1
|
Zhang L, Lin H, Chen N, Zhu S, Hu Y. Selected traditional Chinese herbal medicines for the treatment of atopic dermatitis - research progress on the effect and mechanism of actions. Front Pharmacol 2025; 16:1553251. [PMID: 40206061 PMCID: PMC11978831 DOI: 10.3389/fphar.2025.1553251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Atopic dermatitis (AD) is a common chronic, recurrent, inflammatory skin disease characterized by pruritus, lichen-like changes and dry skin. Due to the complex pathogenesis of AD, its mechanism is primarily associated with genetic, skin barrier dysfunction, environmental, and immune factors. AD has been routinely treated with glucocorticoids, antihistamines, local immunomodulators, biological agents, and small molecules; however, the side effects are significant, and the treatment efficacy is limited. In recent years, traditional Chinese medicine (TCM) has gradually been widely used in the treatment of AD. Many studies have shown that TCM mainly regulates inflammatory cytokines, gut microbiota and the immune system. Therefore, it plays a crucial role in the treatment of AD. The treatment of atopic dermatitis using TCM is characterized by targeting multiple pathways and multiple targets, and it demonstrates significant therapeutic effects. This paper reviews the pathogenesis of AD and reports the efficacy of TCM on AD (including TCM prescription, single TCM, treatment of TCM metabolites), which provides a theoretical basis for TCM treatment of AD. TCM has certain therapeutic effects on AD. It can alleviate and treat AD in various ways. We should base our differentiation on syndrome differentiation and treatment differentiation. With the help of modern medicine, the clinical efficacy of TCM in treating AD can be improved.
Collapse
Affiliation(s)
- Lingjie Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Hangjuan Lin
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Ninggang Chen
- Ningbo Municipal Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang, China
| | - Suyan Zhu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
- College of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, China
| | - Ying Hu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, China
- College of Pharmacy, The First Affiliated Hospital of Ningbo University, Zhejiang, China
| |
Collapse
|
2
|
Chang X, Li G, Yang B, Lin D. Protection of schisantherin A against dictamnine-induced hepatotoxicity: Pharmacokinetic insights. J Appl Toxicol 2024; 44:501-509. [PMID: 37873635 DOI: 10.1002/jat.4557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023]
Abstract
Dictamnine (DIC), as the most abundant furoquinoline alkaloid ingredient of the herbal medicine Cortex Dictamni (CD), can induce severe liver injury. A previous study found that DIC-induced liver injury was initiated by cytochrome P4503A (CYP3A)-mediated metabolic activation and subsequent formation of adducts with cellular proteins. Schisantherin A (SchA) is the major lignan component of the herbal medicine Schisandra chinensis (SC). SC is frequently combined with CD used in numerous Chinese medicinal formulas for the treatment of eczema and urticaria. Furthermore, SC could protect against CD-induced hepatotoxicity. The objective of the study was to investigate the protective effect of SchA on DIC-induced hepatotoxicity based on pharmacokinetic interactions. The studies found that SchA exerted a protective effect on DIC-induced hepatotoxicity in a dose-dependent manner. Pharmacokinetic studies showed that pretreatment with SchA enhanced the area under concentration-time curve (AUC) and maximal concentration (Cmax ) values of DIC in the serum and liver tissue of mice, indicating that SchA could augment the accumulation of DIC in the circulation. In vitro metabolism assays with mouse liver microsomes (MLMs) showed that SchA reduced the production of DIC-glutathione (GSH) conjugate. In addition, SchA significantly reduced the excretion of DIC-GSH conjugate in the urine of mice and relieved hepatic GSH depletion induced by DIC. These results suggested that SchA could inhibit the metabolic activation of DIC in vitro and in vivo. In summary, our findings showed that the observed pharmacokinetic interactions might be attributable to the inhibition of the metabolism of DIC by SchA, which might be responsible for the protection of SchA against DIC-induced hepatotoxicity. Therefore, the development of a standardized combination of DIC and SchA may protect patients from DIC-induced liver injury.
