1
|
Ghavami A, Talebi S, Barghchi H, Nattagh-Eshtivani E, Mohammadi H, Ziaei R. No benefit of soluble fiber on liver function. INT J VITAM NUTR RES 2024; 94:394-404. [PMID: 38044659 DOI: 10.1024/0300-9831/a000800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background: To conduct a systematic review and dose-response meta-analysis of current findings from randomized controlled trials (RCTs) on the effect of soluble fiber supplementation on liver function in both healthy individuals and people with specific health conditions, PubMed, Scopus, and ISI Web of Science were systematically searched for relevant RCTs published prior to April 2022. Methods: We estimated the change in liver function parameters for each 5 g/d increment in soluble fiber in each trial and then calculated the mean difference (MD) and 95%CI. A total of 25 RCTs with 27 treatment arms (1744 subjects; 884 cases, 860 controls) were included. Results: A total of 25 RCTs with 27 treatment arms were included. The intervention duration of the included studies ranged from 3 to 52 weeks and the dose of soluble fiber supplementation varied from 0.0025 to 40 g/d. Soluble fiber supplementation could not significantly affect serum alanine transaminase (MD: -0.02 U/L, 95% CI: -1.06 to 1.01), aspartate transaminase (MD: -0.34 U/L, 95% CI: -0.84 to 0.15), alkaline phosphatase (MD: 0.29 U/L, -0.14 to 0.71), gamma-glutamyl transferase (MD: 0.12 U/L; 95% CI: -0.81 to 1.05), serum bilirubin (MD: 0.42μmol/L, 95% CI: -0.08 to 0.93) and albumin (MD: 0.64 g/dl, 95% CI: -0.42 to 1.70) levels. Conclusions: Findings from this study did not support the beneficial effects of soluble fiber supplementation on liver function biomarkers. There is a need for long-term high-quality interventions to examine the effects of different types and doses of soluble fibers on liver function as primary outcome.
Collapse
Affiliation(s)
- Abed Ghavami
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Iran
| | - Sepide Talebi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Iran
| | - Hanieh Barghchi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Iran
| | - Elyas Nattagh-Eshtivani
- Nutrition, Food Sciences and Clinical Biochemistry Department, School of Medicine, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Iran
| | - Rahele Ziaei
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Iran
| |
Collapse
|
2
|
Kopczyńska J, Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front Immunol 2024; 15:1380476. [PMID: 38605957 PMCID: PMC11008232 DOI: 10.3389/fimmu.2024.1380476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.
Collapse
Affiliation(s)
- Julia Kopczyńska
- Laboratory of Lactic Acid Bacteria Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
3
|
Portincasa P, Khalil M, Graziani A, Frühbeck G, Baffy G, Garruti G, Di Ciaula A, Bonfrate L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur J Intern Med 2024; 119:13-30. [PMID: 37802720 DOI: 10.1016/j.ejim.2023.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
The prevalence of overweight, obesity, type 2 diabetes, metabolic syndrome and steatotic liver disease is rapidly increasing worldwide with a huge economic burden in terms of morbidity and mortality. Several genetic and environmental factors are involved in the onset and development of metabolic disorders and related complications. A critical role also exists for the gut microbiota, a complex polymicrobial ecology at the interface of the internal and external environment. The gut microbiota contributes to food digestion and transformation, caloric intake, and immune response of the host, keeping the homeostatic control in health. Mechanisms of disease include enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability and translocation of bacterial metabolites which activate a chronic low-grade systemic inflammation and insulin resistance, as precursors of tangible metabolic disorders involving glucose and lipid homeostasis. The ultimate causative role of gut microbiota in this respect remains to be elucidated, as well as the therapeutic value of manipulating the gut microbiota by diet, pre- and pro- synbiotics, or fecal microbial transplantation.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, Graz, Austria
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02130, USA
| | - Gabriella Garruti
