1
|
Ballók B, Schranc Á, Tóth I, Somogyi P, Tolnai J, Peták F, Fodor GH. Comparison of the respiratory effects of commonly utilized general anaesthesia regimes in male Sprague-Dawley rats. Front Physiol 2023; 14:1249127. [PMID: 37791348 PMCID: PMC10544940 DOI: 10.3389/fphys.2023.1249127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Background: Respiratory parameters in experimental animals are often characterised under general anaesthesia. However, anaesthesia regimes may alter the functional and mechanical properties of the respiratory system. While most anaesthesia regimes have been shown to affect the respiratory system, the effects of general anaesthesia protocols commonly used in animal models on lung function have not been systematically compared. Methods: The present study comprised 40 male Sprague-Dawley rats divided into five groups (N = 8 in each) according to anaesthesia regime applied: intravenous (iv) Na-pentobarbital, intraperitoneal (ip) ketamine-xylazine, iv propofol-fentanyl, inhaled sevoflurane, and ip urethane. All drugs were administered at commonly used doses. End-expiratory lung volume (EELV), airway resistance (Raw) and tissue mechanics were measured in addition to arterial blood gas parameters during mechanical ventilation while maintaining positive end-expiratory pressure (PEEP) values of 0, 3, and 6 cm H2O. Respiratory mechanics were also measured during iv methacholine (MCh) challenges to assess bronchial responsiveness. Results: While PEEP influenced baseline respiratory mechanics, EELV and blood gas parameters (p < 0.001), no between-group differences were observed (p > 0.10). Conversely, significantly lower doses of MCh were required to achieve the same elevation in Raw under ketamine-xylazine anaesthesia compared to the other groups. Conclusion: In the most frequent rodent model of respiratory disorders, no differences in baseline respiratory mechanics or function were observed between commonly used anaesthesia regimes. Bronchial hyperresponsiveness in response to ketamine-xylazine anaesthesia should be considered when designing experiments using this regime. The findings of the present study indicate commonly used anaesthetic regimes allow fair comparison of respiratory mechanics in experimental animals undergoing any of the examined anaesthesia protocols.
Collapse
Affiliation(s)
- Bence Ballók
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Álmos Schranc
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Unit for Anaesthesiological Investigations, Department of Anaesthesiology, Pharmacology, Intensive Care, and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Ibolya Tóth
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Petra Somogyi
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - József Tolnai
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ferenc Peták
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gergely H. Fodor
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Effects of Green Tea Polyphenol Epigallocatechin-3-Gallate on Markers of Inflammation and Fibrosis in a Rat Model of Pulmonary Silicosis. Int J Mol Sci 2023; 24:ijms24031857. [PMID: 36768179 PMCID: PMC9916388 DOI: 10.3390/ijms24031857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Inhalation of silica particles causes inflammatory changes leading to fibrotizing silicosis. Considering a lack of effective therapy, and a growing information on the wide actions of green tea polyphenols, particularly epigallocatechin-3-gallate (EGCG), the aim of this study was to evaluate the early effects of EGCG on markers of inflammation and lung fibrosis in silicotic rats. The silicosis model was induced by a single transoral intratracheal instillation of silica (50 mg/mL/animal), while controls received an equivalent volume of saline. The treatment with intraperitoneal EGCG (20 mg/kg, or saline in controls) was initiated the next day after silica instillation and was given twice a week. Animals were euthanized 14 or 28 days after the treatment onset, and the total and differential counts of leukocytes in the blood and bronchoalveolar lavage fluid (BALF), wet/dry lung weight ratio, and markers of inflammation, oxidative stress, and fibrosis in the lung were determined. The presence of collagen and smooth muscle mass in the walls of bronchioles and lung vessels was investigated immunohistochemically. Early treatment with EGCG showed some potential to alleviate inflammation, and a trend to decrease oxidative stress-induced changes, including apoptosis, and a prevention of fibrotic changes in the bronchioles and pulmonary vessels. However, further investigations should be undertaken to elucidate the effects of EGCG in the lung silicosis model in more detail. In addition, because of insufficient data from EGCG delivery in silicosis, the positive and eventual adverse effects of this herbal compound should be carefully studied before any preventive use or therapy with EGCG may be recommended.
