1
|
Shakoor N, Adeel M, Ahmad MA, Zain M, Waheed U, Javaid RA, Haider FU, Azeem I, Zhou P, Li Y, Jilani G, Xu M, Rinklebe J, Rui Y. Reimagining safe lithium applications in the living environment and its impacts on human, animal, and plant system. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100252. [PMID: 36891261 PMCID: PMC9988428 DOI: 10.1016/j.ese.2023.100252] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Lithium's (Li) ubiquitous distribution in the environment is a rising concern due to its rapid proliferation in the modern electronic industry. Li enigmatic entry into the terrestrial food chain raises many questions and uncertainties that may pose a grave threat to living biota. We examined the leverage existing published articles regarding advances in global Li resources, interplay with plants, and possible involvement with living organisms, especially humans and animals. Globally, Li concentration (<10-300 mg kg-1) is detected in agricultural soil, and their pollutant levels vary with space and time. High mobility of Li results in higher accumulation in plants, but the clear mechanisms and specific functions remain unknown. Our assessment reveals the causal relationship between Li level and biota health. For example, lower Li intake (<0.6 mM in serum) leads to mental disorders, while higher intake (>1.5 mM in serum) induces thyroid, stomach, kidney, and reproductive system dysfunctions in humans and animals. However, there is a serious knowledge gap regarding Li regulatory standards in environmental compartments, and mechanistic approaches to unveil its consequences are needed. Furthermore, aggressive efforts are required to define optimum levels of Li for the normal functioning of animals, plants, and humans. This review is designed to revitalize the current status of Li research and identify the key knowledge gaps to fight back against the mountainous challenges of Li during the recent digital revolution. Additionally, we propose pathways to overcome Li problems and develop a strategy for effective, safe, and acceptable applications.
Collapse
Affiliation(s)
- Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Muhammad Arslan Ahmad
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Zain
- Department of Botany, University of Lakki Marwat, KP, 28420, Pakistan
| | - Usman Waheed
- Department of Pathobiology, University of Veterinary & Animal Sciences, Jhang-campus, Lahore, 54000, Pakistan
| | - Rana Arsalan Javaid
- Crop Science Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ghulam Jilani
- Institute of Soil Science, PMAS Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Germany
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Liao H, Zhang L, Li J, Xing T, Gao F. Intracellular Calcium Overload and Activation of CaMKK/AMPK Signaling Are Related to the Acceleration of Muscle Glycolysis of Broiler Chickens Subjected to Acute Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4091-4100. [PMID: 36820528 DOI: 10.1021/acs.jafc.2c07391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The current study investigated the effect of preslaughter transport on stress response and meat quality of broilers and explored the underlying mechanisms involved in the regulation of muscle glycolysis through calcium/calmodulin-dependent protein kinase kinase (CaMKK)/AMP-activated protein kinase (AMPK) signaling. Results suggested that transport induced stress responses of broilers and caused PSE-like syndrome of pectoralis major muscle. Preslaughter transport enhanced the mRNA expressions of glycogen phosphorylase and glucose transporters, as well as the activities of glycolytic enzymes, which accelerated the breakdown of glycolytic substrates and the accumulation of lactic acid. In addition, acute stress induced abnormal intracellular calcium homeostasis by disrupting calcium channels on the cell membrane and sarcoplasmic reticulum, which led to the activation of CaMKK and promoted AMPK phosphorylation. This study provides evidence that the intracellular calcium overload and the enhancement of CaMKK/AMPK signaling are related to the accelerated muscle glycolysis of broiler chickens subjected to acute stress.
Collapse
Affiliation(s)
- Hongju Liao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaolong Li
- Institute of Agri-Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| |
Collapse
|
3
|
Gherardelli C, Cisternas P, Inestrosa NC. Lithium Enhances Hippocampal Glucose Metabolism in an In Vitro Mice Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:8733. [PMID: 35955868 PMCID: PMC9368914 DOI: 10.3390/ijms23158733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired cerebral glucose metabolism is an early event that contributes to the pathogenesis of Alzheimer's disease (AD). Importantly, restoring glucose availability by pharmacological agents or genetic manipulation has been shown to protect against Aβ toxicity, ameliorate AD pathology, and increase lifespan. Lithium, a therapeutic agent widely used as a treatment for mood disorders, has been shown to attenuate AD pathology and promote glucose metabolism in skeletal muscle. However, despite its widespread use in neuropsychiatric disorders, lithium's effects on the brain have been poorly characterized. Here we evaluated the effect of lithium on glucose metabolism in hippocampal neurons from wild-type (WT) and APPSwe/PS1ΔE9 (APP/PS1) mice. Our results showed that lithium significantly stimulates glucose uptake and replenishes ATP levels by preferential oxidation of glucose through glycolysis in neurons from WT mice. This increase was also accompanied by a strong increase in glucose transporter 3 (Glut3), the major carrier responsible for glucose uptake in neurons. Similarly, using hippocampal slices from APP-PS1 mice, we demonstrate that lithium increases glucose uptake, glycolytic rate, and the ATP:ADP ratio in a process that also involves the activation of AMPK. Together, our findings indicate that lithium stimulates glucose metabolism and can act as a potential therapeutic agent in AD.
