1
|
Tan Q, Wu D, Lin Y, Ai H, Xu J, Zhou H, Gu Q. Identifying eleven new ferroptosis inhibitors as neuroprotective agents from FDA-approved drugs. Bioorg Chem 2024; 146:107261. [PMID: 38460336 DOI: 10.1016/j.bioorg.2024.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
With increasing evidence that ferroptosis is associated with diverse neurological disorders, targeting ferroptosis offers a promising avenue for developing effective pharmaceutical agents for neuroprotection. In this study, we identified ferroptosis inhibitors as neuroprotective agents from US Food and Drug Administration (FDA)-approved drugs. 1176 drugs have been screened against erastin-induced ferroptosis in HT22 cells, resulting in 89 ferroptosis inhibitors. Among them, 26 drugs showed significant activity with EC50 below10 μM. The most active ferroptosis inhibitor is lumateperone tosylate at nanomolar level. 11 drugs as ferroptosis inhibitors were not reported previously. Further mechanistic studies revealed that their mechanisms of actions involve free radical scavenging, Fe2+ chelation, and 15-lipoxygenase inhibition. Notably, the active properties of some drugs were firstly revealed here. These ferroptosis inhibitors increase the chemical diversity of ferroptosis inhibitors, and offer new therapeutic possibilities for the treatments of related neurological diseases.
Collapse
Affiliation(s)
- Qingyun Tan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Deyin Wu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yating Lin
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Haopeng Ai
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
3
|
Boyd-Kimball D, Gonczy K, Lewis B, Mason T, Siliko N, Wolfe J. Classics in Chemical Neuroscience: Chlorpromazine. ACS Chem Neurosci 2019; 10:79-88. [PMID: 29929365 DOI: 10.1021/acschemneuro.8b00258] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The discovery of chlorpromazine in the early 1950s revolutionized the clinical treatment of schizophrenia, galvanized the development of psychopharmacology, and standardized protocols used for testing the clinical efficacy of antipsychotics. Furthermore, chlorpromazine expanded our understanding of the role of chemical messaging in neurotransmission and reduced the stigma associated with mental illness, facilitating deinstitutionalization in the 1960s and 1970s. In this review, we will discuss the synthesis, manufacturing, metabolism and pharmacokinetics, pharmacology, structure-activity relationship, and adverse effects of chlorpromazine. In conclusion, we summarize the history and significant contributions of chlorpromazine that have resulted in this potent first-generation antipsychotic maintaining its clinical relevance for nearly 70 years.
Collapse
Affiliation(s)
- Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - Katelyn Gonczy
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - Benjamin Lewis
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - Thomas Mason
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - Nicole Siliko
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| | - Jacob Wolfe
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, Ohio 44601, United States
| |
Collapse
|
4
|
Do in vitro assays in rat primary neurons predict drug-induced seizure liability in humans? Toxicol Appl Pharmacol 2018; 346:45-57. [PMID: 29596924 DOI: 10.1016/j.taap.2018.03.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 11/22/2022]
Abstract
Drug-induced seizures contribute to the high attrition rate of pharmaceutical compounds in development. The assessment of drug-induced seizure liability generally occurs in later phases of development using low throughput and intensive in vivo assays. In the present study, we evaluated the potential of an in vitro assay for detecting drug-induced seizure risk compared to evaluation in rats in vivo. We investigated the effects of 8 reference drugs with a known seizurogenic risk using micro-electrode array (MEA) recordings from freshly-dissociated rat primary neurons cultured on 48-well dishes for 28 days, compared to their effects on the EEG in anesthetized rats. In addition, we evaluated functional responses and mRNA expression levels of different receptors in vitro to understand the potential mechanisms of drug-induced seizure risk. Combining the functional MEA in vitro data with concomitant gene expression allowed us to identify several potential molecular targets that might explain the drug-induced seizures occurring in both rats and humans. Our data 1) demonstrate the utility of a group of MEA parameters for detecting potential drug-induced seizure risk in vitro; 2) suggest that an in vitro MEA assay with rat primary neurons may have advantages over an in vivo rat model; and 3) identify potential mechanisms for the discordance between rat assays and human seizure risk for certain seizurogenic drugs.
