1
|
Crippa A, Laere BD, Discacciati A, Larsson B, Persson M, Johansson S, D'hondt S, Hjälm-Eriksson M, Pettersson L, Enblad G, Ullén A, Lumen N, Karlsson CT, Sandzén J, Jänes E, Ghysel C, Olsson M, Sautois B, Schatteman P, Roock WD, Bruwaene SV, Verbiene I, Darras J, Everaert E, Maeseneer DD, Anden M, Strijbos M, Luyten D, Mortezavi A, Oldenburg J, Ost P, Lindberg J, Grönberg H, Eklund M. Prognostic Value of the Circulating Tumor DNA Fraction in Metastatic Castration-resistant Prostate Cancer: Results from the ProBio Platform Trial. Eur Urol Oncol 2025:S2588-9311(25)00037-9. [PMID: 40263079 DOI: 10.1016/j.euo.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to evaluate the prognostic value of undetectable circulating tumor DNA (ctDNA) and the dose-response relationship between ctDNA levels and survival outcomes in metastatic castration-resistant prostate cancer (mCRPC). METHODS We analyzed data for patients enrolled in the ProBio trial up to November 2022 who received an androgen receptor pathway inhibitor or taxane. We compared survival outcomes between patients with undetectable ctDNA and those with detectable ctDNA randomized to physician's choice or investigational arms. Time to no longer clinically benefiting (NLCB) and overall survival (OS) were assessed using Bayesian survival models, with results reported as survival time ratios (STRs). Dose-response relationships were estimated using spike-at-zero models. KEY FINDINGS AND LIMITATIONS A total of 220 patients were included, of whom 139 had detectable ctDNA (56 in the physician's choice arm, 83 in investigational arms) and 81 had undetectable ctDNA. In comparison to the undetectable ctDNA group, the physician's choice arm had 60% shorter time to NLCB (STR 0.40, 90% credible interval [CrI] 0.31-0.51) and 51% shorter OS (STR 0.49, 90% CrI 0.38-0.61). Similar results were observed in comparison to the investigational arms. Dose-response analysis revealed that the undetectable ctDNA group had twofold longer time to NLCB (STR 2.05, 90% CrI 1.66-2.57) and 1.6-fold longer OS (STR 1.63, 90% CrI 1.33-2.05) in comparison to the subgroup with a ctDNA fraction of 2.5%. Every 10-point increment in the ctDNA fraction corresponded to a 10% reduction in NLCB and OS times. CONCLUSIONS AND CLINICAL IMPLICATIONS Undetectable ctDNA at baseline predicts superior prognosis in mCRPC, suggesting potential for treatment de-escalation and less intensive monitoring for this subgroup of patients. This trial is registered on ClinicalTrials.gov as NCT03903835.
Collapse
Affiliation(s)
- Alessio Crippa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bram De Laere
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Human Structure and Repair Ghent University, Ghent, Belgium
| | - Andrea Discacciati
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Berit Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Persson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sanne D'hondt
- Clinical Trial Unit, Health, Innovation and Research Institute University Hospital Ghent, Ghent, Belgium
| | | | - Linn Pettersson
- Department of Oncology, Länssjukhuset Ryhov, Jönköping, Sweden
| | - Gunilla Enblad
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | - Anders Ullén
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Nicolaas Lumen
- Department of Urology, University Hospital Ghent, Ghent, Belgium
| | | | - Johan Sandzén
- Department of Oncology, Centralsjukhuset Karlstad, Karlstad, Sweden
| | - Elin Jänes
- Department of Oncology, Sundsvalls Sjukhus, Sundsvall, Sweden
| | - Christophe Ghysel
- Department of Urology, AZ Sint Jan Brugge-Oostende AV, Brugge, Belgium
| | - Martha Olsson
- Department of Oncology, Centrallasarettet Växjö, Växjö, Sweden
| | | | - Peter Schatteman
- Department of Urology, Onze Lieve Vrouwziekenhuis, Aalst, Belgium
| | - Wendy De Roock
- Department of Oncology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | | | | | - Jochen Darras
- Department of Urology, AZ Damiaan, Oostende, Belgium
| | - Els Everaert
- Department of Oncology, Vitaz campus Sint-Niklaas Lodewijk, Sint-Niklaas, Belgium
| | | | - Mats Anden
- Department of Oncology, Länssjukhuset i Kalmar, Kalmar, Sweden
| | | | - Daisy Luyten
- Department of Oncology, Virga Jessa, Hasselt, Belgium
| | - Ashkan Mortezavi
- Department of Urology, University Hospital Zurich, Zurich, Switzerland
| | | | - Piet Ost
- Department of Human Structure and Repair Ghent University, Ghent, Belgium; Department of Radiation Oncology, GZA Sint-Augustinus, Antwerp, Belgium
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Prostatacancer Centrum, Capio S:t Görans Sjukhus, Stockholm, Sweden.
