Suppression of plasmacytoid dendritic cell migration to colonic isolated lymphoid follicles abrogates the development of colitis.
Biomed Pharmacother 2021;
141:111881. [PMID:
34246191 DOI:
10.1016/j.biopha.2021.111881]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND
Dendritic cells (DCs) play a pivotal role in maintaining immunological homeostasis by orchestrating innate and adaptive immune responses via migration to inflamed sites and the lymph nodes (LNs). Plasmacytoid DCs (pDCs) have been reported to accumulate in the colon of inflammatory bowel disease (IBD) patients and dextran sulfate sodium (DSS)-induced colitis mice. However, the role of pDCs in the progression of colonic inflammation remains unclear.
METHODS
80 compounds in natural medicines were searched for inhibitors of pDC migration using bone marrow-derived pDCs (BMpDCs) and conventional DCs (BMcDCs). BALB/c mice were given 3% DSS in the drinking water to induce acute colitis. Compounds, which specifically inhibited pDC migration, were administrated into DSS-induced colitis mice.
FINDINGS
Astragaloside IV (As-IV) and oxymatrine (Oxy) suppressed BMpDC migration but not BMcDC migration. In DSS-induced colitis mice, the number of pDCs was markedly increased in the colonic lamina propria (LP), and the expression of CCL21 was obviously observed in colonic isolated lymphoid follicles (ILFs). As-IV and Oxy reduced symptoms of colitis and the accumulation of pDCs in colonic ILFs but not in the colonic LP. Moreover, in a BMpDC adoptive transfer model, BMpDC migration to colonic ILFs was significantly decreased by treatment with As-IV or Oxy.
INTERPRETATION
pDCs accumulated in the colon of colitis mice, and As-IV and Oxy ameliorated colitis by suppressing pDC migration to colonic ILFs. Accordingly, the selective inhibition of pDC migration may be a potential therapeutic approach for treating colonic inflammatory diseases.
Collapse