Collapse
|
3
|
Li X, Gu W, Liu Y, Wen X, Tian L, Yan S, Chen S. A novel quantitative prognostic model for initially diagnosed non-small cell lung cancer with brain metastases. Cancer Cell Int 2022; 22:251. [PMID: 35948974 PMCID: PMC9367158 DOI: 10.1186/s12935-022-02671-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
Background The prognosis of non-small cell lung cancer (NSCLC) with brain metastases (BMs) had been researched in some researches, but the combination of clinical characteristics and serum inflammatory indexes as a noninvasive and more accurate model has not been described. Methods We retrospectively screened patients with BMs at the initial diagnosis of NSCLC at Sun Yat-Sen University Cancer Center. LASSO-Cox regression analysis was used to establish a novel prognostic model for predicting OS based on blood biomarkers. The predictive accuracy and discriminative ability of the prognostic model was compared to Adjusted prognostic Analysis (APA), Recursive Partition Analysis (RPA), and Graded Prognostic Assessment (GPA) using concordance index (C-index), time-dependent receiver operating characteristic (td-ROC) curve, Decision Curve Analysis(DCA), net reclassification improvement index (NRI), and integrated discrimination improvement index (IDI). Results 10-parameter signature's predictive model for the NSCLC patients with BMs was established according to the results of LASSO-Cox regression analysis. The C-index of the prognostic model to predict OS was 0.672 (95% CI = 0.609 ~ 0.736) which was significantly higher than APA,RPA and GPA. The td-ROC curve and DCA of the predictive model also demonstrated good predictive accuracy of OS compared to APA, RPA and GPA. Moreover, NRI and IDI analysis indicated that the prognostic model had improved prediction ability compared with APA, RPA and GPA. Conclusion The novel prognostic model demonstrated favorable performance than APA, RPA, and GPA for predicting OS in NSCLC patients with BMs. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02671-2.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China.,Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Wenshen Gu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, 510120, People's Republic of China
| | - Yijun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China.,Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaoyan Wen
- Department of Central Sterile Supply, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Liru Tian
- Research Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shumei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Shulin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China. .,Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China. .,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
4
|
Nakano-Narusawa Y, Yokohira M, Yamakawa K, Ye J, Tanimoto M, Wu L, Mukai Y, Imaida K, Matsuda Y. Relationship between Lung Carcinogenesis and Chronic Inflammation in Rodents. Cancers (Basel) 2021; 13:cancers13122910. [PMID: 34200786 PMCID: PMC8230400 DOI: 10.3390/cancers13122910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Lung cancer is the most common cause of cancer-related deaths worldwide. There are various risk factors for lung cancer, including tobacco smoking, inhalation of dust particles, chronic inflammation, and genetic factors. Chronic inflammation has been considered a key factor that promotes tumor progression via production of cytokines, chemokines, cytotoxic mediators, and reactive oxygen species by inflammatory cells. Here, we review rodent models of lung tumor induced by tobacco, tobacco-related products, and pro-inflammatory materials as well as genetic modifications, and discuss the relationship between chronic inflammation and lung tumor. Through this review, we hope to clarify the effects of chronic inflammation on lung carcinogenesis and help develop new treatments for lung cancer. Abstract Lung cancer remains the leading cause of cancer-related deaths, with an estimated 1.76 million deaths reported in 2018. Numerous studies have focused on the prevention and treatment of lung cancer using rodent models. Various chemicals, including tobacco-derived agents induce lung cancer and pre-cancerous lesions in rodents. In recent years, transgenic engineered rodents, in particular, those generated with a focus on the well-known gene mutations in human lung cancer (KRAS, EGFR, and p53 mutations) have been widely studied. Animal studies have revealed that chronic inflammation significantly enhances lung carcinogenesis, and inhibition of inflammation suppresses cancer progression. Moreover, the reduction in tumor size by suppression of inflammation in animal experiments suggests that chronic inflammation influences the promotion of tumorigenesis. Here, we review rodent lung tumor models induced by various chemical carcinogens, including tobacco-related carcinogens, and transgenics, and discuss the roles of chronic inflammation in lung carcinogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yoko Matsuda