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, Bari 70124, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari "Aldo Moro" Medical School, Policlinico Hospital, Piazza G. Cesare 11, Bari 70124, Italy
| |
Collapse
|
4
|
Amiri P, Hosseini SA, Roshanravan N, Saghafi-Asl M, Tootoonchian M. The effects of sodium butyrate supplementation on the expression levels of PGC-1α, PPARα, and UCP-1 genes, serum level of GLP-1, metabolic parameters, and anthropometric indices in obese individuals on weight loss diet: a study protocol for a triple-blind, randomized, placebo-controlled clinical trial. Trials 2023; 24:489. [PMID: 37528450 PMCID: PMC10392013 DOI: 10.1186/s13063-022-06891-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/03/2022] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Obesity is a multifaceted disease characterized by an abnormal accumulation of adipose tissue. Growing evidence has proposed microbiota-derived metabolites as a potential factor in the pathophysiology of obesity and related metabolic conditions over the last decade. As one of the essential metabolites, butyrate affects several host cellular mechanisms related to appetite sensations and weight control. However, the effects of butyrate on obesity in humans have yet to be studied. Thus, the present study was aimed to evaluate the effects of sodium butyrate (SB) supplementation on the expression levels of peroxisome proliferator activated-receptor (PPAR) gamma coactivator-1α (PGC-1α), PPARα and uncoupling protein 1 (UCP1) genes, serum level of glucagon-like peptide (GLP1), and metabolic parameters, as well as anthropometric indices in obese individuals on a weight loss diet. METHODS This triple-blind randomized controlled trial (RCT) will include 50 eligible obese subjects aged between 18 and 60 years. Participants will be randomly assigned into two groups: 8 weeks of SB (600 mg/day) + hypo-caloric diet or placebo (600 mg/day) + hypo-caloric diet. At weeks 0 and 8, distinct objectives will be pursued: (1) PGC-1α, PPARα, and UCP1 genes expression will be evaluated by real-time polymerase chain reaction; (2) biochemical parameters will be assayed using enzymatic methods; and (3) insulin and GLP1 serum level will be assessed by enzyme-linked immunosorbent assay kit. DISCUSSION New evidence from this trial may help fill the knowledge gap in this realm and facilitate multi-center clinical trials with a substantially larger sample size. TRIAL REGISTRATION Iranian Registry of Clinical Trials: IRCT20190303042905N2 . Registered on 31 January 2021.
Collapse
Affiliation(s)
- Parichehr Amiri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Clinical Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, P.O. Box 61357-15794, Ahvaz, Iran.
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mitra Tootoonchian
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Roshanravan N, Bastani S, Tutunchi H, Kafil B, Nikpayam O, Mesri Alamdari N, Hadi A, Sotoudeh S, Ghaffari S, Ostadrahimi A. A comprehensive systematic review of the effectiveness of Akkermansia muciniphila, a member of the gut microbiome, for the management of obesity and associated metabolic disorders. Arch Physiol Biochem 2023; 129:741-751. [PMID: 33449810 DOI: 10.1080/13813455.2021.1871760] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
AIMS AND BACKGROUND Obesity is recognised as a significant public health burden worldwide. Recently the cross-talk between gut microbiota and obesity has attracted much attention. To that end, Akkermansia muciniphila has been proposed as a promising microbe to manage obesity. In the present systematic review, we evaluated evidence on the effectiveness and mechanisms of action of Akkermansia muciniphila supplementation in the management of obesity. METHODS Electronic databases of MEDLINE, PubMed, Scopus, Web of Science, and Google Scholar were searched thought March 2020 to identify relevant published articles, and eligible articles were systematically reviewed. RESULTS AND CONCLUSIONS Fifteen studies were included in the present study. Findings from the present review, which included human and animal (rodent) models support the effectiveness of Akkermansia supplementation as a novel therapeutic approach for the management of obesity and metabolic complications associated with obesity. However, future clinical trials are warranted to verify these outcomes.