| | - Martin Eklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
De Laere B, Crippa A, Discacciati A, Larsson B, Persson M, Johansson S, D'hondt S, Bergström R, Chellappa V, Mayrhofer M, Banijamali M, Kotsalaynen A, Schelstraete C, Vanwelkenhuyzen JP, Hjälm-Eriksson M, Pettersson L, Ullén A, Lumen N, Enblad G, Thellenberg Karlsson C, Jänes E, Sandzén J, Schatteman P, Nyre Vigmostad M, Olsson M, Ghysel C, Sautois B, De Roock W, Van Bruwaene S, Anden M, Verbiene I, De Maeseneer D, Everaert E, Darras J, Aksnessether BY, Luyten D, Strijbos M, Mortezavi A, Oldenburg J, Ost P, Eklund M, Grönberg H, Lindberg J. Androgen receptor pathway inhibitors and taxanes in metastatic prostate cancer: an outcome-adaptive randomized platform trial. Nat Med 2024; 30:3291-3302. [PMID: 39164518 PMCID: PMC11564108 DOI: 10.1038/s41591-024-03204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
ProBio is the first outcome-adaptive platform trial in prostate cancer utilizing a Bayesian framework to evaluate efficacy within predefined biomarker signatures across systemic treatments. Prospective circulating tumor DNA and germline DNA analysis was performed in patients with metastatic castration-resistant prostate cancer before randomization to androgen receptor pathway inhibitors (ARPIs), taxanes or a physician's choice control arm. The primary endpoint was the time to no longer clinically benefitting (NLCB). Secondary endpoints included overall survival and (serious) adverse events. Upon reaching the time to NLCB, patients could be re-randomized. The primary endpoint was met after 218 randomizations. ARPIs demonstrated ~50% longer time to NLCB compared to taxanes (median, 11.1 versus 6.9 months) and the physician's choice arm (median, 11.1 versus 7.4 months) in the biomarker-unselected or 'all' patient population. ARPIs demonstrated longer overall survival (median, 38.7 versus 21.7 and 21.8 months for taxanes and physician's choice, respectively). Biomarker signature findings suggest that the largest increase in time to NLCB was observed in AR (single-nucleotide variant/genomic structural rearrangement)-negative and TP53 wild-type patients and TMPRSS2-ERG fusion-positive patients, whereas no difference between ARPIs and taxanes was observed in TP53-altered patients. In summary, ARPIs outperform taxanes and physician's choice treatment in patients with metastatic castration-resistant prostate cancer with detectable circulating tumor DNA. ClinicalTrials.gov registration: NCT03903835 .
