1
|
Chiu CL, Zhang D, Zhao H, Wei Y, Polasko AL, Thomsen MT, Yang V, Yang KK, Hauck S, Peterson EE, Wen RM, Qiu Z, Corey E, Miao YR, Rankin EB, Peehl DM, Huang J, Giaccia AJ, Brooks JD. Targeting AXL Inhibits the Growth and Metastasis of Prostate Cancer in Bone. Clin Cancer Res 2025; 31:1346-1358. [PMID: 39879384 PMCID: PMC11961319 DOI: 10.1158/1078-0432.ccr-24-3028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE After failing primary and secondary hormonal therapy, castration-resistant and neuroendocrine prostate cancer metastatic to the bone is invariably lethal, although treatment with docetaxel and carboplatin can modestly improve survival. Therefore, agents targeting biologically relevant pathways in prostate cancer and potentially synergizing with docetaxel and carboplatin in inhibiting bone metastasis growth are urgently needed. EXPERIMENTAL DESIGN Phosphorylated (activated) AXL expression in human prostate cancer bone metastases was assessed by IHC staining. We evaluated the effects of a novel soluble AXL signaling inhibitor, sAXL (batiraxcept or AVB-S6-500), on tumor growth and lung metastases in prostate cancer patient-derived xenograft models that were implanted intratibially. After injection of LuCaP cells into the tibiae, tumors were treated with batiraxcept and docetaxel or carboplatin alone or in combination, and tumor growth was monitored by serum prostate-specific antigen or bioluminescence. Tumor burden was quantified by human-specific Ku70 staining, and metastasis to the lungs was determined using qPCR. Transcriptomic profiling, Western blotting, and immunohistochemistry were performed to identify treatment-regulated gene and protein profile changes. RESULTS High AXL phosphorylation in human prostate cancer bone metastases correlated with shortened survival. Batiraxcept alone or in combination with docetaxel or carboplatin significantly suppressed intratibial tumor growth and suppressed metastasis to the lungs through multiple mechanisms, including repression of cancer stemness genes (CD44, ALDH1A1, TACSTD2, and ATXN1) and the PI3K, JAK, MAPK, and E2F1/NUSAP1 signaling pathways. CONCLUSIONS Our study provides a robust preclinical rationale and mechanisms of action for using batiraxcept as a single agent or in combination with docetaxel or carboplatin to treat lethal metastatic prostate cancer.
Collapse
Affiliation(s)
- Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yi Wei
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Mikkel Thy Thomsen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Vanessa Yang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kasie Kexin Yang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Spencer Hauck
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Eric E. Peterson
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ru M. Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhengyuan Qiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B. Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Donna M. Peehl
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Oncology, University of Oxford, Oxford, UK
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Research Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Mahadevan A, Yazdanpanah O, Patel V, Benjamin DJ, Kalebasty AR. Ophthalmologic toxicities of antineoplastic agents in genitourinary cancers: Mechanisms, management, and clinical implications. Curr Probl Cancer 2025; 54:101171. [PMID: 39708456 DOI: 10.1016/j.currproblcancer.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
Genitourinary cancers affect over 480,000 patients in the United States annually. While promising therapeutic modalities continue to emerge, notably immune checkpoint inhibitors, molecular targeted therapies, antibody-drug conjugates, and radioligand therapies, these treatments are associated with a spectrum of adverse side-effects, including ophthalmologic toxicities. In this review, we cover the most commonly used antineoplastic agents for the kidneys, bladder, urinary tracts, prostate, testis, and penis, detailing mechanism, indication, and recent trials supporting their use. For each category of antineoplastic therapy, we describe the epidemiology, management, and clinical presentation, of common ophthalmologic toxicities stemming from these agents. This review serves to augment awareness and recognition of possible ophthalmologic manifestations resulting from the use of antineoplastic agents in genitourinary malignancy. Early identification of these side effects can hasten ophthalmology referral and ultimately improve visual outcomes in patients experiencing medication-induced ocular toxicities.
Collapse
Affiliation(s)
- Aditya Mahadevan
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Omid Yazdanpanah
- Division of Hematology/Oncology, University of California Irvine Health, Orange, CA, USA.
| | - Vivek Patel
- Department of Ophthalmology, University of California Irvine Health, Orange, CA, USA.
| | | | | |
Collapse
|
3
|
Palecki J, Bhasin A, Bernstein A, Mille PJ, Tester WJ, Kelly WK, Zarrabi KK. T-Cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol Ther 2024; 25:2356820. [PMID: 38801069 PMCID: PMC11135853 DOI: 10.1080/15384047.2024.2356820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Novel T-cell immunotherapies such as bispecific T-cell engagers (BiTEs) are emerging as promising therapeutic strategies for prostate cancer. BiTEs are engineered bispecific antibodies containing two distinct binding domains that allow for concurrent binding to tumor-associated antigens (TAAs) as well as immune effector cells, thus promoting an immune response against cancer cells. Prostate cancer is rich in tumor associated antigens such as, but not limited to, PSMA, PSCA, hK2, and STEAP1 and there is strong biologic rationale for employment of T-cell redirecting BiTEs within the prostate cancer disease space. Early generation BiTE constructs employed in clinical study have demonstrated meaningful antitumor activity, but challenges related to drug delivery, immunogenicity, and treatment-associated adverse effects limited their success. The ongoing development of novel BiTE constructs continues to address these barriers and to yield promising results in terms of efficacy and safety. This review will highlight some of most recent developments of BiTE therapies for patients with advanced prostate cancer and the evolving data surrounding BiTE constructs undergoing clinical evaluation.
