1
|
Zhang W, Chen B, Yoda Y, Shima M, Zhao C, Ji X, Wang J, Liao S, Jiang S, Li L, Chen Y, Guo X, Deng F. Ambient ultrafine particles exacerbate oxygen desaturation during sleep in patients with chronic obstructive pulmonary disease: New insights into the effect spectrum of ultrafine particles on susceptible populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174519. [PMID: 38972410 DOI: 10.1016/j.scitotenv.2024.174519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
The health effects of ultrafine particles (UFPs) are of growing global concern, but the epidemiological evidence remains limited. Sleep-disordered breathing (SDB) characterized by hypoxemia is a prevalent condition linked to many debilitating chronic diseases. However, the role of UFPs in the development of SDB is lacking. Therefore, this prospective panel study was performed to specifically investigate the association of short-term exposure to UFPs with SDB parameters in patients with chronic obstructive pulmonary disease (COPD). Ninety-one COPD patients completed 226 clinical visits in Beijing, China. Personal exposure to ambient UFPs of 0-7 days was estimated based on infiltration factor and time-activity pattern. Real-time monitoring of sleep oxygen saturation, spirometry, respiratory questionnaires and airway inflammation detection were performed at each clinical visit. Generalized estimating equation was used to estimate the effects of UFPs. Exposure to UFPs was significantly associated with increased oxygen desaturation index (ODI) and percent of the time with oxygen saturation below 90 % (T90), with estimates of 21.50 % (95%CI: 6.38 %, 38.76 %) and 18.75 % (95%CI: 2.83 %, 37.14 %), respectively, per 3442 particles/cm3 increment of UFPs at lag 0-3 h. Particularly, UFPs' exposure within 0-7 days was positively associated with the concentration of alveolar nitric oxide (CaNO), and alveolar eosinophilic inflammation measured by CaNO exceeding 5 ppb was associated with 29.63 % and 33.48 % increases in ODI and T90, respectively. In addition, amplified effects on oxygen desaturation were observed in current smokers. Notably, individuals with better lung function and activity tolerance were more affected by ambient UFPs due to longer time spent outdoors. To our knowledge, this is the first study to link UFPs to hypoxemia during sleep and uncover the key role of alveolar eosinophilic inflammation. Our findings provide new insights into the effect spectrum of UFPs and potential environmental and behavioral intervention strategies to protect susceptible populations.
Collapse
Affiliation(s)
- Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Baiqi Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yoshiko Yoda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo 663-8501, Japan
| | - Chen Zhao
- Community Health Service Center, Huayuan Road, Haidian District, Beijing 100088, China
| | - Xuezhao Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junyi Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Sha Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Tian Y, Li Y, Sun S, Dong Y, Tian Z, Zhan L, Wang X. Effects of urban particulate matter on the quality of erythrocytes. CHEMOSPHERE 2023; 313:137560. [PMID: 36526140 DOI: 10.1016/j.chemosphere.2022.137560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/20/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
With the acceleration of industrialisation and urbanisation, air pollution has become a serious global concern as a hazard to human health, with urban particulate matter (UPM) accounting for the largest share. UPM can rapidly pass into and persist within systemic circulation. However, few studies exist on whether UPM may have any impact on blood components. In this study, UPM standards (SRM1648a) were used to assess the influence of UPM on erythrocyte quality in terms of oxidative and metabolic damage as well as phagocytosis by macrophages in vitro and clearance in vivo. Our results showed that UPM had weak haemolytic properties. It can oxidise haemoglobin and influence the oxygen-carrying function, redox balance, and metabolism of erythrocytes. UPM increases the content of reactive oxygen species (ROS) and decreases antioxidant function according to the data of malonaldehyde (MDA), glutathione (GSH), and glucose 6 phosphate dehydrogenase (G6PDH). UPM can adhere to or be internalised by erythrocytes at higher concentrations, which can alter their morphology. Superoxide radicals produced in the co-incubation system further disrupted the structure of red blood cell membranes, thereby lowering the resistance to the hypotonic solution, as reflected by the osmotic fragility test. Moreover, UPM leads to an increase in phosphatidylserine exposure in erythrocytes and subsequent clearance by the mononuclear phagocytic system in vivo. Altogether, this study suggests that the primary function of erythrocytes may be affected by UPM, providing a warning for erythrocyte quality in severely polluted areas. For critically ill patients, transfusion of erythrocytes with lesions in morphology and function will have serious clinical consequences, suggesting that potential risks should be considered during blood donation screening. The current work expands the scope of blood safety studies.
Collapse
Affiliation(s)
- Yaxian Tian
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China; Department of Central Laboratory, Liaocheng People's Hospital, Liaocheng, 252000, Shandong Province, China; School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Yuxuan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Sujing Sun
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yanrong Dong
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Zhaoju Tian
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China.