Collapse
Affiliation(s)
- Bram De Laere
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Alessio Crippa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Discacciati
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Berit Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Maria Persson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sanne D'hondt
- Health, Innovation and Research Institute (Clinical Trial Unit), University Hospital Ghent, Ghent, Belgium
| | - Rebecka Bergström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Venkatesh Chellappa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Markus Mayrhofer
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Mahsan Banijamali
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anastasijia Kotsalaynen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | - Jan Pieter Vanwelkenhuyzen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | | | - Linn Pettersson
- Department of Oncology, Länssjukhuset Ryhov, Jönköping, Sweden
| | - Anders Ullén
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Nicolaas Lumen
- Department of Urology, University Hospital Ghent, Ghent, Belgium
| | - Gunilla Enblad
- Department of Oncology, Uppsala University Hospital, Uppsala, Sweden
| | | | - Elin Jänes
- Department of Oncology, Sundsvalls sjukhus, Sundsvall, Sweden
| | - Johan Sandzén
- Department of Oncology, Centralsjukhuset Karlstad, Karlstad, Sweden
| | - Peter Schatteman
- Department of Urology, Onze Lieve Vrouwziekenhuis, Aalst, Belgium
| | | | - Martha Olsson
- Department of Oncology, Centrallasarettet Växjö, Växjö, Sweden
| | | | - Brieuc Sautois
- Department of Oncology, CHU de Liège - site Sart Tilman, Liège, Belgium
| | - Wendy De Roock
- Department of Oncology, Ziekenhuis Oost- Limburg, Genk, Belgium
| | | | - Mats Anden
- Department of Oncology, Länssjukhuset i Kalmar, Kalmar, Sweden
| | | | | | - Els Everaert
- Department of Oncology, Vitaz campus Sint-Niklaas Lodewijk, Sint-Niklaas, Belgium
| | - Jochen Darras
- Department of Urology, AZ Damiaan, Oostende, Belgium
| | | | - Daisy Luyten
- Department of Oncology, Virga Jessa, Hasselt, Belgium
| | | | - Ashkan Mortezavi
- Department of Urology, Universitätsspital Basel, Basel, Switzerland
- Department of Urology, Universitätsspital Zürich, Zürich, Switzerland
| | - Jan Oldenburg
- Department of Oncology, Akershus University Hospital, Nordbyhagen, Norway
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Department of Radiation Oncology, GZA Sint-Augustinus, Antwerpen, Belgium
| | - Martin Eklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Prostatacancer Centrum, Capio S:t Görans Sjukhus, Stockholm, Sweden.
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Vandekerkhove G, Giri VN, Halabi S, McNair C, Hamade K, Bitting RL, Wyatt AW. Toward Informed Selection and Interpretation of Clinical Genomic Tests in Prostate Cancer. JCO Precis Oncol 2024; 8:e2300654. [PMID: 38547422 PMCID: PMC10994438 DOI: 10.1200/po.23.00654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 04/02/2024] Open
Abstract
Clinical genomic testing of patient germline, tumor tissue, or plasma cell-free DNA can enable a personalized approach to cancer management and treatment. In prostate cancer (PCa), broad genotyping tests are now widely used to identify germline and/or somatic alterations in BRCA2 and other DNA damage repair genes. Alterations in these genes can confer cancer sensitivity to poly (ADP-ribose) polymerase inhibitors, are linked with poor prognosis, and can have potential hereditary cancer implications for family members. However, there is huge variability in genomic tests and reporting standards, meaning that for successful implementation of testing in clinical practice, end users must carefully select the most appropriate test for a given patient and critically interpret the results. In this white paper, we outline key pre- and post-test considerations for choosing a genomic test and evaluating reported variants, specifically for patients with advanced PCa. Test choice must be based on clinical context and disease state, availability and suitability of tumor tissue, and the genes and regions that are covered by the test. We describe strategies to recognize false positives or negatives in test results, including frameworks to assess low tumor fraction, subclonal alterations, clonal hematopoiesis, and pathogenic versus nonpathogenic variants. We assume that improved understanding among health care professionals and researchers of the nuances associated with genomic testing will ultimately lead to optimal patient care and clinical decision making.