Collapse
Affiliation(s)
- Julia Palecki
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Amman Bhasin
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrew Bernstein
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Patrick J. Mille
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - William J. Tester
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Wm. Kevin Kelly
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Kevin K. Zarrabi
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
4
|
Eryilmaz IE, Egeli U, Cecener G. Association between the apoptotic effect of Cabazitaxel and its pro-oxidant efficacy on the redox adaptation mechanisms in prostate cancer cells with different resistance phenotypes. Cancer Biol Ther 2024; 25:2329368. [PMID: 38485703 PMCID: PMC10950270 DOI: 10.1080/15384047.2024.2329368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Redox adaptation causes poor prognosis by adapting cancer cells to excessive oxidative stress. Previously, we introduced an oxidative stress-resistant metastatic prostate cancer (mPC) model (LNCaP-HPR) that redox adaptation reduced the effect of Cabazitaxel (Cab), the last taxane-derivative for metastatic castration-resistant PC (mCRPC). Whereas, we investigated for the first time whether there is an association between the altered apoptotic effect and pro-oxidant efficacy of Cab on the redox adaptation in PC cells with different phenotypes, including LNCaP mPC, LNCaP-HPR, C4-2 mCRPC, and RWPE-1 cells. Cab was shown pro-oxidant efficacy proportionally with the apoptotic effect, more prominent in the less aggressive LNCaP cells, by increasing the endogenous ROS, mitochondrial damage, and inhibiting nuclear ROS scavengers, p-Nrf2 and HIF-1α. However, the pro-oxidant and apoptotic effect was lower in the LNCaP-HPR and C4-2 cells, indicating that the drug sensitivity of the cells adapted to survive with more ROS was reduced via altered regulation of redox adaptation. Additionally, unlike LNCaP, Cab caused an increase in the p-NF-κB activation, suggesting that the p-NF-κB might accompany maintaining survival with the increased ROS in the aggressive PC cells. Moreover, the cytotoxic and apoptotic effects of Cab were less on RWPE-1 cells compared to LNCaP but were closer to those on the more aggressive LNCaP-HPR and C4-2 cells, except for the changing pro-oxidant effect of Cab. Consequently, this study indicates the variable pro-oxidant effects of Cab on redox-sensitive proteins, which could be a target for improving Cab's apoptotic effect more in aggressive PC cells.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Faculty of Medicine, Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| | - Unal Egeli
- Faculty of Medicine, Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| | - Gulsah Cecener
- Faculty of Medicine, Medical Biology Department, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
5
|
Sarwar S, Morozov VM, Newcomb MA, Yan B, Brant JO, Opavsky R, Guryanova OA, Ishov AM. Overcoming ABCB1 mediated multidrug resistance in castration resistant prostate cancer. Cell Death Dis 2024; 15:558. [PMID: 39090086 PMCID: PMC11294535 DOI: 10.1038/s41419-024-06949-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. PCa that relapses after hormonal therapies, referred to as castration resistant PCa (CRPC), often presents with metastases (mCRPC) that are the major cause of mortality. The few available therapies for mCRPC patients include taxanes docetaxel (DTX) and cabazitaxel (CBZ). However, development of resistance limits their clinical use. Mechanistically, resistance arises through upregulation of multidrug resistance (MDR) proteins such as MDR1/ABCB1, making ABCB1 an attractive therapeutic target. Yet, ABCB1 inhibitors failed to be clinically useful due to low specificity and toxicity issues. To study taxanes resistance, we produced CBZ resistant C4-2B cells (RC4-2B) and documented resistance to both CBZ and DTX in cell culture and in 3D prostaspheres settings. RNAseq identified increased expression of ABCB1 in RC4-2B, that was confirmed by immunoblotting and immunofluorescent analysis. ABCB1-specific inhibitor elacridar reversed CBZ and DTX resistance in RC4-2B cells, confirming ABCB1-mediated resistance mechanism. In a cell-based screen using a curated library of cytotoxic drugs, we found that DNA damaging compounds Camptothecin (CPT) and Cytarabine (Ara-C) overcame resistance as seen by similar cytotoxicity in parental C4-2B and resistant RC4-2B. Further, these compounds were cytotoxic to multiple PC cells resistant to taxanes with high ABCB1 expression and, therefore, can be used to conquer the acquired resistance to taxanes in PCa. Finally, inhibition of cyclin-dependent kinases 4/6 (CDK4/6) with small molecule inhibitors (CDK4/6i) potentiated cytotoxic effect of CPT or Ara-C in both parental and resistant cells. Overall, our findings indicate that DNA damaging agents CPT and Ara-C alone or in combination with CDK4/6i can be suggested as a new treatment regimen in CRPC patients, including those that are resistant to taxanes.
Collapse
Affiliation(s)
- Sadia Sarwar
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Viacheslav M Morozov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Mallory A Newcomb
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Bowen Yan
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jason O Brant
- Department of Biostatistics, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Olga A Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Alexander M Ishov
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA.
- University of Florida Health Cancer Center, Gainesville, FL, USA.
| |
Collapse
|
6
|
Wang JM, Zhang FH, Liu ZX, Tang YJ, Li JF, Xie LP. Cancer on motors: How kinesins drive prostate cancer progression? Biochem Pharmacol 2024; 224:116229. [PMID: 38643904 DOI: 10.1016/j.bcp.2024.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Prostate cancer causes numerous male deaths annually. Although great progress has been made in the diagnosis and treatment of prostate cancer during the past several decades, much about this disease remains unknown, especially its pathobiology. The kinesin superfamily is a pivotal group of motor proteins, that contains a microtubule-based motor domain and features an adenosine triphosphatase activity and motility characteristics. Large-scale sequencing analyses based on clinical samples and animal models have shown that several members of the kinesin family are dysregulated in prostate cancer. Abnormal expression of kinesins could be linked to uncontrolled cell growth, inhibited apoptosis and increased metastasis ability. Additionally, kinesins may be implicated in chemotherapy resistance and escape immunologic cytotoxicity, which creates a barrier to cancer treatment. Here we cover the recent advances in understanding how kinesins may drive prostate cancer progression and how targeting their function may be a therapeutic strategy. A better understanding of kinesins in prostate cancer tumorigenesis may be pivotal for improving disease outcomes in prostate cancer patients.
Collapse
Affiliation(s)
- Jia-Ming Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Feng-Hao Zhang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi-Xiang Liu
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, People's Republic of China
| | - Yi-Jie Tang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiang-Feng Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| | - Li-Ping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
| |
Collapse
|
7
|
Ishov A, Sarwar S, Morozov V, Newcomb M, Guryanova O. Overcoming ABCB1 mediated multidrug resistance in castration resistant prostate cancer. RESEARCH SQUARE 2024:rs.3.rs-4238716. [PMID: 38746435 PMCID: PMC11092792 DOI: 10.21203/rs.3.rs-4238716/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death in American men. PCa that relapses after hormonal therapies, referred to as castration resistant PCa (CRPC), often presents with metastases (mCRPC) that are the major cause of mortality. The few available therapies for mCRPC patients include taxanes docetaxel (DTX) and cabazitaxel (CBZ). However, development of resistance limits their clinical use. Mechanistically, resistance arises through upregulation of multidrug resistance (MDR) proteins such as MDR1/ABCB1, making ABCB1 an attractive therapeutic target. Yet, ABCB1 inhibitors failed to be clinically useful due to low specificity and toxicity issues. To study taxanes resistance, we produced CBZ resistant C4-2B cells (RC4-2B) and documented resistance to both CBZ and DTX in cell culture and in 3D prostaspheres settings. RNAseq identified increased expression of ABCB1 in RC4-2B, that was confirmed by immunoblotting and immunofluorescent analysis. ABCB1-specific inhibitor elacridar reversed CBZ and DTX resistance in RC4-2B cells, confirming ABCB1-mediated resistance mechanism. In a cell-based screen using a curated library of FDA-approved cytotoxic drugs, we found that DNA damaging compounds Camptothecin (CPT) and Cytarabine (Ara-C) overcame resistance as seen by similar cytotoxicity in parental C4-2B and resistant RC4-2B. Further, these compounds were cytotoxic to multiple PC cells resistant to taxanes with high ABCB1 expression and, therefore, can be used to conquer the acquired resistance to taxanes in PCa. Finally, inhibition of CDK4/6 kinases with small molecule inhibitors (CDK4/6i) potentiated cytotoxic effect of CPT or Ara-C in both parental and resistant cells. Overall, our findings indicate that DNA damaging agents CPT and Ara-C alone or in combination with CDK4/6i can be suggested as a new treatment regimen in CRPC patients, including those that are resistant to taxanes.