Collapse
Affiliation(s)
- Xiaojin Chang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Guangyao Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Bufan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Dongju Lin
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, China
| |
Collapse
|
3
|
Gao P, Chang K, Yuan S, Wang Y, Zeng K, Jiang Y, Tu P, Lu Y, Guo X. Exploring the Mechanism of Hepatotoxicity Induced by Dictamnus dasycarpus Based on Network Pharmacology, Molecular Docking and Experimental Pharmacology. Molecules 2023; 28:5045. [PMID: 37446707 DOI: 10.3390/molecules28135045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The root bark of Dictamnus dasycarpus Turcz is a traditional Chinese medicine, Dictamni Cortex (DC), which is mainly used in the clinical treatment of skin inflammation, eczema, rubella, rheumatism, and gynecological inflammation. Unexpectedly, there are some cases of liver injury after the administration of DC. However, the mechanism of hepatotoxicity remains ambiguous. The aim of this study was to explore the mechanism and substance bases of DC hepatotoxicity based on network pharmacology and molecular docking, verified through pharmacological experiments. Partial prototype components and metabolites in vivo of quinoline alkaloids from DC were selected as candidate compounds, whose targets were collected from databases. Network pharmacology was applied to study the potential hepatotoxic mechanism after correlating the targets of candidate compounds with the targets of hepatotoxicity. Molecular docking was simulated to uncover the molecular mechanism. Furthermore, the hepatotoxicity of the extract and its constituents from DC was evaluated in vivo and in vitro. We constructed the "potential toxic components-toxic target-toxic pathway" network. Our results showed that the targets of DC included CYP1A2 and GSR, participating in heterologous steroid metabolism, REDOX metabolism, drug metabolism, heterocyclic metabolic processes, the synthesis of steroid hormone, cytochrome P450 metabolism, chemical carcinogens and bile secretion pathways. In vitro and in vivo experiments displayed that DC could result in a decrease in GSH-Px and oxidative stress, simultaneously inhibiting the expression of CYP1A2 and inducing hepatotoxicity. These results further indicated the mechanism of hepatotoxicity induced by Dictamnus dasycarpus, providing a basic theory to explore and prevent hepatotoxicity in the clinical usage of Dictamnus dasycarpus.
Collapse
Affiliation(s)
- Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kun Chang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuo Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yanhang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoyu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Huang S, Huang H, Xie J, Wang F, Fan S, Yang M, Zheng C, Han L, Zhang D. The latest research progress on the prevention of storage pests by natural products: Species, mechanisms, and sources of inspiration. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
5
|
Tian M, Peng Y, Zheng J. Metabolic Activation and Hepatotoxicity of Furan-Containing Compounds. Drug Metab Dispos 2022; 50:655-670. [PMID: 35078805 DOI: 10.1124/dmd.121.000458] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/18/2022] [Indexed: 02/13/2025] Open
Abstract
Furan-containing compounds are abundant in nature, and many, but not all, have been found to be hepatotoxic and carcinogenic. The furan ring present in the chemical structures may be one of the domineering factors to bring about the toxic response resulting from the generation of reactive epoxide or cis-enedial intermediates, which have the potential to react with biomacromolecules. This review sets out to explore the relationship between the metabolic activation and hepatotoxicity of furan-containing compounds on the strength of scientific reports on several typical alkylated furans, synthetic pharmaceuticals, and components extracted from herbal medicines. The pharmacological activities as well as concrete evidence of their liver injuries are described, and the potential toxic mechanisms were discussed partly based on our previous work. Efforts were made to understand the development of liver injury and seek solutions to prevent adverse effects. SIGNIFICANCE STATEMENT: This review mainly elucidates the vital role of metabolic activation in the hepatotoxicity of furan-containing compounds through several typical chemicals studied. The possible mechanisms involved in the toxicities are discussed based on collective literatures as well as our work. Additionally, the structural features responsible for toxicities are elaborated to predict toxicity potentials of furan-containing compounds. This article may assist to seek solutions for the occurring problems and prevent the toxic effects of compounds with furan(s) in clinical practice.
Collapse
Affiliation(s)
- Min Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (M.T., Y.P., J.Z.) and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province (J.Z.) and Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Z.), Guizhou Medical University, Guiyang, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (M.T., Y.P., J.Z.) and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province (J.Z.) and Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Z.), Guizhou Medical University, Guiyang, China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China (M.T., Y.P., J.Z.) and State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province (J.Z.) and Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education (J.Z.), Guizhou Medical University, Guiyang, China
| |
Collapse
|