Collapse
Affiliation(s)
- Gillian Vandekerkhove
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Veda N. Giri
- Yale School of Medicine and Yale Cancer Center, New Haven, CT
| | | | | | | | | | - Alexander W. Wyatt
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
4
|
Fonseca NM, Maurice-Dror C, Herberts C, Tu W, Fan W, Murtha AJ, Kollmannsberger C, Kwan EM, Parekh K, Schönlau E, Bernales CQ, Donnellan G, Ng SWS, Sumiyoshi T, Vergidis J, Noonan K, Finch DL, Zulfiqar M, Miller S, Parimi S, Lavoie JM, Hardy E, Soleimani M, Nappi L, Eigl BJ, Kollmannsberger C, Taavitsainen S, Nykter M, Tolmeijer SH, Boerrigter E, Mehra N, van Erp NP, De Laere B, Lindberg J, Grönberg H, Khalaf DJ, Annala M, Chi KN, Wyatt AW. Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun 2024; 15:1828. [PMID: 38418825 PMCID: PMC10902374 DOI: 10.1038/s41467-024-45475-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
No consensus strategies exist for prognosticating metastatic castration-resistant prostate cancer (mCRPC). Circulating tumor DNA fraction (ctDNA%) is increasingly reported by commercial and laboratory tests but its utility for risk stratification is unclear. Here, we intersect ctDNA%, treatment outcomes, and clinical characteristics across 738 plasma samples from 491 male mCRPC patients from two randomized multicentre phase II trials and a prospective province-wide blood biobanking program. ctDNA% correlates with serum and radiographic metrics of disease burden and is highest in patients with liver metastases. ctDNA% strongly predicts overall survival, progression-free survival, and treatment response independent of therapeutic context and outperformed established prognostic clinical factors. Recognizing that ctDNA-based biomarker genotyping is limited by low ctDNA% in some patients, we leverage the relationship between clinical prognostic factors and ctDNA% to develop a clinically-interpretable machine-learning tool that predicts whether a patient has sufficient ctDNA% for informative ctDNA genotyping (available online: https://www.ctDNA.org ). Our results affirm ctDNA% as an actionable tool for patient risk stratification and provide a practical framework for optimized biomarker testing.
Collapse
Affiliation(s)
- Nicolette M Fonseca
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilson Tu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - William Fan
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Andrew J Murtha
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Edmond M Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
- Department of Medicine, School of Clinical Sciences; Monash University, Melbourne, VIC, Australia
| | - Karan Parekh
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Elena Schönlau
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Cecily Q Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Gráinne Donnellan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Takayuki Sumiyoshi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Joanna Vergidis
- Department of Medical Oncology, BC Cancer, Victoria, BC, Canada
| | - Krista Noonan
- Department of Medical Oncology, BC Cancer, Surrey, BC, Canada
| | - Daygen L Finch
- Department of Medical Oncology, BC Cancer, Kelowna, BC, Canada
| | | | - Stacy Miller
- Department of Radiation Oncology, BC Cancer, Prince George, BC, Canada
| | - Sunil Parimi
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Edward Hardy
- Tom McMurtry & Peter Baerg Cancer Centre, Vernon Jubilee Hospital, Vernon, BC, Canada
| | - Maryam Soleimani
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Lucia Nappi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Bernhard J Eigl
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | | | - Sinja Taavitsainen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Sofie H Tolmeijer
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Emmy Boerrigter
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University, Nijmegen, The Netherlands
| | - Bram De Laere
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Daniel J Khalaf
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland.
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada.