Collapse
|
8
|
Lilly MB, Wu C, Ke Y, Chen W, Soloff AC, Armeson K, Yokoyama NN, Li X, Song L, Yuan Y, McLaren CE, Zi X. A phase I study of docetaxel plus synthetic lycopene in metastatic prostate cancer patients. Clin Transl Med 2024; 14:e1627. [PMID: 38515274 PMCID: PMC10958125 DOI: 10.1002/ctm2.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE Our preclinical studies showed that lycopene enhanced the anti-prostate cancer efficacy of docetaxel in animal models. A phase I trial (NCT0149519) was conducted to identify an optimum dose of synthetic lycopene in combination with docetaxel (and androgen blockade [androgen deprivation therapy, ADT]), and to evaluate its effect on the safety and pharmacokinetics of docetaxel in men with metastatic prostate cancer. METHODS Subjects were treated with 21-day cycles of 75 mg/m2 docetaxel (and ADT), plus lycopene at 30, 90 or 150 mg/day. A Bayesian model averaging continual reassessment method was used to guide dose escalation. Pharmacokinetics of docetaxel and multiple correlative studies were carried out. RESULTS Twenty-four participants were enrolled, 18 in a dose escalation cohort to define the maximum tolerated dose (MTD), and six in a pharmacokinetic cohort. Docetaxel/ADT plus 150 mg/day synthetic lycopene resulted in dose-limiting toxicity (pulmonary embolus) in one out of 12 participants with an estimated probability of .106 and thus was chosen as the MTD. Lycopene increased the AUCinf and Cmax of plasma docetaxel by 9.5% and 15.1%, respectively. Correlative studies showed dose-related changes in circulating endothelial cells and vascular endothelial growth factor A, and reduction in insulin-like growth factor 1R phosphorylation, associated with lycopene therapy. CONCLUSIONS The combination of docetaxel/ADT and synthetic lycopene has low toxicity and favourable pharmacokinetics. The effects of lycopene on biomarkers provide additional support for the toxicity-dependent MTD definition. HIGHLIGHTS The maximum tolerated dose was identified as 150 mg/day of lycopene in combination with docetaxel/ADT for the treatment of metastatic prostate cancer patients. Small increases in plasma exposure to docetaxel were observed with lycopene co-administration. Mechanistically significant effects were seen on angiogenesis and insulin-like growth factor 1 signalling by lycopene co-administration with docetaxel/ADT.
Collapse
Affiliation(s)
- Michael B. Lilly
- Hollings Cancer CenterMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Chunli Wu
- Department of UrologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Yu Ke
- Department of UrologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Wen‐Pin Chen
- Chao Family Comprehensive Cancer CenterUniversity of CaliforniaIrvineCaliforniaUSA
| | - Adam C. Soloff
- Department of Cardiothoracic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | - Kent Armeson
- Hollings Cancer CenterMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | | | - Xiaotian Li
- Department of UrologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Liankun Song
- Department of UrologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Ying Yuan
- Department of BiostatisticsUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Christine E. McLaren
- Chao Family Comprehensive Cancer CenterUniversity of CaliforniaIrvineCaliforniaUSA
- Department of EpidemiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Xiaolin Zi
- Department of UrologyUniversity of CaliforniaIrvineCaliforniaUSA
- Chao Family Comprehensive Cancer CenterUniversity of CaliforniaIrvineCaliforniaUSA
- Veterans Affairs Long Beach Healthcare SystemLong BeachCaliforniaUSA
| |
Collapse
|
9
|
Uygur E, Sezgin C, Parlak Y, Karatay KB, Arikbasi B, Avcibasi U, Toklu T, Barutca S, Harmansah C, Sozen TS, Maus S, Scher H, Aras O, Gumuser FG, Muftuler FZB. The Radiolabeling of [161Tb]-PSMA-617 by a Novel Radiolabeling Method and Preclinical Evaluation by In Vitro/In Vivo Methods. RESEARCH SQUARE 2023:rs.3.rs-3415703. [PMID: 37961521 PMCID: PMC10635383 DOI: 10.21203/rs.3.rs-3415703/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Prostate cancer (PC) is the most common type of cancer in elderly men, with a positive correlation with age. As resistance to treatment has developed, particularly in the progressive stage of the disease and in the presence of microfocal multiple bone metastases, new generation radionuclide therapies have emerged. Recently, [161Tb], a radiolanthanide introduced for treating micrometastatic foci, has shown great promise for treating prostate cancer. Results In this study, Terbium-161 [161Tb]Tb was radiolabeled with prostate-specific membrane antigen (PSMA)-617 ([161Tb]-PSMA-617) and the therapeutic efficacy of the radiolabeled compound investigated in vitro and in vivo. [161Tb]-PSMA-617 was found to have a radiochemical yield of 97.99 ± 2.01% and was hydrophilic. [161Tb]-PSMA-617 was also shown to have good stability, with a radiochemical yield of over 95% up to 72 hours. In vitro, [161Tb]-PSMA-617 showed a cytotoxic effect on LNCaP cells but not on PC-3 cells. In vivo, scintigraphy imaging visualized the accumulation of [161Tb]-PSMA-617 in the prostate, kidneys, and bladder. Conclusions The results suggest that [161Tb]-PSMA-617 can be an effective radiolabeled agent for the treatment of PSMA positive foci in prostate cancer.
