1
|
Li A, Liu F, Si W, Wang Y, Wang D, Yuan Z, Li L, Kiani FA, Jiang X. Pesticide butachlor exposure perturbs gut microbial homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116646. [PMID: 38954906 DOI: 10.1016/j.ecoenv.2024.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Agricultural production relies heavily on the use of pesticides, which may accumulate in soil and water, posing a significant threat to the global ecological environment and biological health. Butachlor is a commonly used herbicide and environmental pollutant, which has been linked to liver and kidney damage, as well as neurological abnormalities. However, the potential impact of butachlor exposure on the gut microbiota remains understudied. Thus, our aim was to investigate the potential negative effects of butachlor exposure on host health and gut microbiota. Our results demonstrated that butachlor exposure significantly reduced the host antioxidant capacity, as evidenced by decreased levels of T-AOC, SOD, and GSH-Px, and increased levels of MDA. Serum biochemical analysis also revealed a significant increase in AST and ALT levels during butachlor exposure. Microbial analysis showed that butachlor exposure significantly reduced the abundance and diversity of gut microbiota. Furthermore, butachlor exposure also significantly altered the gut microbial composition. In conclusion, our findings indicate that butachlor exposure can have detrimental health effects, including dysregulation of antioxidant enzymes, abnormalities in transaminases, and hepatointestinal damage. Furthermore, it disrupts the gut microbial homeostasis by altering microbial composition and reducing diversity and abundance. In the context of the increasingly serious use of pesticides, this study will help provide impetus for standardizing the application of pesticides and reducing environmental pollution.
Collapse
Affiliation(s)
- Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenyu Si
- Xinxiang County Agriculture and Rural Affairs Bureau, Xinxiang 453799, China
| | - Yan Wang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Tibet, Lhasa 850009, China
| | - Dongjing Wang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Tibet, Lhasa 850009, China
| | - Zhenjie Yuan
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Region Academy of Agricultural Sciences, Tibet, Lhasa 850009, China
| | - Liangliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Faisal Ayub Kiani
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiong Jiang
- Hubei Three Gorges Polytechnic, Yichang 443000, China.
| |
Collapse
|
2
|
Khoo SC, Zhang N, Luang-In V, Goh MS, Sonne C, Ma NL. Exploring environmental exposomes and the gut-brain nexus: Unveiling the impact of pesticide exposure. ENVIRONMENTAL RESEARCH 2024; 250:118441. [PMID: 38350544 DOI: 10.1016/j.envres.2024.118441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nan Zhang
- Synerk Biotech, BioBay, Suzhou, 215000, China; Neuroscience Program, Department of Neurology, Houston Methodist Research Institute, TX, 77030, USA; Department of Neurology, Weill Cornell Medicine, New York, 10065, USA
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantharawichai, Mahasarakham, 44150, Thailand
| | - Meng Shien Goh
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Faculty of Science and Technology, Department of Bioscience, Arctic Research Centre (ARC), Danish Centre for Environment and Energy (DCE), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Nyuk Ling Ma
- Biological Security and Sustainability (BioSES) Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
3
|
Kaikai NE, Ba-M'hamed S, Ghanima A, Bennis M. Exposure to metam sodium-based pesticide impaired cognitive performances in adult mice: Involvement of oxidative damage and glial activation. Toxicol Appl Pharmacol 2023; 477:116677. [PMID: 37678439 DOI: 10.1016/j.taap.2023.116677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Cognitive integrity is a critical aspect of neurological function, and a decline in cognitive function is a hallmark of neurotoxicity. Oxidative stress is a significant pathological feature contributing to cognitive deficits that can arise from exposure to environmental pollutants such as pesticides. Among these, Metam sodium-based pesticides (MS-BP) are an emergent type of pesticide widely used in the agriculture and public health sectors for controlling pests and diseases. Our prior research has shown that animals exposed to MS-BP during the early stages of brain development caused cognitive impairments. In the present study, we tested whether exposure to this compound in a fully matured brain would affect cognitive performance and induce oxidative damage to the central nervous system. In this context, adult mice received chronic treatment with increasing doses of MS-BP and subjected to a set of behavioral paradigms. Following behavioral assessment, oxidative stress and glial activation were evaluated. Our main findings showed that MS-BP chronic exposure impaired recognition and short- and long-term memory. These alterations were accompanied by increased superoxide dismutase activity and malondialdehyde level and a marked decrease in catalase activity in specific brain areas. Moreover, exposure to MS-BP is associated with a significant rise in the density of astrocytic and microglial markers, indicating a possible glial cell response within the prefrontal cortex and hippocampus. The present work demonstrated that MS-BP altered cognitive performance likely through oxidative damage to the brain.
Collapse
Affiliation(s)
- Nour-Eddine Kaikai
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco; Department of Biology, Higher Normal School, Cadi Ayyad University, 4000 Marrakech, Morocco
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco
| | - Abderrazzak Ghanima
- Research Laboratory for Sustainable Development and Health, Cadi Ayyad University, Faculty of Sciences and Techniques, Marrakech, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropology, and Environment, Cadi Ayyad University, Faculty of Sciences, Marrakech, Morocco.
| |
Collapse
|