Collapse
Affiliation(s)
- Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bastani
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Kafil
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Nikpayam
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Talented Student Center, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naimeh Mesri Alamdari
- Students Research Committee, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hadi
- Halal Research Center of IRI, FDA, Tehran, Iran
| | - Simin Sotoudeh
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Curr Gastroenterol Rep 2023; 25:31-44. [PMID: 36469257 DOI: 10.1007/s11894-022-00859-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The prevalence of overweight and obesity has been increasing worldwide at an alarming rate. Gut microbiota intimately influence host energy metabolism, and immune response. Studies indicate a prominent role of gut dysbiosis in propagating inflammation that is associated with the development of obesity and obesity-related disorders such as type 2 diabetes mellitus, metabolic syndrome, and non-alcoholic fatty liver disease. This article will review the current literature on gut microbiome and its impact on obesity and obesity-related disorders. RECENT FINDINGS An altered gut microbial composition in obesity and obesity-related disorders is associated with enhanced energy extraction from the non-digestible dietary carbohydrates, increased gut permeability, increased production of proinflammatory metabolites, such as lipopolysaccharides, resulting in systemic inflammation and insulin resistance. Gut microbiota modulation can be achieved either by dietary manipulation or by administration of probiotics, prebiotics, synbiotics, and/or fecal microbiota transplantation aiming at the improvement of the gut dysbiosis in obesity and metabolic disorders. Further clinical trials are required to better elucidate the dose, and frequency of these interventions and also their long-term impact on host metabolism.
Collapse
|
7
|
Cherta-Murillo A, Pugh JE, Alaraj-Alshehhi S, Hajjar D, Chambers ES, Frost GS. The effects of SCFAs on glycemic control in humans: a systematic review and meta-analysis. Am J Clin Nutr 2022; 116:335-361. [PMID: 35388874 PMCID: PMC9348993 DOI: 10.1093/ajcn/nqac085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Noncommunicable disease development is related to impairments in glycemic and insulinemic responses, which can be modulated by fiber intake. Fiber's beneficial effects upon metabolic health can be partially attributed to the production of SCFAs via microbial fermentation of fiber in the gastrointestinal tract. OBJECTIVES We aimed to determine the effects of SCFAs, acetate, propionate, and butyrate on glycemic control in humans. METHODS The CENTRAL, Embase, PubMed, Scopus, and Web of Science databases were searched from inception to 7 December 2021. Papers were included if they reported a randomized controlled trial measuring glucose and/or insulin compared to a placebo in adults. Studies were categorized by the type of SCFA and intervention duration. Random-effects meta-analyses were performed for glucose and insulin for those subject categories with ≥3 studies, or a narrative review was performed. RESULTS We identified 43 eligible papers, with 46 studies within those records (n = 913), and 44 studies were included in the meta-analysis. Vinegar intake decreased the acute glucose response [standard mean difference (SMD), -0.53; 95% CI, -0.92 to -0.14; n = 67] in individuals with impaired glucose tolerance or type 2 diabetes and in healthy volunteers (SMD, -0.27; 95% CI, -0.54 to 0.00; n = 186). The meta-analyses for acute acetate, as well as acute and chronic propionate studies, showed no significant effect. CONCLUSIONS Vinegar decreased the glucose response acutely in healthy and metabolically unhealthy individuals. Acetate, propionate, butyrate, and mixed SCFAs had no effect on blood glucose and insulin in humans. Significant heterogeneity, risks of bias, and publication biases were identified in several study categories, including the acute vinegar glucose response. As evidence was very uncertain, caution is urged when interpreting these results. Further high-quality research is required to determine the effects of SCFAs on glycemic control.