Collapse
Affiliation(s)
- Emre Uygur
- Manisa Celal Bayar University: Manisa Celal Bayar Universitesi
| | | | - Yasemin Parlak
- Manisa Celal Bayar University: Manisa Celal Bayar Universitesi
| | - Kadriye Busra Karatay
- Ege University Institute of Nuclear Sciences: Ege Universitesi Nukleer Bilimler Enstitusu
| | | | - Ugur Avcibasi
- Manisa Celal Bayar Üniversitesi: Manisa Celal Bayar Universitesi
| | | | - Sabri Barutca
- Adnan Menderes Üniversitesi Tıp Fakültesi: Adnan Menderes Universitesi Tip Fakultesi
| | | | | | - Stephan Maus
- Saarland University Hospital and Saarland University Faculty of Medicine: Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes
| | - Howard Scher
- Memorial Sloan-Kettering Cancer Center Inpatient Hospital and Main Campus: Memorial Sloan Kettering Cancer Center
| | - Omer Aras
- Memorial Sloan-Kettering Cancer Center Inpatient Hospital and Main Campus: Memorial Sloan Kettering Cancer Center
| | | | | |
Collapse
|
10
|
Hain BA, Waning DL. Bone-Muscle Crosstalk: Musculoskeletal Complications of Chemotherapy. Curr Osteoporos Rep 2022; 20:433-441. [PMID: 36087213 DOI: 10.1007/s11914-022-00749-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Chemotherapy drugs combat tumor cells and reduce metastasis. However, a significant side effect of some chemotherapy strategies is loss of skeletal muscle and bone. In cancer patients, maintenance of lean tissue is a positive prognostic indicator of outcomes and helps to minimize the toxicity associated with chemotherapy. Bone-muscle crosstalk plays an important role in the function of the musculoskeletal system and this review will focus on recent findings in preclinical and clinical studies that shed light on chemotherapy-induced bone-muscle crosstalk. RECENT FINDINGS Chemotherapy-induced loss of bone and skeletal muscle are important clinical problems. Bone antiresorptive drugs prevent skeletal muscle weakness in preclinical models. Chemotherapy-induced loss of bone can cause muscle weakness through both changes in endocrine signaling and mechanical loading between muscle and bone. Chemotherapy-induced changes to bone-muscle crosstalk have implications for treatment strategies and patient quality of life. Recent findings have begun to determine the role of chemotherapy in bone-muscle crosstalk and this review summarizes the most relevant clinical and preclinical studies.
Collapse
Affiliation(s)
- Brian A Hain
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, H166, rm. C4710E, 500 University Drive, Hershey, PA, 17033, USA
| | - David L Waning
- Department of Cellular and Molecular Physiology, The Penn State University College of Medicine, H166, rm. C4710E, 500 University Drive, Hershey, PA, 17033, USA.
| |
Collapse
|
11
|
Inhibition of Mps1 kinase enhances taxanes efficacy in castration resistant prostate cancer. Cell Death Dis 2022; 13:868. [PMID: 36229449 PMCID: PMC9561175 DOI: 10.1038/s41419-022-05312-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 01/23/2023]
Abstract
Androgen ablation therapy is the standard of care for newly diagnosed prostate cancer (PC) patients. PC that relapsed after hormonal therapy, referred to as castration-resistant PC (CRPC), often presents with metastasis (mCRPC) and is the major cause of disease lethality. The few available therapies for mCRPC include the Taxanes Docetaxel (DTX) and Cabazitaxel (CBZ). Alas, clinical success of Taxanes in mCRPC is limited by high intrinsic and acquired resistance. Therefore, it remains essential to develop rationally designed treatments for managing therapy-resistant mCRPC disease. The major effect of Taxanes on microtubule hyper-polymerization is a prolonged mitotic block due to activation of the Spindle Assembly Checkpoint (SAC). Taxane-sensitive cells eventually inactivate SAC and exit mitosis by mitotic catastrophe, resulting in genome instability and blockade of proliferation. Resistant cells remain in mitotic block, and, upon drug decay, resume mitosis and proliferation, underlying one resistance mechanism. In our study we explored the possibility of forced mitotic exit to elevate Taxane efficacy. Inactivation of the SAC component, mitotic checkpoint kinase Mps1/TTK with a small molecule inhibitor (Msp1i), potentiated efficacy of Taxanes treatment in both 2D cell culture and 3D prostasphere settings. Mechanistically, Mps1 inhibition forced mitotic catastrophe in cells blocked in mitosis by Taxanes. Androgen receptor (AR), the main driver of PC, is often mutated or truncated in mCRPC. Remarkably, Mps1i significantly potentiated CBZ cytotoxicity regardless of AR status, in both AR-WT and in AR-truncated CRPC cells. Overall, our data demonstrate that forced mitotic exit by Mps1 inhibition potentiates Taxanes efficacy. Given that several Mps1i's are currently in different stages of clinical trials, our results point to Mps1 as a new therapeutic target to potentiate efficacy of Taxanes in mCRPC patients.
Collapse
|
12
|
The Antitumoral/Antimetastatic Action of the Flavonoid Brachydin A in Metastatic Prostate Tumor Spheroids In Vitro Is Mediated by (Parthanatos) PARP-Related Cell Death. Pharmaceutics 2022; 14:pharmaceutics14050963. [PMID: 35631550 PMCID: PMC9147598 DOI: 10.3390/pharmaceutics14050963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Metastatic prostate cancer (mPCa) is resistant to several chemotherapeutic agents. Brachydin A (BrA), a glycosylated flavonoid extracted from Fridericia platyphylla, displays a remarkable antitumoral effect against in vitro mPCa cells cultured as bidimensional (2D) monolayers. Considering that three-dimensional (3D) cell cultures provide a more accurate response to chemotherapeutic agents, this study investigated the antiproliferative/antimetastatic effects of BrA and the molecular mechanisms underlying its action in mPCa spheroids (DU145) in vitro. BrA at 60–100 μM was cytotoxic, altered spheroid morphology/volume, and suppressed cell migration and tumor invasiveness. High-content analysis revealed that BrA (60–100 µM) reduced mitochondrial membrane potential and increased apoptosis and necrosis markers, indicating that it triggered cell death mechanisms. Molecular analysis showed that (i) 24-h treatment with BrA (80–100 µM) increased the protein levels of DNA disruption markers (cleaved-PARP and p-γ-H2AX) as well as decreased the protein levels of anti/pro-apoptotic (BCL-2, BAD, and RIP3K) and cell survival markers (p-AKT1 and p-44/42 MAPK); (ii) 72-h treatment with BrA increased the protein levels of effector caspases (CASP3, CASP7, and CASP8) and inflammation markers (NF-kB and TNF-α). Altogether, our results suggest that PARP-mediated cell death (parthanatos) is a potential mechanism of action. In conclusion, BrA confirms its potential as a candidate drug for preclinical studies against mPCa.