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| |
Collapse
|
3
|
Sajgalik P, Garzona-Navas A, Csécs I, Askew JW, Lopez-Jimenez F, Niven AS, Johnson BD, Allison TG. Characterization of Aerosol Generation During Various Intensities of Exercise. Chest 2021; 160:1377-1387. [PMID: 33957100 PMCID: PMC8473677 DOI: 10.1016/j.chest.2021.04.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022] Open
Abstract
Background Characterization of aerosol generation during exercise can inform the development of safety recommendations in the face of COVID-19. Research Question Does exercise at various intensities produce aerosols in significant quantities? Study Design and Methods In this experimental study, subjects were eight healthy volunteers (six men, two women) who were 20 to 63 years old. The 20-minute test protocol of 5 minutes rest, four 3-minute stages of exercise at 25%, 50%, 75%, and 100% of age-predicted heart rate reserve, and 3 minutes active recovery was performed in a clean, controlled environment. Aerosols were measured by four particle counters that were place to surround the subject. Results Age averaged 41 ± 14 years. Peak heart rate was 173 ± 17 beat/min (97% predicted); peak maximal oxygen uptake was 33.9 ± 7.5 mL/kg/min; and peak respiratory exchange ratio was 1.22 ± 0.10. Maximal ventilation averaged 120 ± 23 L/min, while cumulative ventilation reached 990 ± 192 L. Concentrations increased exponentially from start to 20 minutes (geometric mean ± geometric SD particles/liter): Fluke >0.3 μm = 66 ± 1.8 → 1605 ± 3.8; 0.3-1.0 μm = 35 ± 2.2 → 1095 ± 4.6; Fluke 1.0-5.0 μm = 21 ± 2.0 → 358 ± 2.3; P-Trak anterior = 637 ± 2.3 → 5148 ± 3.0; P-Trak side = 708 ± 2.7 → 6844 ± 2.7; P-Track back = 519 ± 3.1 → 5853 ± 2.8. All increases were significant at a probability value of <.05. Exercise at or above 50% of predicted heart rate reserve showed statistically significant increases in aerosol concentration. Interpretation Our data suggest exercise testing is an aerosol-generating procedure and, by extension, other activities that involve exercise intensities at or above 50% of predicted heart rate reserve. Results can guide recommendations for safety of exercise testing and other indoor exercise activities.
Collapse
Affiliation(s)
- Pavol Sajgalik
- Department of Cardiovascular Medicine, Extreme Physiology Laboratory, Mayo Clinic, Rochester, MN
| | | | - Ibolya Csécs
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - J Wells Askew
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | - Alexander S Niven
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Mayo Clinic, Rochester, MN
| | - Bruce D Johnson
- Department of Cardiovascular Medicine, Extreme Physiology Laboratory, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Thomas G Allison
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
4
|
Wardoyo AYP, Juswono UP, Noor JAE. The association between the diesel exhaust particle exposure from bus emission and the tubular epithelial cell deformation of rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23073-23080. [PMID: 32333344 DOI: 10.1007/s11356-020-08752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
The diesel vehicle emissions regarding particles have become a problem due to human health adversely. Especially ultrafine particles (diameter ≤ 100 nm) can deeply penetrate the human body leading to cell deformation. Investigation of the diesel ultrafine particle exposure to the cell deformation has become a challenge to build up understanding the impacts of ultrafine particles on human health. Moreover, the relationship between high exposure to diesel ultrafine particles and the deformation of the rat's tubular epithelial cells is not clear. In this study, we investigated the impact of the diesel ultrafine particle exposure to the rat's tubular cells. Three diesel busses were used as the sources of the particles, while 50 rats were used as the experimental animals. The diesel emission was filtered using an N95 particulate filter and a suction pump. The rats were exposed to the diesel ultrafine particle emission for 100 s with three different concentrations C1, C2, and C3 for eight consecutive days. All rats were sacrificed on the day after exposures to examine the histological images. The results showed that the deformation level of the tubular epithelial cells was positively associated with the concentration of the ultrafine particles.
Collapse
Affiliation(s)
- Arinto Yudi Ponco Wardoyo
- Laboratory of Air Quality and Astro Imaging, Physics Department, Brawijaya University, Jl. Veteran 65145, Malang, Indonesia.
| | - Unggul Pundjung Juswono
- Laboratory of Biophysics, Physics Department, Brawijaya University, Jl. Veteran 65145, Malang, Indonesia
| | - Johan Andoyo Effendi Noor
- Laboratory of Biophysics, Physics Department, Brawijaya University, Jl. Veteran 65145, Malang, Indonesia
| |
Collapse
|
5
|
Wardoyo AYP, Juswono UP, Noor JAE. Varied dose exposures to ultrafine particles in the motorcycle smoke cause kidney cell damages in male mice. Toxicol Rep 2018; 5:383-389. [PMID: 29854608 PMCID: PMC5977376 DOI: 10.1016/j.toxrep.2018.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/06/2023] Open
Abstract
Exposure to ultrafine particles has significant effect on kidney cell deformation. The exposure results in alterations in glomerular and tubular epithelial cells. Ultrafine particle concentration determines kidney cell deformation.
Ultrafine particles (UFPs) are one of motorcycle exhaust emissions which can penetrate the lung alveoli and deposit in the kidney. This study was aimed to investigate mice kidney cell physical damage (deformation) due to motorcycle exhaust emission exposures. The motorcycle exhaust emissions were sucked from the muffler with the rate of 33 cm3/s and passed through an ultrafine particle filter system before introduced into the mice exposure chamber. The dose concentration of the exhaust emissions was varied by setting the injected time of the 20s, 40s, 60s, 80s, and 100s. The mice were exposed to the smoke in the chamber for 100 s twice a day. The impact of the ultrafine particles on the kidney was observed by identifying the histological image of the kidney cell deformation using a microscope. The exposure was conducted for 10 days. The kidney observations were carried out on day 11. The results showed that there was a significant linear correlation between the total concentration of ultrafine particles deposited in the kidneys and the physical damage percentages. The increased concentrations of ultrafine particles caused larger cell deformation to the kidneys.
Collapse
Affiliation(s)
- Arinto Y P Wardoyo
- Department of Physics, Brawijaya University, Malang Indonesia Jl. Veteran, Malang, East Java, 65145, Indonesia
| | - Unggul P Juswono
- Department of Physics, Brawijaya University, Malang Indonesia Jl. Veteran, Malang, East Java, 65145, Indonesia
| | - Johan A E Noor
- Department of Physics, Brawijaya University, Malang Indonesia Jl. Veteran, Malang, East Java, 65145, Indonesia
| |
Collapse
|