Collapse
Affiliation(s)
- Anna Cherta-Murillo
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | - Sumayya Alaraj-Alshehhi
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Dana Hajjar
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Gary S Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
8
|
The effects of butyrate supplementation on glycemic control, lipid profile, blood pressure, nitric oxide level and glutathione peroxidase activity in type 2 diabetic patients: A randomized triple -blind, placebo-controlled trial. Clin Nutr ESPEN 2022; 49:79-85. [DOI: 10.1016/j.clnesp.2022.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022]
|
9
|
Wagenaar CA, van de Put M, Bisschops M, Walrabenstein W, de Jonge CS, Herrema H, van Schaardenburg D. The Effect of Dietary Interventions on Chronic Inflammatory Diseases in Relation to the Microbiome: A Systematic Review. Nutrients 2021; 13:nu13093208. [PMID: 34579085 PMCID: PMC8464906 DOI: 10.3390/nu13093208] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic inflammation plays a central role in the pathophysiology of various non-communicable diseases. Dietary interventions can reduce inflammation, in part due to their effect on the gut microbiome. This systematic review aims to determine the effect of dietary interventions, specifically fiber intake, on chronic inflammatory diseases and the microbiome. It aims to form hypotheses on the potential mediating effects of the microbiome on disease outcomes after dietary changes. Included were clinical trials which performed a dietary intervention with a whole diet change or fiber supplement (>5 g/day) and investigated the gut microbiome in patients diagnosed with chronic inflammatory diseases such as cardiovascular disease (CVD), type 2 diabetes (T2DM), and autoimmune diseases (e.g., rheumatoid arthritis (RA), inflammatory bowel disease (IBD)). The 30 articles which met the inclusion criteria had an overall moderate to high risk of bias and were too heterogeneous to perform a meta-analysis. Dietary interventions were stratified based on fiber intake: low fiber, high fiber, and supplemental fiber. Overall, but most pronounced in patients with T2DM, high-fiber plant-based dietary interventions were consistently more effective at reducing disease-specific outcomes and pathogenic bacteria, as well as increasing microbiome alpha diversity and short-chain fatty acid (SCFA)-producing bacteria, compared to other diets and fiber supplements.
Collapse
Affiliation(s)
- Carlijn A. Wagenaar
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
- Amsterdam UMC, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| | - Marieke van de Put
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
| | - Michelle Bisschops
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
| | - Wendy Walrabenstein
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
- Amsterdam UMC, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Catharina S. de Jonge
- Department of Radiology and Nuclear Medicine, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers (UMC), Academic Medical Center, 1105 AZ Amsterdam, The Netherlands;
| | - Dirkjan van Schaardenburg
- Amsterdam Rheumatology and Immunology Center, Reade, 1056 AB Amsterdam, The Netherlands; (M.v.d.P.); (M.B.); (W.W.); (D.v.S.)
- Amsterdam UMC, Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Xia F, Wen LP, Ge BC, Li YX, Li FP, Zhou BJ. Gut microbiota as a target for prevention and treatment of type 2 diabetes: Mechanisms and dietary natural products. World J Diabetes 2021; 12:1146-1163. [PMID: 34512884 PMCID: PMC8394227 DOI: 10.4239/wjd.v12.i8.1146] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/10/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is among the most remarkable public health concerns globally. Accumulating research evidence documents that alteration of gut microbiota has an indispensable role in the onset and progression of obesity and T2DM. A reduced microbial diversity is linked to insulin resistance and energy metabolism, especially for the rise of the Firmicutes/Bacteroidetes ratio. Changes in metabolites followed by the gut dysbacteriosis are linked to the presence of T2DM. Moreover, endotoxin leakage and gut permeability caused by gut dysbacteriosis is more of a trigger for the onset and progression of T2DM. Research documents that natural products are remarkable arsenals of bioactive agents for the discovery of anti-T2DM drugs. Many studies have elucidated that the possible mechanisms of the anti-T2DM effects of natural products are remarkably linked to its regulation on the composition of gut microflora and the successive changes in metabolites directly or indirectly. This review presents a brief overview of the gut microbiota in T2DM and several relevant mechanisms, including short-chain fatty acids, biosynthesis and metabolism of branched-chain fatty acids, trimethylamine N-oxide, bile acid signaling, endotoxin leakage, and gut permeability, and describes how dietary natural products can improve T2DM via the gut microbiota.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| | - Lu-Ping Wen
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| | - Bing-Chen Ge
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| | - Yu-Xin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| | - Fang-Ping Li
