreased glycogen deposition whereas degenerative changes were present in gastric cells. Lung tissue presented increased inflammatory cells infiltration and alveolar macrophages with enhanced phagocytic activity, whereas brain tissue exhibited changes in glial and astrocyte cells' numbers. In conclusion, exposure to very low doses of the tested mixture for 18 months induces genotoxic effects as well as monotonic cytotoxic effects in a tissue-dependent manner.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece; Spin-Off Toxplus S.A., 71601, Heraklion, Greece.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - Carolina Constantin
- Department of Immunology, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Pathology Dept. Colentina Clinical Hospital, Bucharest, Romania.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | | | - Polychronis D Stivaktakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, Crete, Greece.
| | | | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003, Heraklion, Greece.
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Pathology Dept. Colentina Clinical Hospital, Bucharest, Romania.
| |
Collapse
|
43
|
Oxidative stress in testes of rats exposed to n-butylparaben. Food Chem Toxicol 2019; 131:110573. [DOI: 10.1016/j.fct.2019.110573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/06/2023]
|
44
|
Babeľová J, Šefčíková Z, Čikoš Š, Kovaříková V, Špirková A, Pisko J, Koppel J, Fabian D. In vitro exposure to pyrethroid-based products disrupts development of mouse preimplantation embryos. Toxicol In Vitro 2019; 57:184-193. [DOI: 10.1016/j.tiv.2019.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
|
45
|
Park J, Park C, Gye MC, Lee Y. Assessment of endocrine-disrupting activities of alternative chemicals for bis(2-ethylhexyl)phthalate. ENVIRONMENTAL RESEARCH 2019; 172:10-17. [PMID: 30769184 DOI: 10.1016/j.envres.2019.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 01/17/2019] [Accepted: 02/01/2019] [Indexed: 05/28/2023]
Abstract
Plastic products are closely intertwined with modern life. Some plasticizers used in making plastics, such as phthalates, are reported to be endocrine-disrupting chemicals. Plasticizers can be released into the environment, and health risks related to plasticizer exposure have been reported. In addition, due to plastic waste that flows into the ocean, microplastics have been found in marine products, including non-biological seawater products such as sea salt. Plastics can affect the body via a variety of pathways, and therefore safer alternative chemicals are needed. Three chemicals were evaluated: acetyl tributyl citrate (ATBC), triethyl 2-acetylcitrate (ATEC), and trihexyl O-acetylacitrate (ATHC), replacing bis(2-ethylhexyl)phthalate (DEHP), a typical plasticizer. The endocrine-disrupting activities of each chemical, including estrogenic or anti-estrogenic activity (test guideline (TG) No. 455), androgenic or anti-androgenic activity (TG No. 458), steroidogenesis (TG No. 456), and estrogenic properties via a short-term screening test using the uterotrophic assay (TG No. 440), were assessed in accordance with the Organisation for Economic Co-operation and Development guidelines for chemical testing. Our results showed that DEHP, ATBC, ATEC, ATHC possess no estrogenic activity, whereas DEHP, ATBC and ATHC demonstrate anti-estrogenic activity and ATBC anti-androgenic activity. DEHP and ATHC exhibited a disruption in steroidogenesis activities. Additional tests are necessary, but our results suggest that ATEC is a good candidate plasticizer providing a suitable alternative to DEHP.
Collapse
Affiliation(s)
- Joonwoo Park
- Department of Integrative Bioscience and Biothecnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea
| | - Choa Park
- Department of Integrative Bioscience and Biothecnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea
| | - Myung Chan Gye
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Youngjoo Lee
- Department of Integrative Bioscience and Biothecnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 143-747, Republic of Korea.
| |
Collapse
|
46
|
Maske P, Dighe V, Vanage G. n-butylparaben exposure during perinatal period impairs fertility of the F1 generation female rats. CHEMOSPHERE 2018; 213:114-123. [PMID: 30218874 DOI: 10.1016/j.chemosphere.2018.08.130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Parabens are a class of preservatives widely used in the majority of personal care products, cosmetics, medicines, and food products. However, current literature suggests its plausible role as an endocrine disruptor, hence the present study was undertaken to delineate the effects of n-butyl paraben on perinatally exposed F1 female rats. F0 dams were exposed subcutaneously to n-butylparaben from gestation day 6 (GD 6) to postnatal day (PND) 21 with doses of 10, 100, and 1000 mg/kg Bw/day in corn oil. The F1 female rats were monitored for pubertal development and sexual maturation through PND 30, 45, and 75; which were subsequently subjected to fertility assessment at PND 75. Perinatal exposure to n-butylparaben resulted in- This study documents impaired steroidogenesis and folliculogenesis might be the prime reason for the reduced fertility of F1 female rats. Hence, our study suggests that health monitors need to counsel potential females planning for pregnancy to avoid exposure to parabens.
Collapse
Affiliation(s)
- Priyanka Maske
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra 400 012, India
| | - Vikas Dighe
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra 400 012, India
| | - Geeta Vanage
- National Centre for Preclinical Reproductive and Genetic Toxicology, National Institute for Research in Reproductive Health, Parel, Mumbai, Maharashtra 400 012, India.
| |
Collapse
|
47
|
Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T. Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 2018; 93:253-272. [PMID: 30430187 DOI: 10.1007/s00204-018-2350-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022]
Abstract
Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospective marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a biomarker in both a regulatory and clinical setting.