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Bratic Hench I, Roma L, Conticelli F, Bubendorf L, Calgua B, Le Magnen C, Piscuoglio S, Rubin MA, Chirindel A, Nicolas GP, Vlajnic T, Zellweger T, Templeton AJ, Stenner F, Ruiz C, Rentsch C, Bubendorf L. Cell-Free DNA Genomic Profiling and Its Clinical Implementation in Advanced Prostate Cancer. Cancers (Basel) 2023; 16:45. [PMID: 38201475 PMCID: PMC10778564 DOI: 10.3390/cancers16010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Most men with prostate cancer (PCa), despite potentially curable localized disease at initial diagnosis, progress to metastatic disease. Despite numerous treatment options, choosing the optimal treatment for individual patients remains challenging. Biomarkers guiding treatment sequences in an advanced setting are lacking. To estimate the diagnostic potential of liquid biopsies in guiding personalized treatment of PCa, we evaluated the utility of a custom-targeted next-generation sequencing (NGS) panel based on the AmpliSeq HD Technology. Ultra-deep sequencing on plasma circulating free DNA (cfDNA) samples of 40 metastatic castration-resistant PCa (mCRPC) and 28 metastatic hormone-naive PCa (mCSPC) was performed. CfDNA somatic mutations were detected in 48/68 (71%) patients. Of those 68 patients, 42 had matched tumor and cfDNA samples. In 21/42 (50%) patients, mutations from the primary tumor tissue were detected in the plasma cfDNA. In 7/42 (17%) patients, mutations found in the primary tumor were not detected in the cfDNA. Mutations from primary tumors were detected in all tested mCRPC patients (17/17), but only in 4/11 with mCSPC. AR amplifications were detected in 12/39 (31%) mCRPC patients. These results indicate that our targeted NGS approach has high sensitivity and specificity for detecting clinically relevant mutations in PCa.
Collapse
Affiliation(s)
- Ivana Bratic Hench
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Luca Roma
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Floriana Conticelli
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Lenard Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Byron Calgua
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Department of Urology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Salvatore Piscuoglio
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Mark A. Rubin
- Precision Oncology Laboratory, Department for Biomedical Research, Bern Center for Precision Medicine, 3008 Bern, Switzerland
- Bern Center for Precision Medicine, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland
| | - Alin Chirindel
- Division of Nuclear Medicine, Department of Theragnostics, University Hospital Basel, 4031 Basel, Switzerland
| | - Guillaume P. Nicolas
- Division of Nuclear Medicine, Department of Theragnostics, University Hospital Basel, 4031 Basel, Switzerland
| | - Tatjana Vlajnic
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | | | - Arnoud J. Templeton
- St. Claraspital, 4058 Basel, Switzerland
- St. Clara Research, Basel and Faculty of Medicine, University Basel, 4058 Basel, Switzerland
| | - Frank Stenner
- Division of Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Christian Ruiz
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Cyrill Rentsch
- Department of Urology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
6
|
Sachs MC, Gabriel EE, Crippa A, Daniels MJ. Flexible evaluation of surrogacy in platform studies. Biostatistics 2023; 25:220-236. [PMID: 36610075 PMCID: PMC10939396 DOI: 10.1093/biostatistics/kxac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/24/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Trial-level surrogates are useful tools for improving the speed and cost effectiveness of trials but surrogates that have not been properly evaluated can cause misleading results. The evaluation procedure is often contextual and depends on the type of trial setting. There have been many proposed methods for trial-level surrogate evaluation, but none, to our knowledge, for the specific setting of platform studies. As platform studies are becoming more popular, methods for surrogate evaluation using them are needed. These studies also offer a rich data resource for surrogate evaluation that would not normally be possible. However, they also offer a set of statistical issues including heterogeneity of the study population, treatments, implementation, and even potentially the quality of the surrogate. We propose the use of a hierarchical Bayesian semiparametric model for the evaluation of potential surrogates using nonparametric priors for the distribution of true effects based on Dirichlet process mixtures. The motivation for this approach is to flexibly model relationships between the treatment effect on the surrogate and the treatment effect on the outcome and also to identify potential clusters with differential surrogate value in a data-driven manner so that treatment effects on the surrogate can be used to reliably predict treatment effects on the clinical outcome. In simulations, we find that our proposed method is superior to a simple, but fairly standard, hierarchical Bayesian method. We demonstrate how our method can be used in a simulated illustrative example (based on the ProBio trial), in which we are able to identify clusters where the surrogate is, and is not useful. We plan to apply our method to the ProBio trial, once it is completed.