- Department of Endocrinology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| | - Ben-Jie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518107, Guangdong Province, China
| |
Collapse
|
11
|
Butyrate generated by gut microbiota and its therapeutic role in metabolic syndrome. Pharmacol Res 2020; 160:105174. [PMID: 32860943 DOI: 10.1016/j.phrs.2020.105174] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
Metabolic syndrome (MetS) and the associated incidence of cardiovascular disease and type 2 diabetes represents a significant contributor to morbidity and mortality worldwide. Butyrate, a short-chain fatty acid produced by the gut microbiome, has long been known to promote growth in farmed animals and more recently has been reported to improve body weight and composition, lipid profile, insulin sensitivity and glycaemia in animal models of MetS. In vitro studies have examined the influence of butyrate on intestinal cells, adipose tissue, skeletal muscle, hepatocytes, pancreatic islets and blood vessels, highlighting genes and pathways that may contribute to its beneficial effects. Butyrate's influences in these cells have been attributed primarily to its epigenetic effects as a histone deacetylase inhibitor, as well as its role as an agonist of free fatty acid receptors, but clear mechanistic evidence is lacking. There is also uncertainty whether results from animal studies can translate to human trials due to butyrate's poor systemic availability and rapid clearance. Hitherto, several small-scale human clinical trials have failed to show significant benefits in MetS patients. Further trials are clearly needed, including with formulations designed to improve butyrate's availability. Regardless, dietary intervention to increase the rate of butyrate production may be a beneficial addition to current treatment. This review outlines the current body of evidence on the suitability of butyrate supplementation for MetS, looking at mechanistic effects on the various components of MetS and highlighting gaps in the knowledge and roadblocks to its use in humans.
Collapse
|
12
|
Co-Culture with Bifidobacterium catenulatum Improves the Growth, Gut Colonization, and Butyrate Production of Faecalibacterium prausnitzii: In Vitro and In Vivo Studies. Microorganisms 2020; 8:microorganisms8050788. [PMID: 32466189 PMCID: PMC7285360 DOI: 10.3390/microorganisms8050788] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Faecalibacterium prausnitzii is a major commensal bacterium in the human gut. It produces short-chain fatty acids that promote intestinal health. However, the bacterium is extremely oxygen-sensitive, making it difficult to develop as a probiotic. To facilitate practical application of F. prausnitzii, we investigated factors that affect its growth and mammalian gut colonization. We evaluated cross-feeding interactions between F. prausnitzii and seven Bifidobacterium strains, and the anti-inflammatory properties of bacterial metabolites produced in co-culture, in vitro and in vivo. Co-culture of F. prausnitzii and Bifidobacterium catenulatum, with fructooligosaccharides as an energy source, resulted in the greatest viable cell-count and butyrate production increases. Further, the co-culture supernatant reduced the amount of proinflammatory cytokines produced by HT-29 cells and RAW 264.7 macrophages, an effect that was similar to that of butyrate. Furthermore, feeding mice both Faecalibacterium and Bifidobacterium enhanced F. prausnitzii gut colonization. Finally, feeding the co-culture supernatant decreased interleukin 8 levels in the colon and increased butyrate levels in the cecum in the dextran sodium sulfate-induced colitis mouse model. These observations indicate that the Faecalibacterium-Bifidobacterium co-culture exerts an anti-inflammatory effect by promoting F. prausnitzii survival and short-chain fatty acid production, with possible implications for the treatment of inflammatory bowel disease.
Collapse
|
13
|
The role of nutraceuticals in prevention and treatment of hypertension: An updated review of the literature. Food Res Int 2019; 128:108749. [PMID: 31955788 DOI: 10.1016/j.foodres.2019.108749] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023]
Abstract
Hypertension (HTN) is a worldwide epidemic in both developed and developing countries. It is one of the leading causes of major health problems such as cardiovascular disease, stroke, and heart attack. In recent years, several studies have reported associations between specific dietary ingredients and improving HTN. Nutraceuticals are natural food components with pharmacological properties. Reports suggest that functional foods and nutraceutical ingredients might support patients to obtain the desired therapeutic blood pressure (BP) goals and reduce cardiovascular risks by modulating various risk factors such as oxidative stress, renin-angiotensin system hyperactivity, inflammation, hyperlipidemia, and vascular resistance. We review the recent clinical experiments that have evaluated the biological and pharmacological activities of several types of nutraceuticals, including sour tea, cocoa, common spices, vitamin C, vitamin E, lycopene, flavonoids, coenzyme Q10, milk's tripeptides, calcium, magnesium, polyunsaturated fatty acids, and prebiotics in preventing and treating HTN. This review summarizes recent knowledge about the impact of common nutraceuticals for the regulation of BP.