Collapse
Affiliation(s)
- Camilla Lindgren Schwartz
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
48
|
Nowak K, Ratajczak-Wrona W, Górska M, Jabłońska E. Parabens and their effects on the endocrine system. Mol Cell Endocrinol 2018; 474:238-251. [PMID: 29596967 DOI: 10.1016/j.mce.2018.03.014] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/07/2023]
Abstract
Preservatives (ingredients which inhibit growth of microorganisms) are used to prolong shelf life of various foods, cosmetics, and pharmaceutical products. Parabens are one of the most popular preservatives used in the aforementioned products and is currently being used worldwide. Parabens are easily absorbed by the human body. Thus, it is important to discuss about their safety with respect to human physiology. In view of the current literature, which classifies parabens as a group of endocrine disrupting chemicals (EDCs), it seems that the precise assessment of their influence on the human endocrine system is particularly important. Disruption of the endocrine homoeostasis might lead to multidirectional implications causing disruption of fitness and functions of the body. Therefore, in this review article, we aimed to summarize the current literature on properties, occurrence, and metabolism of parabens as well as to present recent progress in knowledge about their influence on the human endocrine system.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | | | - Maria Górska
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| |
Collapse
|
49
|
Brown SE, Sant KE, Fleischman SM, Venezia O, Roy MA, Zhao L, Timme-Laragy AR. Pancreatic beta cells are a sensitive target of embryonic exposure to butylparaben in zebrafish (Danio rerio). Birth Defects Res 2018. [PMID: 29516647 DOI: 10.1002/bdr2.1215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Butylparaben (butyl p-hydroxybenzoic acid) is a common cosmetic and pharmaceutical preservative reported to induce oxidative stress and endocrine disruption. Embryonic development is sensitive to oxidative stress, with redox potentials playing critical roles in progenitor cell fate decisions. Because pancreatic beta cells have been reported to have low antioxidant gene expression, they may be sensitive targets of oxidative stress. We tested the hypotheses that butylparaben causes oxidative stress in the developing embryo, and that pancreatic beta cells are a sensitive target of butylparaben embryotoxicity. METHODS Transgenic insulin:GFP zebrafish embryos (Danio rerio) were treated daily with 0, 250, 500, 1,000, and 3,000 nM butylparaben. Pancreatic islet and whole embryo development were examined though 7 days postfertilization, and gene expression was measured by quantitative real-time PCR. Glutathione (GSH) and cysteine redox content were measured at 28 hr postfertilization using HPLC. RESULTS Butylparaben exposure caused intestinal effusion, pericardial edema, and accelerated yolk utilization. At 250 nM, beta cell area increased by as much as 55%, and increased incidence of two aberrant morphologies were observed-fragmentation of the islet cluster and ectopic beta cells. Butylparaben concentrations of 500 and 1,000 nM increased GSH by 10 and 40%, respectively. Butylparaben exposure downregulated transcription factor pdx1, as well as genes involved in GSH synthesis, while upregulating GSH-disulfide reductase (gsr). CONCLUSIONS The endocrine pancreas is a sensitive target of embryonic exposure to butylparaben, which also causes developmental deformities and perturbs redox conditions in the embryo.
Collapse
Affiliation(s)
- Sarah E Brown
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St, Amherst, Massachusetts 01003-9303
| | - Karilyn E Sant
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St, Amherst, Massachusetts 01003-9303
| | - Shana M Fleischman
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St, Amherst, Massachusetts 01003-9303
| | - Olivia Venezia
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St, Amherst, Massachusetts 01003-9303
| | - Monika A Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St, Amherst, Massachusetts 01003-9303.,Biotechnology Training Program, University of Massachusetts Amherst, Massachusetts 01003
| | - Ling Zhao
- Department of Nutrition, University of Tennessee Knoxville, 1215 W. Cumberland Ave., 229 Jessie Harris Building, Knoxville, Tennessee 37996-1920
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, 686 N. Pleasant St, Amherst, Massachusetts 01003-9303
| |
Collapse
|
50
|
Riad MA, Abd-Rabo MM, Abd El Aziz SA, El Behairy AM, Badawy MM. Reproductive toxic impact of subchronic treatment with combined butylparaben and triclosan in weanling male rats. J Biochem Mol Toxicol 2018; 32:e22037. [DOI: 10.1002/jbt.22037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Madeha A. Riad
- Biochemistry and Chemistry Nutrition Department; Faculty of Veterinary Medicine, Cairo University; Egypt
- Hormone evaluation department; National Organization for Drug Control and Research; Giza Egypt
| | - Marwa M. Abd-Rabo
- Hormone evaluation department; National Organization for Drug Control and Research; Giza Egypt
| | - Samy A. Abd El Aziz
- Biochemistry and Chemistry Nutrition Department; Faculty of Veterinary Medicine, Cairo University; Egypt
| | - Adel M. El Behairy
- Biochemistry and Chemistry Nutrition Department; Faculty of Veterinary Medicine, Cairo University; Egypt
| | - Mohamed M. Badawy
- Hormone evaluation department; National Organization for Drug Control and Research; Giza Egypt
| |
Collapse
|