Collapse
Affiliation(s)
- Michael C Sachs
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, 1353 København K, Denmark
| | - Erin E Gabriel
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Øster Farimagsgade 5, 1353 København K, Denmark
| | - Alessio Crippa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, Stockholm 17177, Sweden
| | - Michael J Daniels
- Department of Statistics, University of Florida, Union Rd, Gainesville, FL 32603, USA
| |
Collapse
|
7
|
Vanwelkenhuyzen J, Van Bos E, Van Bruwaene S, Lesage K, Maes A, Üstmert S, Lavent F, Beels L, Grönberg H, Ost P, Lindberg J, De Laere B. AR and PI3K Genomic Profiling of Cell-free DNA Can Identify Poor Responders to Lutetium-177-PSMA Among Patients with Metastatic Castration-resistant Prostate Cancer. EUR UROL SUPPL 2023; 53:63-66. [PMID: 37292496 PMCID: PMC10244905 DOI: 10.1016/j.euros.2023.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Lutetium-177 prostate-specific membrane antigen radioligands (177Lu-PSMA) are new therapeutic agents for the treatment of metastatic castration-resistant prostate cancer (mCRPC). We evaluated the prognostic value of circulating tumour DNA (ctDNA) profiling in patients with mCRPC starting treatment with 177Lu-PSMA I&T. Between January 2020 and October 2022, patients with late-stage mCRPC (n = 57) were enrolled in a single-centre observational cohort study. Genomic alterations in the AR gene, PI3K signalling pathway, TP53, and TMPRSS2-ERG were associated with progression-free survival (PFS) on Kaplan-Meier and multivariable Cox regression analyses. Median PFS of 3.84 mo (95% confidence interval [CI] 3.3-5.4) was observed, and 21/56 (37.5%) evaluable patients experienced a prostate-specific antigen response of ≥50% during treatment. Among 46 patients who provided a blood sample for profiling before 177Lu-PSMA treatment. ctDNA was detected in 39 (84.8%); higher ctDNA was correlated with shorter PFS. Genomic structural rearrangements in the AR gene (hazard ratio [HR] 9.74, 95% confidence interval [CI] 2.4-39.5; p = 0.001) and alterations in the PI3K signalling pathway (HR 3.58, 95% CI 1.41-9.08; p = 0.007) were independently associated with poor 177Lu-PSMA prognosis on multivariable Cox regression. Prospective evaluation of these associations in biomarker-driven trials is warranted. Patient summary We examined cell-free DNA in blood samples from patients with advanced metastatic prostate cancer who started treatment with lutetium-177-PSMA, a new radioligand therapy. We found that patients with genetic alterations in the androgen receptor gene or PI3K pathway genes did not experience a lasting benefit from lutetium-177-PSMA.
Collapse
Affiliation(s)
- Jan Vanwelkenhuyzen
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Centre for Medical Biotechnology (CMB) VIB, Zwijnaarde, Belgium
| | - Eva Van Bos
- Department of Urology, AZ Groeninge, Kortrijk, Belgium
| | | | - Karl Lesage
- Department of Urology, AZ Groeninge, Kortrijk, Belgium
| | - Alex Maes
- Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium
| | - Sezgin Üstmert
- Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium
| | - Filip Lavent
- Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium
| | - Laurence Beels
- Department of Nuclear Medicine, AZ Groeninge, Kortrijk, Belgium
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Piet Ost
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Radiotherapy, GZA Sint-Augustinus, Antwerp, Belgium
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bram De Laere
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Herberts C, Wyatt AW, Nguyen PL, Cheng HH. Genetic and Genomic Testing for Prostate Cancer: Beyond DNA Repair. Am Soc Clin Oncol Educ Book 2023; 43:e390384. [PMID: 37207301 DOI: 10.1200/edbk_390384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant progress has been made in genetic and genomic testing for prostate cancer across the disease spectrum. Molecular profiling is increasingly relevant for routine clinical management, fueled in part by advancements in testing technology and integration of biomarkers into clinical trials. In metastatic prostate cancer, defects in DNA damage response genes are now established predictors of benefit to US Food and Drug Administration-approved poly (ADP-ribose) polymerase inhibitors and immune checkpoint inhibitors, and trials are actively investigating these and other targeted treatment strategies in earlier disease states. Excitingly, opportunities for molecularly informed management beyond DNA damage response genes are also maturing. Germline genetic variants (eg, BRCA2 or MSH2/6) and polygenic germline risk scores are being investigated to inform cancer screening and active surveillance in at-risk carriers. RNA expression tests have recently gained traction in localized prostate cancer, enabling patient risk stratification and tailored treatment intensification via radiotherapy and/or androgen deprivation therapy for localized or salvage treatment. Finally, emerging minimally invasive circulating tumor DNA technology promises to enhance biomarker testing in advanced disease pending additional methodological and clinical validation. Collectively, genetic and genomic tests are rapidly becoming indispensable tools for informing the optimal clinical management of prostate cancer.