Collapse
Affiliation(s)
- Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6210427, Chile
| |
Collapse
|
4
|
Kabzińska K, Cisek-Woźniak A, Czajeczny D, Mruczyk K, Wójciak RW. The influence of Li + ions on pepsin and trypsin activity in vitro. J Trace Elem Med Biol 2021; 66:126763. [PMID: 33915410 DOI: 10.1016/j.jtemb.2021.126763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/16/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND The paper presents a study on the influence of different lithium carbonate and lithium citrate concentration on proteolytic enzymes, namely pepsin and trypsin, in vitro. Lithium can directly affect enzyme activity. Its influence on many bodily functions in both ill and healthy people has been proven. METHODS To assess the influence of Li+ ions concentration and the substrate/enzyme ratio on pepsin and trypsin activity in vitro, 60 factorial experiments were conducted (each repeated 30 times). MAIN FINDINGS For both enzymes, statistically significant changes in their activity under the influence of lihium carbonate and lithium citrate were observed. The biggest increase in enzyme activity reached even 198.6 % and the largest decrease in enzyme activity reached about 50 %. CONCLUSIONS The study shows that both organic and inorganic forms of lithium salts cause changes in the activity of digestive enzymes. Different concentrations of lithium carbonate and lithium citrate stimulate or inhibit the activity of trypsin and pepsin.
Collapse
Affiliation(s)
- Karolina Kabzińska
- Department of Clinical Psychology, Poznan University of Medical Sciences, Poland.
| | | | - Dominik Czajeczny
- Department of Clinical Psychology, Poznan University of Medical Sciences, Poland
| | - Kinga Mruczyk
- Department of Dietetics, Poznan University of Physical Education, Poland
| | - Rafał W Wójciak
- Department of Clinical Psychology, Poznan University of Medical Sciences, Poland
| |
Collapse
|
5
|
Ding X, Peng C, Li S, Li M, Li X, Wang Z, Li Y, Wang X, Li J, wu J. Chicken serum uric acid level is regulated by glucose transporter 9. Anim Biosci 2021; 34:670-679. [PMID: 32810934 PMCID: PMC7961270 DOI: 10.5713/ajas.20.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/29/2020] [Indexed: 11/27/2022] Open
Abstract
Objective: Glucose transporter 9 (GLUT9) is a uric acid transporter that is associated with uric absorption in mice and humans; but it is unknown whether GLUT9 involves in chicken uric acid regulation. This experiment aimed to investigate the chicken GLUT9 expression and serum uric acid (SUA) level.Methods: Sixty chickens were divided into 4 groups (n = 15): a control group (NC); a sulfonamide-treated group (SD) supplemented with sulfamonomethoxine sodium via drinking water (8 mg/L); a fishmeal group (FM) supplemented with 16% fishmeal in diet; and a uric acid-injection group (IU), where uric acid (250 mg/kg) was intraperitoneally injected once a day. The serum was collected weekly to detect the SUA level. Liver, kidney, jejunum, and ileum tissues were collected to detect the GLUT9 mRNA and protein expression.Results: The results showed in the SD and IU groups, the SUA level increased and GLUT9 expression increased in the liver, but decreased in the kidney, jejunum, and ileum. In the FM group, the SUA level decreased slightly and GLUT9 expression increased in the kidney, but decreased in the liver, jejunum, and ileum. Correlation analysis revealed that liver GLUT9 expression correlated positively, and renal GLUT9 expression correlated negatively with the SUA level.Conclusion: These results demonstrate that there may be a feedback regulation of GLUT9 in the chicken liver and kidney to maintain the SUA balance; however, the underlying mechanism needs to be investigated in future studies.
Collapse
|