Collapse
|
14
|
Li BY, Xu XY, Gan RY, Sun QC, Meng JM, Shang A, Mao QQ, Li HB. Targeting Gut Microbiota for the Prevention and Management of Diabetes Mellitus by Dietary Natural Products. Foods 2019; 8:440. [PMID: 31557941 PMCID: PMC6835620 DOI: 10.3390/foods8100440] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is one of the biggest public health concerns worldwide, which includes type 1 diabetes mellitus, type 2 diabetes mellitus, gestational diabetes mellitus, and other rare forms of diabetes mellitus. Accumulating evidence has revealed that intestinal microbiota is closely associated with the initiation and progression of diabetes mellitus. In addition, various dietary natural products and their bioactive components have exhibited anti-diabetic activity by modulating intestinal microbiota. This review addresses the relationship between gut microbiota and diabetes mellitus, and discusses the effects of natural products on diabetes mellitus and its complications by modulating gut microbiota, with special attention paid to the mechanisms of action. It is hoped that this review paper can be helpful for better understanding of the relationships among natural products, gut microbiota, and diabetes mellitus.
Collapse
Affiliation(s)
- Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Quan-Cai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jin-Ming Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
15
|
Payahoo L, Khajebishak Y, Alivand MR, Soleimanzade H, Alipour S, Barzegari A, Ostadrahimi A. Investigation the effect of oleoylethanolamide supplementation on the abundance of Akkermansia muciniphila bacterium and the dietary intakes in people with obesity: A randomized clinical trial. Appetite 2019; 141:104301. [PMID: 31132422 DOI: 10.1016/j.appet.2019.05.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
Akkermansia muciniphila bacterium is one of the inhabitant gut microbiota involving in the energy homeostasis and inhibition of the inflammations. The present study was designed to evaluate the effects of Oleoylethanolamide (OEA) supplementation on the abundance of A. muciniphila and the dietary intakes in obese people. In this randomized, double-blind, controlled clinical trial, 60 eligible obese people were selected and divided randomly into two groups including OEA group (received two capsules containing 125 mg of OEA daily) and placebo group (received two capsules containing 125 mg of starch daily). The treatment lasted for 8 weeks. Dietary intakes were evaluated according to the three -day food record and, were analyzed by the Nutritionist 4 software. In order to evaluate the changes in the abundance of A. muciniphila bacterium, faeces samples were collected at baseline and at the end of study. The targeting of the 16S rRNA gene in A. muciniphila was measured by the quantitative real-time PCR analysis. For OEA group, the energy and carbohydrate intakes decreased significantly after adjusting for baseline values and confounder factors; (p = 0.035), the amount of carbohydrate was reported as 422.25 (SD = 103.11) gr and 368.44 (SD = 99.08) gr; (p = 0.042)), before and after the treatment, respectively. The abundance of A. muciniphila bacterium increased significantly in OEA group compared to placebo group (p < 0.001). Considering the accumulating evidence identified OEA as a novel, safe, and efficacious pharmaceutical agent increasing the abundance of A. muciniphila bacterium and modifying the energy balance, therefore it is suggested to use its supplement for treatment of the obese people. However, future studies are needed to confirm the positive results obtained in this study.