Collapse
Affiliation(s)
- Cameron Herberts
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Paul L Nguyen
- Harvard Medical School, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA
| | - Heather H Cheng
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
9
|
Kwan EM, Wyatt AW, Chi KN. Towards clinical implementation of circulating tumor DNA in metastatic prostate cancer: Opportunities for integration and pitfalls to interpretation. Front Oncol 2022; 12:1054497. [PMID: 36439451 PMCID: PMC9685669 DOI: 10.3389/fonc.2022.1054497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 08/13/2023] Open
Abstract
Plasma circulating tumor DNA (ctDNA) represents short fragments of tumor-derived DNA released into the bloodstream primarily from cancer cells undergoing apoptosis. In metastatic castration-resistant prostate cancer (mCRPC), characterizing genomic alterations in ctDNA identifies mutations, copy number alterations, and structural rearrangements with predictive and prognostic biomarker utility. These associations with clinical outcomes have resulted in ctDNA increasingly incorporated into routine clinical care. In this review, we summarize current and emerging applications for ctDNA analysis in metastatic prostate cancer, including outcome prediction, treatment selection, and characterization of treatment resistance. We also discuss potential pitfalls with interpreting ctDNA findings, namely false negatives arising from low tumor content and optimal assay design, including correction for clonal hematopoiesis of indeterminate potential and germline variants. Understanding the influence of these limitations on interpretation of ctDNA results is necessary to overcome barriers to clinical implementation. Nevertheless, as assay availability and technology continue to improve, recognizing both opportunities and shortcomings of ctDNA analysis will retain relevance with informing the implementation of precision-oncology initiatives for metastatic prostate cancer.
Collapse
Affiliation(s)
- Edmond M. Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver Centre, Vancouver, BC, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver Centre, Vancouver, BC, Canada
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Marchioni M, Marandino L, Amparore D, Berardinelli F, Matteo F, Campi R, Schips L, Mascitti M. Factors influencing survival in metastatic castration resistant prostate cancer therapy. Expert Rev Anticancer Ther 2022; 22:1061-1079. [PMID: 35982645 DOI: 10.1080/14737140.2022.2114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The number of patients with metastatic castration resistant prostate cancer (mCRPC) is expecting to increase due to the long-life expectancy of those with advanced disease who are also more commonly diagnosed today because of stage migration. Several compounds are available for treating these patients. AREAS COVERED We reviewed currently available treatments for mCRPC, their mechanism of action and resistance and we explored possible predictors of treatment success useful to predict survival in mCRPC patients. EXPERT OPINION A combination of molecular, clinical, pathological, and imaging features is necessary to correctly estimate patients' risk of death. The combination of these biomarkers may allow clinicians to tailor treatments based on cancer history and patients' features. The search of predictive biomarkers remains an unmet medical need for most patients with mCRPC.
Collapse
Affiliation(s)
- Michele Marchioni
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Laura Marandino
- Division of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Amparore
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Turin, Italy
| | - Francesco Berardinelli
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Ferro Matteo
- Division of Urology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Riccardo Campi
- Unit of Urological Robotic Surgery and Renal Transplantation, University of Florence, Careggi Hospital, Florence, Italy
| | - Luigi Schips
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| | - Marco Mascitti
- Unit of Urology, Department of Medical, Oral and Biotechnological Sciences, SS. Annunziata Hospital, G. D'Annunzio University, Chieti, Italy
| |
Collapse
|