Collapse
|
13
|
Mitra Ghosh T, Kansom T, Mazumder S, Davis J, Alnaim AS, Jasper SL, Zhang C, Bird A, Opanasopit P, Mitra AK, Arnold RD. The Andrographolide Analogue 3A.1 Synergizes with Taxane Derivatives in Aggressive Metastatic Prostate Cancers by Upregulation of Heat Shock Proteins and Downregulation of MAT2A-Mediated Cell Migration and Invasion. J Pharmacol Exp Ther 2022; 380:180-201. [PMID: 34949650 DOI: 10.1124/jpet.121.000898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/06/2021] [Indexed: 11/22/2022] Open
Abstract
Conventional treatment with taxanes (docetaxel-DTX or cabazitaxel-CBZ) increases the survival rates of patients with aggressive metastatic castration-resistant prostate cancer (mCRPC); however, most patients acquire resistance to taxanes. The andrographolide analog, 19-tert-butyldiphenylsilyl-8,7-epoxy andrographolide (3A.1), has shown anticancer activity against various cancers. In this study, we investigated the effect of 3A.1 alone and in combination with DTX/CBZ against mCRPC and their mechanism of action. Exposure to 3A.1 alone exhibited a dose- and time-dependent antitumor activity in mCRPC. Chou-Talalay's combination index (CI) values of all 3A.1 + TX combinations were less than 0.5, indicating synergism. Co-treatment of 3A.1 with TX reduced the required dose of DTX and CBZ (P < 0.05). Caspase assay (apoptosis) results concurred with in vitro cytotoxicity data. RNA sequencing (RNAseq), followed by ingenuity pathway analysis (IPA), identified that upregulation of heat-shock proteins (Hsp70, Hsp40, Hsp27, and Hsp90) and downregulation of MAT2A as the key player for 3A.1 response. Furthermore, the top treatment-induced differentially expressed genes (DEGs) belong to DNA damage, cell migration, hypoxia, autophagy (MMP1, MMP9, HIF-1α, Bag-3, H2AX, HMOX1, PSRC1), and cancer progression pathways. Most importantly, top downregulated DEG MAT2A has earlier been shown to be involved in cell migration and invasion. Furthermore, using in silico analysis on the Cancer Genome Atlas (TCGA) database, this study found that MAT2A and highly co-expressed (r > 0.7) genes, TRA2B and SF1, were associated with worse Gleason score and nodal metastasis status in prostate adenocarcinoma patients (PRAD-TCGA). Immunoblotting, comet, and migration assays corroborated these findings. These results suggest that 3A.1 may be useful in increasing the anticancer efficacy of taxanes to treat aggressive PCa. SIGNIFICANCE STATEMENT: The andrographolide analogue, 19-tert-butyldiphenylsilyl-8,7-epoxy andrographolide (3A.1), showed anticancer activity against metastatic castration-resistant and neuroendocrine variant prostate cancers (mCRPC/NEPC). Additionally, 3A.1 exhibited synergistic anticancer effect in combination with standard chemotherapy drugs docetaxel and cabazitaxel in mCRPC/NEPC. Post-treatment gene expression studies revealed that heat shock proteins (Hsp70, Hsp40, Hsp27, and Hsp90) and MAT2A are important in the mechanism of 3A.1 action and drug response. Furthermore, DNA damage, cell migration, hypoxia, and autophagy were crucial pathways for the anticancer activity of 3A.1.
Collapse
Affiliation(s)
- Taraswi Mitra Ghosh
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| | - Teeratas Kansom
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| | - Suman Mazumder
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| | - Joshua Davis
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| | - Ahmed S Alnaim
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| | - Shanese L Jasper
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| | - Chu Zhang
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| | - Aedan Bird
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| | - Praneet Opanasopit
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| | - Amit K Mitra
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison School of Pharmacy (T.M.G., T.K., S.M., J.D., A.S.A., S.L.J., C.Z., A.B., A.K.M., R.D.A.) and Center for Pharmacogenomics and Single-Cell Omics Initiative (S.M., A.K.M.), Auburn University, Auburn, Alabama; Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Bangkok, Thailand (T.K., P.O.); and University of Alabama at Birmingham O'Neal Comprehensive Cancer Center, Birmingham, Alabama (A.K.M., R.D.A.)
| |
Collapse
|
14
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Mout L, van Royen ME, de Ridder C, Stuurman D, van de Geer WS, Marques R, Buck SAJ, French PJ, van de Werken HJG, Mathijssen RHJ, de Wit R, Lolkema MP, van Weerden WM. Continued Androgen Signalling Inhibition improves Cabazitaxel Efficacy in Prostate Cancer. EBioMedicine 2021; 73:103681. [PMID: 34749299 PMCID: PMC8586743 DOI: 10.1016/j.ebiom.2021.103681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND The androgen receptor (AR) pathway is a key driver of neoplastic behaviour in the different stages of metastatic prostate cancer (mPCa). Targeting the AR therefore remains the cornerstone for mPCa treatment. We have previously reported that activation of AR signalling affects taxane chemo-sensitivity in preclinical models of castration resistant PCa (CRPC). Here, we explored the anti-tumour efficacy of the AR targeted inhibitor enzalutamide combined with cabazitaxel. METHODS We used the AR positive CRPC model PC346C-DCC-K to assess the in vitro and in vivo activity of combining enzalutamide with cabazitaxel. Subsequent validation studies were performed using an enzalutamide resistant VCaP model. To investigate the impact of AR signalling on cabazitaxel activity we used quantitative live-cell imaging of tubulin stabilization and apoptosis related nuclear fragmentation. FINDINGS Enzalutamide strongly amplified cabazitaxel anti-tumour activity in the patient-derived xenograft models PC346C-DCC-K (median time to humane endpoint 77 versus 48 days, P<0.0001) and VCaP-Enza-B (median time to humane endpoint 80 versus 53 days, P<0.001). Although enzalutamide treatment by itself was ineffective in reducing tumour growth, it significantly suppressed AR signalling in PC346C-DCC-K tumours as shown by AR target gene expression. The addition of enzalutamide enhanced cabazitaxel induced apoptosis as shown by live-cell imaging (P<0.001). INTERPRETATION Our study demonstrates that cabazitaxel efficacy can be improved by simultaneous blocking of AR signalling by enzalutamide, even if AR targeted treatment no longer affects tumour growth. These findings support clinical studies that combine AR targeted inhibitors with cabazitaxel in CRPC.
Collapse
Affiliation(s)
- Lisanne Mout
- Department of Medical Oncology Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Cancer Treatment Screening Facility Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Corrina de Ridder
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Debra Stuurman
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Wesley S van de Geer
- Department of Medical Oncology Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Cancer Computational Biology Center Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Rute Marques
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Stefan A J Buck
- Department of Medical Oncology Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Pim J French
- Cancer Treatment Screening Facility Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Department of Neurology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Cancer Computational Biology Center Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Department of Pathology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Cancer Treatment Screening Facility Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Department of Neurology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands; Cancer Computational Biology Center Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Ronald de Wit
- Department of Medical Oncology Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands
| | - Wytske M van Weerden
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015, GD, Rotterdam, the Netherlands.