- Correspondence: ; Tel.: +81-87-891-2109; Fax: +81-87-891-2112
| |
Collapse
|
5
|
Nakano-Narusawa Y, Yokohira M, Yamakawa K, Saoo K, Imaida K, Matsuda Y. Single Intratracheal Quartz Instillation Induced Chronic Inflammation and Tumourigenesis in Rat Lungs. Sci Rep 2020; 10:6647. [PMID: 32313071 PMCID: PMC7170867 DOI: 10.1038/s41598-020-63667-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Crystalline silica (quartz) is known to induce silicosis and cancer in the lungs. In the present study, we investigated the relationship between quartz-induced chronic inflammation and lung carcinogenesis in rat lungs after a single exposure to quartz. F344 rats were treated with a single intratracheal instillation (i.t.) of quartz (4 mg/rat), and control rats were treated with a single i.t. of saline. After 52 or 96 weeks, the animals were sacrificed, and the lungs and other organs were used for analyses. Quartz particles were observed in the lungs of all quartz-treated rats. According to our scoring system, the lungs of rats treated with quartz had higher scores for infiltration of lymphocytes, macrophages and neutrophils, oedema, fibrosis, and granuloma than the lungs of control rats. After 96 weeks, the quartz-treated rats had higher incidences of adenoma (85.7%) and adenocarcinoma (81.0%) than control rats (20% and 20%, respectively). Quartz-treated and control rats did not show lung neoplastic lesions at 52 weeks after treatment. The number of lung neoplastic lesions per rat positively correlated with the degree of macrophage and lymphocyte infiltration, oedema, fibrosis, and lymph follicle formation around the bronchioles. In conclusion, single i.t. of quartz may induce lung cancer in rat along with chronic inflammation.
Collapse
Affiliation(s)
- Yuko Nakano-Narusawa
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Masanao Yokohira
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Keiko Yamakawa
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Kousuke Saoo
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
- Kaisei General Hospital, Kagawa, 762-0007, Japan
| | - Katsumi Imaida
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan.
| | - Yoko Matsuda
- Oncology Pathology, Department of Pathology and Host-Defence, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan.
| |
Collapse
|
6
|
Zheng X, Jia B, Song X, Kong QY, Wu ML, Qiu ZW, Li H, Liu J. Preventive Potential of Resveratrol in Carcinogen-Induced Rat Thyroid Tumorigenesis. Nutrients 2018; 10:E279. [PMID: 29495605 PMCID: PMC5872697 DOI: 10.3390/nu10030279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/18/2018] [Accepted: 02/25/2018] [Indexed: 12/20/2022] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy without reliable preventive agent. Resveratrol possesses in vitro anti-TC activities; while its effect(s) on thyroid tumorigenesis remains unknown. This study aims to address this issue using DEN/MNU/DHPN-induced rat carcinogenesis model. 50 male Sprague-Dawley rats were separated into four groups as Group-1 (5 rats); normally fed; Group-2 (15 rats); DEN/MNU/DHPN treatment only; Group-3 (15 rats) and -4 (15 rats); DEN/MNU/DHPN treatment; followed by resveratrol intragastric (IG) injection and intraperitoneal (IP) injection; respectively; in two-day intervals for 30 weeks. The results revealed that the average resveratrol concentration in thyroid tissues was 1.278 ± 0.419 nmol/g in IG group and 1.752 ± 0.398 nmol/g in IP group. The final body weights of Group-3 and Group-4 were lighter than that (p > 0.05) of Group-1; but heavier than Group-2 (p < 0.05). TC-related lesions (hyperplasia and adenomas) were found in 53.3% of Group-2; 33.3% Group-3 and 26.7% Group-4. Lower serum carcino-embryonic antigen (CEA) and thyroglobulin (Tg) levels; down-regulated expression of IL-6 and cyclooxygenase-2 (COX-2); reduction of NF-κB/p65 nuclear translocation; and elevated IkBα expression were found in the thyroid tissues of Group-3 and Group-4 in comparison with that of Group-2. These results demonstrate that IG and IP administered resveratrol efficiently reduces the frequency and severity of DEN/MNU/DHPN-caused TC-related lesions and would be of values in thyroid tumor prevention.