Collapse
Affiliation(s)
- Laleh Payahoo
- Assistant Professor of Nutrition Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Yaser Khajebishak
- Assistant Professor of Nutrition Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soleimanzade
- Department of Applied Biochemistry, Faculty of Chemistry, Tabriz University, Tabriz, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abolfazl Barzegari
- Student Research Committee, School of Advanced Biomedical Sciences, Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Álvarez-Mercado AI, Navarro-Oliveros M, Robles-Sánchez C, Plaza-Díaz J, Sáez-Lara MJ, Muñoz-Quezada S, Fontana L, Abadía-Molina F. Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms 2019; 7:68. [PMID: 30832423 PMCID: PMC6463060 DOI: 10.3390/microorganisms7030068] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Specific microbial profiles and changes in intestinal microbiota have been widely demonstrated to be associated with the pathogenesis of a number of extra-intestinal (obesity and metabolic syndrome) and intestinal (inflammatory bowel disease) diseases as well as other metabolic disorders, such as non-alcoholic fatty liver disease and type 2 diabetes. Thus, maintaining a healthy gut ecosystem could aid in avoiding the early onset and development of these diseases. Furthermore, it is mandatory to evaluate the alterations in the microbiota associated with pathophysiological conditions and how to counteract them to restore intestinal homeostasis. This review highlights and critically discusses recent literature focused on identifying changes in and developing gut microbiota-targeted interventions (probiotics, prebiotics, diet, and fecal microbiota transplantation, among others) for the above-mentioned pathologies. We also discuss future directions and promising approaches to counteract unhealthy alterations in the gut microbiota. Altogether, we conclude that research in this field is currently in its infancy, which may be due to the large number of factors that can elicit such alterations, the variety of related pathologies, and the heterogeneity of the population involved. Further research on the effects of probiotics, prebiotics, or fecal transplantations on the composition of the human gut microbiome is necessary.
Collapse
Affiliation(s)
- Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
| | - Miguel Navarro-Oliveros
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
| | - Cándido Robles-Sánchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
| | - María José Sáez-Lara
- Department of Biochemistry and Molecular Biology I, School of Sciences, University of Granada, 18071 Granada, Spain.
| | - Sergio Muñoz-Quezada
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 6094411, Chile.
- National Agency for Medicines (ANAMED), Public Health Institute, Santiago 7780050, Chile.
| | - Luis Fontana
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain.
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology "José Mataix," Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain.
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
17
|
Ghavami A, Roshanravan N, Alipour S, Barati M, Mansoori B, Ghalichi F, Nattagh-Eshtivan E, Ostadrahimi A. Assessing the Effect of High Performance Inulin Supplementation via KLF5 mRNA Expression in Adults with Type 2 Diabetes: A Randomized Placebo Controlled Clinical Trail. Adv Pharm Bull 2018; 8:39-47. [PMID: 29670837 PMCID: PMC5896394 DOI: 10.15171/apb.2018.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/17/2018] [Accepted: 03/03/2018] [Indexed: 12/14/2022] Open
Abstract
Purpose: The worldwide prevalence of metabolic disorders such as diabetes is increasing rapidly. Currently, the complications of diabetes are the major health concern. The aim of this study was to investigate the effect of high performance (HP) inulin supplementation on glucose homeostasis via KLF5 mRNA expression in adults with type 2 diabetes. Methods: In the present clinical trial conducted for a duration of 6 weeks, 46 volunteers diabetic patients referring to diabetes clinic in Tabriz, Iran, were randomly assigned into intervention (n= 23, consuming 10 gr/d HP inulin) and control groups (n= 23, consuming 10 gr/ d starch). We assessed glycemic and anthropometric indices, blood lipids and plasmatic level of miR-375 as well as KLF5 mRNA expression before and after the intervention. Results: Findings indicated that inulin supplementation significantly decreased fasting plasma glucose (FPG) in comparison to the placebo group (P<0.001). Also Intra-group and between group results showed that inulin supplementation resulted in significant decrease in KLF5 mRNA expression in peripheral blood mononuclear cells (PBMCs) (Fold change: 0.61± 0.11; P-value= 0.001) and significant increase in plasmatic level of miR-375 (Fold change: 3.75± 0.70; P-value=0.004). Conclusion: Considering the improvements of FPG level in diabetic patients, it seems that HP inulin supplementation may be beneficial in controlling diabetes via the expression of some genes. However, further studies are needed to achieve concise conclusions.
Collapse
Affiliation(s)
- Abed Ghavami
- Department of Nutrition, School of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Alipour
- Department of Molecular Medicine, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meisam Barati
- Department of Nutrition, School of Nutrition, Shahid beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Ghalichi
- Department of Nutrition, School of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elyas Nattagh-Eshtivan
- Department of Nutrition, School of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|