| |
Collapse
|
16
|
Nunes-Xavier CE, Kildal W, Kleppe A, Danielsen HE, Waehre H, Llarena R, Maelandsmo GM, Fodstad Ø, Pulido R, López JI. Immune checkpoint B7-H3 protein expression is associated with poor outcome and androgen receptor status in prostate cancer. Prostate 2021; 81:838-848. [PMID: 34125445 DOI: 10.1002/pros.24180] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Novel immune checkpoint-based immunotherapies may benefit specific groups of prostate cancer patients who are resistant to other treatments. METHODS We analyzed by immunohistochemistry the expression of B7-H3, PD-L1/B7-H1, and androgen receptor (AR) in tissue samples from 120 prostate adenocarcinoma patients treated with radical prostatectomy in Spain, and from 206 prostate adenocarcinoma patients treated with radical prostatectomy in Norway. RESULTS B7-H3 expression correlated positively with AR expression and was associated with biochemical recurrence in the Spanish cohort, but PD-L1 expression correlated with neither of them. Findings for B7-H3 were validated in the Norwegian cohort, where B7-H3 expression correlated positively with Gleason grade, surgical margins, seminal vesicle invasion, and CAPRA-S risk group, and was associated with clinical recurrence. High B7-H3 expression in the Norwegian cohort was also consistent with positive AR expression. CONCLUSION These results suggest distinct clinical relevance of the two immune checkpoint proteins PD-L1 and B7-H3 in prostate cancer. Our findings highlight B7-H3 as an actionable novel immune checkpoint protein in prostate cancer.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Wanja Kildal
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Andreas Kleppe
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Håvard E Danielsen
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
- Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| | - Håkon Waehre
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Roberto Llarena
- Department of Urology, Cruces University Hospital, Barakaldo, Spain
| | - Gunhild M Maelandsmo
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - José I López
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| |
Collapse
|
17
|
Prognostic and Theranostic Applications of Positron Emission Tomography for a Personalized Approach to Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2021; 22:ijms22063036. [PMID: 33809749 PMCID: PMC8002334 DOI: 10.3390/ijms22063036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 01/25/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) represents a condition of progressive disease in spite of androgen deprivation therapy (ADT), with a broad spectrum of manifestations ranging from no symptoms to severe debilitation due to bone or visceral metastatization. The management of mCRPC has been profoundly modified by introducing novel therapeutic tools such as antiandrogen drugs (i.e., abiraterone acetate and enzalutamide), immunotherapy through sipuleucel-T, and targeted alpha therapy (TAT). This variety of approaches calls for unmet need of biomarkers suitable for patients’ pre-treatment selection and prognostic stratification. In this scenario, imaging with positron emission computed tomography (PET/CT) presents great and still unexplored potential to detect specific molecular and metabolic signatures, some of whom, such as the prostate specific membrane antigen (PSMA), can also be exploited as therapeutic targets, thus combining diagnosis and therapy in the so-called “theranostic” approach. In this review, we performed a web-based and desktop literature research to investigate the prognostic and theranostic potential of several PET imaging probes, such as 18F-FDG, 18F-choline and 68Ga-PSMA-11, also covering the emerging tracers still in a pre-clinical phase (e.g., PARP-inhibitors’ analogs and the radioligands binding to gastrin releasing peptide receptors/GRPR), highlighting their potential for defining personalized care pathways in mCRPC.
Collapse
|
18
|
Wang Z, Shen H, Ma N, Li Q, Mao Y, Wang C, Xie L. The Prognostic Value of Androgen Receptor Splice Variant 7 in Castration-Resistant Prostate Cancer Treated With Novel Hormonal Therapy or Chemotherapy: A Systematic Review and Meta-analysis. Front Oncol 2020; 10:572590. [PMID: 33425724 PMCID: PMC7793884 DOI: 10.3389/fonc.2020.572590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose This study aimed to evaluate the prognostic role of AR-V7 in terms of prostate-specific antigen (PSA) response, progression-free survival (PFS), and overall survival (OS) in CRPC patients treated with novel hormonal therapy (NHT) (Abiraterone and Enzalutamide) or taxane-based chemotherapy (Docetaxel and Cabazitaxel). Methods A comprehensive literature search was conducted on PubMed, Embase, and the Web of Science from inception to February 2020. Studies focusing on the prognostic values of AR-V7 in CRPC patients treated with NHT or chemotherapy were included in our meta-analysis. The OS and PFS were analyzed based on Hazard ratios (HRs) and 95% confidence intervals (CIs). Furthermore, Odds ratios (ORs) and 95% CIs were summarized for the AR-V7 conversion after treatment and the PSA response. Results The AR-V7 positive proportion increased significantly after NHT treatment (OR 2.56, 95% CI 1.51–4.32, P<0.001), however, it declined after chemotherapy (OR 0.51, 95% CI 0.28–0.93, P=0.003). AR-V7-positive patients showed a significantly decreased PSA response rate after NHT (OR 0.13, 95% CI 0.09–0.19, P<0.001) but not statistically significant for chemotherapy (OR 0.63, 95% CI 0.40-1.01, P=0.06). Notably, PFS (HR 3.56, 95% CI 2.53–5.01, P<0.001) and OS (HR 4.47, 95% CI 3.03–6.59, P<0.001) were worse in AR-V7-positive ttreated with NHT. Similarly, AR-V7 positivity correlated with poor prognosis after chemotherapy as evidenced by shorter OS (HR 1.98, 95% CI 1.48-2.66, P<0.001) and a significantly shorter PFS (HR 1.35, 95% CI 0.97-1.87, P=0.07). Conclusion NHT treatment increased AR-V7 positive proportion whereas chemotherapy decreased it. Moreover, AR-V7 positivity correlated with lower PSA response, poorer PFS, and OS in CRPC treated with NHT, and shorter OS in patients receiving chemotherapy.
Collapse
Affiliation(s)
- Zhize Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haixiang Shen
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nieying Ma
- Key laboratory of Reproductive Genetic (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinchen Li
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeqing Mao
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaojun Wang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Xie
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Prognostic Value of 18F-Choline PET/CT in Patients with Metastatic Castration-Resistant Prostate Cancer Treated with Radium-223. Biomedicines 2020; 8:biomedicines8120555. [PMID: 33266047 PMCID: PMC7760591 DOI: 10.3390/biomedicines8120555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
We aimed to investigate the role of positron emission computed tomography (PET/CT) with 18F-choline for predicting the outcome of metastatic castration-resistant prostate cancer (mCRPC) submitted to treatment with Radium-223 (223Ra-therapy). Clinical records of 20 mCRPC patients submitted to PET/CT with 18F-choline before 223Ra-therapy were retrospectively evaluated. The following PET-derived parameters were calculated: number of lesions, maximum and mean standardized uptake values (SUVmax, SUVmean), lean body mass corrected SUV peak (SULpeak), metabolic tumor volume (MATV), and total lesion activity (TLA). After 223Ra-therapy, all patients underwent regular follow-up until death. The predictive power of clinical and PET-derived parameters on overall survival (OS) was assessed by Kaplan–Meier analysis and the Cox proportional hazard method. All the patients showed 18F-choline-avid lesions at baseline PET/CT. Among the enrolled subjects, eleven (55%) completed all the six scheduled cycles of 223Ra-therapy; seven (35%) were responders according to imaging and biochemical parameters. Mean OS was 12.7 ± 1.4 months: by Kaplan–Meier analysis, number of lesions, PSA level and TLA were significantly correlated with OS. In multivariate Cox analysis, TLA remained the only significant predictor of survival (p = 0.003; hazard ratio = 7.6, 95% confidence interval = 1.9–29.5 months). 18F-choline PET may be useful for patients’ stratification before 223Ra-therapy. In particular, high metabolically active tumor burden (i.e., TLA) was predictive of poor outcome.
