1
|
Cai YX, Yang X, Lin S, Xu YW, Zhu SW, Fan DM, Zhao M, Zhang YB, Yang XX, Li X. Low-Coverage Sequencing of Urine Sediment DNA for Detection of Copy Number Aberrations in Bladder Cancer. Cancer Manag Res 2021; 13:1943-1953. [PMID: 33664588 PMCID: PMC7924115 DOI: 10.2147/cmar.s295675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/15/2021] [Indexed: 01/08/2023] Open
Abstract
Purpose Chromosomal copy number aberrations (CNAs) are a hallmark of bladder cancer and a useful target for diagnostic explorations. Here we constructed a low-coverage whole-genome sequencing method for the detection of CNAs in urine sediment DNA from patients with bladder cancer. Patients and Methods We conducted a prospective study using urine sediment samples from 65 patients with bladder tumors, including 54 patients with bladder cancer and 11 patients with benign bladder tumors. Forty-three healthy individuals were included as normal controls. DNA was extracted from urine sediments and analyzed by low-coverage whole-genome sequencing to compare differences in CNAs among these three groups. CNAs are defined by arbitrary R values (normal range ± 2). When these values exceed ± 0.2 of normal range, gain/duplication or loss/deletion are suspected. Results With this method, CNAs were detected in 39 of 51 patients with bladder cancer, 2 of 10 patients with benign bladder tumors, and 8 of 39 normal controls. The lengths of DNA deletion and duplication were significantly larger in patients with bladder cancer than in patients with benign tumors or normal controls (P < 0.05). Bladder cancer duplicate CNAs mainly occurred on chromosomes 1q, 5p, 6p, 7p, 8q, and 13q, while deletions mainly occurred on 2q, 8p, 9q, 9p, and 11p. Those regions contained bladder cancer tumor-related genes, such as STK3, COX6C, SPAG1, CDKAL1, C9orf53, CDKN2A, CDKN2B, MIR31, and IFNA1. The number of CNAs detected in urine sediment DNA during the follow-up period was significantly reduced. Conclusion Our sequencing method is highly sensitive and can detect a minimal chromosome repeat/microdeletion change of 0.15 Mb. The use of 0.1~0.3× low-coverage whole-genome sequencing can be used to detect bladder cancer CNAs in urine sediment DNA. This method provides a promising method for noninvasive diagnosis of bladder cancer, but still needs further verification in a larger sample size.
Collapse
Affiliation(s)
- Yun-Xi Cai
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| | - Xu Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| | - Sheng Lin
- Laboratory of Molecular Medicine, Shenzhen Health Development Research Center, Shenzhen, 518040, People's Republic of China
| | - Ya-Wen Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, People's Republic of China
| | - Shan-Wen Zhu
- Reproductive Medicine Center, Huizhou Central People's Hospital, Huizhou, 516000, People's Republic of China
| | - Dong-Mei Fan
- Institute of Antibody Engineering, School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Min Zhao
- PANACRO (Hefei) Pharmaceutical Technology Co., Ltd., Hefei, People's Republic of China
| | - Yuan-Bin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| | - Xue-Xi Yang
- Institute of Antibody Engineering, School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, People's Republic of China.,The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510500, People's Republic of China
| |
Collapse
|
2
|
Araiza-Olivera D, Gutierrez-Aguilar M, Espinosa-García AM, García-García JA, Tapia-Orozco N, Sánchez-Pérez C, Palacios-Reyes C, Escárcega D, Villalón-López DN, García-Arrazola R. From bench to bedside: Biosensing strategies to evaluate endocrine disrupting compounds based on epigenetic events and their potential use in medicine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103450. [PMID: 32622887 DOI: 10.1016/j.etap.2020.103450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The relationship between endocrine system disorders and health risks due to chemical environmental compounds has become a growing concern in recent years. Involuntary exposure to endocrine disruptors (EDCs) is associated with the worldwide increase of diseases such as cancer, obesity, diabetes, and neurocortical disorders. EDCs are compounds that target the nuclear hormonereceptors (NHR) leading to epigenetic changes. Consequently, the use of biosensing strategies based on epigenetic events have a great potential to provide outstanding information about the exposition of EDCs and their evaluation in human health. This review addresses the novel trends in biosensing EDCs evaluation based on DNA methylation assays associated with different human diseases.
Collapse
Affiliation(s)
- D Araiza-Olivera
- Department of Chemistry and Biomolecules, Institute of Chemistry, UNAM, Mexico.
| | | | - A M Espinosa-García
- Unidad de Medicina Genómica, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - J A García-García
- Department of Education, Hospital General de México, Dr. Balmis 148, Mexico City, Mexico.
| | - N Tapia-Orozco
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Sánchez-Pérez
- Institute of Applied Sciences and Technology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| | - C Palacios-Reyes
- Laboratory of Genetics and Molecular Diagnostics, Juarez Hospital of Mexico, Mexico City, Mexico.
| | - D Escárcega
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México, calle del Puente 222, Ejidos de Huipulco, Tlalpan 14380, Mexico City, Mexico.
| | - Demelza N Villalón-López
- Instituto Politénico Nacional-Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Prolongación de Carpio y Plande Ayala, colonia Casco de Santo Tomás. Del, Miguel Hidalgo, 11350, Mexico.
| | - R García-Arrazola
- Departmentof Food Science and Biotechnology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Ave. Universidad 3000, 04510, Coyoacán, Mexico City, Mexico.
| |
Collapse
|
4
|
Lotan Y, Black PC, Caba L, Chang SS, Cookson MS, Daneshmand S, Kamat AM, McKiernan JM, Pruthi RS, Ritch CR, Steinberg GD, Svatek RS, Zwarthoff EC. Optimal Trial Design for Studying Urinary Markers in Bladder Cancer: A Collaborative Review. Eur Urol Oncol 2018; 1:223-230. [DOI: 10.1016/j.euo.2018.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 12/31/2022]
|