Collapse
Affiliation(s)
- Xu Zheng
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Bin Jia
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Xue Song
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Qing-You Kong
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Mo-Li Wu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Ze-Wen Qiu
- Laboratory Animal Center, Dalian Medical University, Dalian 116044, China.
| | - Hong Li
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Jia Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics and Department of Cell Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
7
|
Ablating all three retinoblastoma family members in mouse lung leads to neuroendocrine tumor formation. Oncotarget 2018; 8:4373-4386. [PMID: 27966456 PMCID: PMC5354839 DOI: 10.18632/oncotarget.13875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is a deadly disease with increasing cases diagnosed worldwide and still a very poor prognosis. While mutations in the retinoblastoma (RB1) tumor suppressor have been reported in lung cancer, mainly in small cell lung carcinoma, the tumor suppressive role of its relatives p107 and p130 is still a matter of debate. To begin to investigate the role of these two Rb family proteins in lung tumorigenesis, we have generated a conditional triple knockout mouse model (TKO) in which the three Rb family members can be inactivated in adult mice. We found that ablation of all three family members in the lung of mice induces tumorlets, benign neuroendocrine tumors that are remarkably similar to their human counterparts. Upon chemical carcinogenesis, DHPN and urethane accelerate tumor development; the TKO model displays increased sensitivity to DHPN, and urethane increases malignancy of tumors. All the tumors developing in TKO mice (spontaneous and chemically induced) have neuroendocrine features but do not progress to fully malignant tumors. Thus, loss of Rb and its family members confers partial tumor susceptibility in neuroendocrine lineages in the lungs of mice. Our data also imply the requirement of other oncogenic signaling pathways to achieve full transformation in neuroendocrine lung lesions mutant for the Rb family.
Collapse
|
8
|
Kanie S, Yokohira M, Yamakawa K, Nakano-Narusawa Y, Yoshida S, Hashimoto N, Imaida K. Suppressive effects of the expectorant drug ambroxol hydrochloride on quartz-induced lung inflammation in F344 rats. J Toxicol Pathol 2016; 30:153-159. [PMID: 28458453 PMCID: PMC5406594 DOI: 10.1293/tox.2016-0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022] Open
Abstract
Surfactant proteins (SPs) are essential to respiratory structure and function. The expectorant drug ambroxol hydrochloride is clinically prescribed to stimulate pulmonary surfactant and airway serous secretion. Therefore, ambroxol hydrochloride may affect SP production and pulmonary inflammation. Lung toxicity of fine particles of various materials has been examined previously in our in vivo bioassay using the intratracheal (i.t.) instillation approach. In the present study, we evaluated modulatory effects of ambroxol hydrochloride on quartz-induced lung inflammation in F344 rats. Male 6-week-old F344 rats were exposed by i.t. instillation to 2 mg of quartz particles suspended in 0.2 mL of saline. Ambroxol hydrochloride was administered at 0, 12, and 120 ppm in rat basal diet for 28 days, and then formalin-fixed paraffin-embedded lung, liver, and kidney samples were prepared. No changes in general condition, body and organ weights, or food consumption upon exposure to quartz were noted. The mean ambroxol intake in rats of the 12 ppm group was comparable to the human conventional dose. Histopathology of lung lesions was evaluated, and the degree of inflammation was scored. At 120 ppm, ambroxol hydrochloride significantly decreased individual lung inflammation scores for pulmonary edema and lymph follicle proliferation around the bronchiole, as well as the total inflammation score, in quartz-treated rats. Expression of SP-C in the type II alveolar cells and macrophages was greater in inflammatory lesions than in non-inflamed areas. Ambroxol treatment did not affect expression of SP-B and SP-C. In conclusion, we demonstrated that ambroxol hydrochloride relieves quartz-induced lung inflammation.
Collapse
Affiliation(s)
- Shohei Kanie
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.,Toxicology Laboratory, Discovery and Preclinical Research Division, TAIHO Pharmaceutical Co., Ltd., 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Masanao Yokohira
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Keiko Yamakawa
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Yuko Nakano-Narusawa
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Shota Yoshida
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan.,Toxicology Laboratory, Discovery and Preclinical Research Division, TAIHO Pharmaceutical Co., Ltd., 224-2 Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Nozomi Hashimoto
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Katsumi Imaida
- Onco-Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| |
Collapse
|