Collapse
|
20
|
Mout L, Moll JM, Chen M, de Morrée ES, de Ridder CMA, Gibson A, Stuurman D, Aghai A, Erkens-Schulze S, Mathijssen RHJ, Sparreboom A, de Wit R, Lolkema MP, van Weerden WM. Androgen receptor signalling impairs docetaxel efficacy in castration-resistant prostate cancer. Br J Cancer 2020; 123:1715-1719. [PMID: 32989230 PMCID: PMC7722857 DOI: 10.1038/s41416-020-01105-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022] Open
Abstract
Androgen receptor (AR) signalling drives neoplastic growth and therapy resistance in prostate cancer. Recent clinical data show that docetaxel combined with androgen deprivation therapy improves outcome in hormone-sensitive disease. We studied whether testosterone and AR signalling interferes with docetaxel treatment efficacy in castration-resistant prostate cancer (CRPC). We found that testosterone supplementation significantly impaired docetaxel tumour accumulation in a CRPC model, resulting in decreased tubulin stabilisation and antitumour activity. Furthermore, testosterone competed with docetaxel for uptake by the drug transporter OATP1B3. Irrespective of docetaxel-induced tubulin stabilisation, AR signalling by testosterone counteracted docetaxel efficacy. AR-pathway activation could also reverse long-term tumour regression by docetaxel treatment in vivo. These results indicate that to optimise docetaxel efficacy, androgen levels and AR signalling need to be suppressed. This study lends evidence for continued maximum suppression of AR signalling by combining targeted therapeutics with docetaxel in CRPC.
Collapse
Affiliation(s)
- Lisanne Mout
- Department of Medical Oncology Erasmus MC-Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Jan M Moll
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mingqing Chen
- Division of Pharmaceutics College of Pharmacy, The Ohio State University, 217 Lloyd M. Parks Hall, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Eleonora S de Morrée
- Department of Medical Oncology Erasmus MC-Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Corrina M A de Ridder
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Alice Gibson
- Division of Pharmaceutics College of Pharmacy, The Ohio State University, 217 Lloyd M. Parks Hall, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Debra Stuurman
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ashraf Aghai
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sigrun Erkens-Schulze
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology Erasmus MC-Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Alex Sparreboom
- Division of Pharmaceutics College of Pharmacy, The Ohio State University, 217 Lloyd M. Parks Hall, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ronald de Wit
- Department of Medical Oncology Erasmus MC-Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology Erasmus MC-Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology Erasmus University MC, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Muniyan S, Rachagani S, Parte S, Halder S, Seshacharyulu P, Kshirsagar P, Siddiqui JA, Vengoji R, Rauth S, Islam R, Mallya K, Datta K, Xi L, Das A, Teply BA, Kukreja RC, Batra SK. Sildenafil Potentiates the Therapeutic Efficacy of Docetaxel in Advanced Prostate Cancer by Stimulating NO-cGMP Signaling. Clin Cancer Res 2020; 26:5720-5734. [PMID: 32847934 DOI: 10.1158/1078-0432.ccr-20-1569] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Docetaxel plays an indispensable role in the management of advanced prostate cancer. However, more than half of patients do not respond to docetaxel, and those good responders frequently experience significant cumulative toxicity, which limits its dose duration and intensity. Hence, a second agent that could increase the initial efficacy of docetaxel and maintain tolerability at biologically effective doses may improve outcomes for patients. EXPERIMENTAL DESIGN We determined phosphodiesterase 5 (PDE5) expression levels in human and genetically engineered mouse (GEM) prostate tissues and tumor-derived cell lines. Furthermore, we investigated the therapeutic benefits and underlying mechanism of PDE5 inhibitor sildenafil in combination with docetaxel using in vitro, Pten conditional knockout (cKO), derived tumoroid and xenograft prostate cancer models. RESULTS PDE5 expression was higher in both human and mouse prostate tumors and cancer cell lines compared with normal tissues/cells. In GEM prostate-derived cell lines, PDE5 expression increased from normal prostate (wild-type) epithelial cells to androgen-dependent and castrated prostate-derived cell lines. The addition of physiologically achievable concentrations of sildenafil enhanced docetaxel-induced prostate cancer cell growth inhibition and apoptosis in vitro, reduced murine 3D tumoroid growth, and in vivo tumorigenicity as compared with docetaxel alone. Furthermore, sildenafil enhanced docetaxel-induced NO and cGMP levels thereby augmenting antitumor activity. CONCLUSIONS Our results demonstrate that sildenafil's addition could sensitize docetaxel chemotherapy in prostate cancer cells at much lesser concentration than needed for inducing cell death. Thus, the combinatorial treatment of sildenafil and docetaxel may improve anticancer efficacy and reduce chemotherapy-induced side-effects among patients with advanced prostate cancer.
Collapse
Affiliation(s)
- Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jawed A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lei Xi
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Anindita Das
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Benjamin A Teply
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rakesh C Kukreja
- Pauley Heart Center, Department of Internal Medicine, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska. .,Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
22
|
Xu J, Qiu Y. Current opinion and mechanistic interpretation of combination therapy for castration-resistant prostate cancer. Asian J Androl 2020; 21:270-278. [PMID: 30924449 PMCID: PMC6498727 DOI: 10.4103/aja.aja_10_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recent advances in genomics technology have led to the massive discovery of new drug targets for prostate cancer; however, none of the currently available therapeutics is curative. One of the greatest challenges is drug resistance. Combinations of therapies with distinct mechanisms of action represent a promising strategy that has received renewed attention in recent years. Combination therapies exert cancer killing functions through either concomitant targeting of multiple pro-cancer factors or more effective inhibition of a single pathway. Theoretically, the combination therapy can improve efficacy and efficiency compared with monotherapy. Although increasing numbers of drug combinations are currently being tested in clinical trials, the mechanisms by which these combinations can overcome drug resistance have yet to be fully understood. The purpose of this review is to summarize recent work on therapeutic combinations in the treatment of castration-resistant prostate cancer and discuss emerging mechanisms underlying drug resistance. In addition, we provide an overview of the current preclinical mechanistic studies on potential therapeutic combinations to overcome drug resistance.
Collapse
Affiliation(s)
- Jin Xu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yun Qiu
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Oliveira KC, Ramos IB, Silva JM, Barra WF, Riggins GJ, Palande V, Pinho CT, Frenkel-Morgenstern M, Santos SE, Assumpcao PP, Burbano RR, Calcagno DQ. Current Perspectives on Circulating Tumor DNA, Precision Medicine, and Personalized Clinical Management of Cancer. Mol Cancer Res 2020; 18:517-528. [DOI: 10.1158/1541-7786.mcr-19-0768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/13/2019] [Accepted: 01/23/2020] [Indexed: 11/16/2022]
|
24
|
Docetaxel Combined with Thymoquinone Induces Apoptosis in Prostate Cancer Cells via Inhibition of the PI3K/AKT Signaling Pathway. Cancers (Basel) 2019; 11:cancers11091390. [PMID: 31540423 PMCID: PMC6770702 DOI: 10.3390/cancers11091390] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Toxicity and the development of resistance by cancer cells are impediments for docetaxel (DTX), a primary drug for treating prostate cancer (PCa). Since the combination of DTX with natural compounds can increase its effectiveness by reducing its toxic concentrations, we evaluated a combination of thymoquinone (TQ) with DTX and determined its cytotoxicity against PCa cells (DU145 and C4-2B). This combination, in a concentration-dependent manner, resulted in synergistic cytotoxicity and apoptosis in comparison to either DTX or TQ alone. In addition, inhibition of cell survival pathways by PI3K/AKT inhibitors conferred sensitivity of DU145 and C4-2B cells to the combination as compared to the individual drugs. Moreover, the combined drugs (DTX+TQ) with inhibitors of PI3K/AKT increased the expression of pro-apoptotic markers (BAX and BID) along with caspase-3, PARP and decreased expression of the anti-apoptotic marker, BCL-XL. These data show that, for PCa cells, the cytotoxic effect of the DTX and TQ combination correlates with a block of the PI3K/AKT signaling pathway. These findings indicate that the combination of DTX and TQ, by blocking of the PI3K/AKT pathway, will improve the survival rate and quality of life of PCa patients.
Collapse
|
25
|
Xu L, Chen J, Liu W, Liang C, Hu H, Huang J. Targeting androgen receptor-independent pathways in therapy-resistant prostate cancer. Asian J Urol 2019; 6:91-98. [PMID: 30775252 PMCID: PMC6363598 DOI: 10.1016/j.ajur.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Since androgen receptor (AR) signaling is critically required for the development of prostate cancer (PCa), targeting AR axis has been the standard treatment of choice for advanced and metastatic PCa. Unfortunately, although the tumor initially responds to the therapy, treatment resistance eventually develops and the disease will progress. It is therefore imperative to identify the mechanisms of therapeutic resistance and novel molecular targets that are independent of AR signaling. Recent advances in pathology, molecular biology, genetics and genomics research have revealed novel AR-independent pathways that contribute to PCa carcinogenesis and progression. They include neuroendocrine differentiation, cell metabolism, DNA damage repair pathways and immune-mediated mechanisms. The development of novel agents targeting the non-AR mechanisms holds great promise to treat PCa that does not respond to AR-targeted therapies.
Collapse
Affiliation(s)
- Lingfan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Junyi Chen
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weipeng Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hailiang Hu
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
26
|
Gaio E, Conte C, Esposito D, Miotto G, Quaglia F, Moret F, Reddi E. Co-delivery of Docetaxel and Disulfonate Tetraphenyl Chlorin in One Nanoparticle Produces Strong Synergism between Chemo- and Photodynamic Therapy in Drug-Sensitive and -Resistant Cancer Cells. Mol Pharm 2018; 15:4599-4611. [PMID: 30148955 DOI: 10.1021/acs.molpharmaceut.8b00597] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer therapies based on the combinations of different drugs and/or treatment modalities are emerging as important strategies for increasing efficacy and cure, decreasing unwanted toxicity, and overcoming drug resistance, provided that optimized drug concentration ratios are delivered into the target tissue. To these purposes, delivery systems such as nanoparticles (NPs) offer the unique opportunity to finely tune the drug loading and the release rate of drug combinations in the target tissues. Here, we propose double-layered polymeric NPs for the delivery of the chemotherapeutic docetaxel (DTX) and the photosensitizer disulfonate tetraphenyl chlorin (TPCS2a) coated with hyaluronic acid (HA), which allows cell targeting via CD44 receptors. The simultaneous delivery of the two drugs aims at killing DTX-sensitive (HeLa-P, MDA-MB-231) and DTX-resistant (HeLa-R) cancer cells by combining chemotherapy and photodynamic therapy (PDT). Using the Chou and Talalay method that analyses drug interactions and calculates combination index (CI) using the median-effect principle, we compared the efficiency of DTX chemotherapy combined with TPCS2a-PDT for drugs delivered in the standard solvents, coloaded in the same NP (DTX/TPCS2a-NP) or loaded in separate NPs (DTX-NPs + TPCS2a-NPs). Along with the drug interaction studies, we gained insight into cell death mechanisms after combo-therapy and into the extent of TPCS2a intracellular uptake and localization. In all cell lines considered, the analysis of the viability data revealed synergistic drug/treatment interaction especially when DTX and TPCS2a were delivered to cells coloaded in the same NPs despite the reduced PS uptake measured in the presence of the delivery systems. In fact, while the combinations of the free drugs or drugs in separate NPs gave slight synergism (CI < 1) only at doses killing more than 50% of the cells, the combination of drugs in one NPs gave high synergism also at doses killing 10-20% of the cells. Furthermore, the DTX dose in the combination DTX/TPCS2a-NPs could be reduced by ∼2.6- and 10.7-fold in HeLa-P and MDA-MB-231, respectively. Importantly, drug codelivery in NPs was very efficient in inducing cell mortality also in DTX resistant HeLa-R cells overexpressing P-glycoprotein 1 in which the dose of the chemotherapeutic can be reduced by more than 100 times using DTX/TPCS2a-NPs. Overall, our data demonstrate that the protocol for the preparation of HA-targeted double layer polymeric NPs allows to control the concentration ratio of coloaded drugs and the delivery of the transported drugs for obtaining a highly synergistic interaction combining DTX-chemotherapy and TPCS2a-PDT.
Collapse
Affiliation(s)
- Elisa Gaio
- Cell Biology Unit, Department of Biology , University of Padova , Padova , Italy
| | - Claudia Conte
- Drug Delivery Laboratory, Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Diletta Esposito
- Drug Delivery Laboratory, Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Giovanni Miotto
- Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy , University of Napoli Federico II , Napoli , Italy
| | - Francesca Moret
- Cell Biology Unit, Department of Biology , University of Padova , Padova , Italy
| | - Elena Reddi
- Cell Biology Unit, Department of Biology , University of Padova , Padova , Italy
| |
Collapse
|