Collapse
|
5
|
Li P, Zhang Q, Robichaud AJ, Lee T, Tomesch J, Yao W, Beard JD, Snyder GL, Zhu H, Peng Y, Hendrick JP, Vanover KE, Davis RE, Mates S, Wennogle LP. Discovery of a Tetracyclic Quinoxaline Derivative as a Potent and Orally Active Multifunctional Drug Candidate for the Treatment of Neuropsychiatric and Neurological Disorders. J Med Chem 2014; 57:2670-82. [DOI: 10.1021/jm401958n] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Li
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - Qiang Zhang
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - Albert J. Robichaud
- Medicinal
Chemistry, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States
| | - Taekyu Lee
- Medicinal
Chemistry, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, United States
| | - John Tomesch
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - Wei Yao
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - J. David Beard
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - Gretchen L. Snyder
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - Hongwen Zhu
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - Youyi Peng
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - Joseph P. Hendrick
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - Kimberly E. Vanover
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - Robert E. Davis
- 3D Pharmaceutical Consultants, Inc., 13272 Glencliff Way, San Diego, California 92130, United States
| | - Sharon Mates
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| | - Lawrence P. Wennogle
- Intra-Cellular Therapies, Inc., 3960
Broadway, New York, New York 10032, United States
| |
Collapse
|
6
|
Airaksinen AJ, Finnema SJ, Balle T, Varnäs K, Bang-Andersen B, Gulyás B, Farde L, Halldin C. Radiosynthesis and evaluation of new α1-adrenoceptor antagonists as PET radioligands for brain imaging. Nucl Med Biol 2013; 40:747-54. [PMID: 23810488 DOI: 10.1016/j.nucmedbio.2013.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/06/2013] [Accepted: 05/18/2013] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Evaluation of the α1-adrenoceptors in relation to brain pathophysiology and drug treatment has been hindered by lack of α1-adrenoceptor specific radioligands with sufficient brain exposure. Our aim was to develop an α1-adrenoceptor specific PET radioligand for brain imaging. METHODS Two sertindole analogues 1-(4-fluorophenyl)-5-(1-methyl-1H-1,2,4-triazol-3-yl)-3-(1-[(11)C]methylpiperidin-4-yl)-1H-indole [(11)C]3 and 1-(4-fluorophenyl)-3-(1-[(11)C]methylpiperidin-4-yl)-5-(pyrimidin-5-yl)-1H-indole ([(11)C]Lu AA27122) [(11)C]4 were synthesized and evaluated as α1-adrenoceptor PET radioligands in cynomolgus monkey. Compounds 3 and 4 were selected due to their promising in vitro preclinical profile; high affinity and selectivity for the α1-adrenoceptor, favourable blood brain barrier permeability rates in Caco-2 monolayers and promising brain tissue/plasma ratio, assessed by equilibrium dialysis of free fraction in plasma and brain homogenate. RESULTS Compounds [(11)C]3 and [(11)C]4 were synthesized from their desmethyl piperidine precursors with high specific radioactivity (>370 GBq/μmol) using [(11)C]methyl iodide. The 1,2,4-triazole analogue [(11)C]3 exhibited poor brain uptake, but the corresponding pyrimidyl analogue [(11)C]4 exhibited high brain exposure and binding in α1-adrenoceptor rich brain regions. However, the binding could not be inhibited by pretreatment with prazosin (0.1 mg/kg and 0.3 mg/kg). The results were extended by autoradiography of [(11)C]4 binding in human brain sections and competition with antagonists from different structural families, revealing that only a minor portion of the observed binding of [(11)C]4 in brain was α1-adrenoceptor specific. CONCLUSION Though [(11)C]3 and [(11)C]4 proved not suitable as PET radioligands, the study provided further understanding of structural features influencing brain exposure of the chemical class of compounds related to the antipsychotic drug sertindole. It provided valuable insight in the delicacy of blood brain barrier penetration for structurally related compounds and underlines the importance for improved protocols for evaluation of brain penetration of future PET ligands.
Collapse
Affiliation(s)
- Anu J Airaksinen
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Karolinska Hospital, S-17176 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Receptor targets for antidepressant therapy in bipolar disorder: an overview. J Affect Disord 2012; 138:222-38. [PMID: 21601292 DOI: 10.1016/j.jad.2011.04.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/27/2011] [Indexed: 11/20/2022]
Abstract
The treatment of bipolar depression is one of the most challenging issues in contemporary psychiatry. Currently only quetiapine and the olanzapine-fluoxetine combination are officially approved by the FDA against this condition. The neurobiology of bipolar depression and the possible targets of bipolar antidepressant therapy remain relatively elusive. We performed a complete and systematic review to identify agents with definite positive or negative results concerning efficacy followed by a second systematic review to identify the pharmacodynamic properties of these agents. The comparison of properties suggests that the stronger predictors for antidepressant efficacy in bipolar depression were norepinephrine alpha-1, dopamine D1 and histamine antagonism, followed by 5-HT2A, muscarinic and dopamine D2 and D3 antagonism and eventually by norepinephrine reuptake inhibition and 5HT-1A agonism. Serotonin reuptake which constitutes the cornerstone in unipolar depression treatment does not seem to play a significant role for bipolar depression. Our exhaustive review is compatible with a complex model with multiple levels of interaction between the major neurotransmitter systems without a single target being either necessary or sufficient to elicit the antidepressant effect in bipolar depression.
Collapse
|
8
|
Serotonergic involvement in methamphetamine-induced locomotor activity: A detailed pharmacological study. Behav Brain Res 2011; 220:9-19. [DOI: 10.1016/j.bbr.2011.01.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/07/2011] [Accepted: 01/16/2011] [Indexed: 11/21/2022]
|
9
|
Perez DM, Doze VA. Cardiac and neuroprotection regulated by α(1)-adrenergic receptor subtypes. J Recept Signal Transduct Res 2011; 31:98-110. [PMID: 21338248 DOI: 10.3109/10799893.2010.550008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sympathetic nervous system regulation by the α(1)-adrenergic receptor (AR) subtypes (α(1A), α(1B), α(1D)) is complex, whereby chronic activity can be either detrimental or protective for both heart and brain function. This review will summarize the evidence that this dual regulation can be mediated through the different α(1)-AR subtypes in the context of cardiac hypertrophy, heart failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration, cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness.
Collapse
Affiliation(s)
- Dianne M Perez
- Department of Molecular Cardiology, NB50, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
10
|
Rea K, Folgering J, Westerink BH, Cremers TI. α1-Adrenoceptors modulate citalopram-induced serotonin release. Neuropharmacology 2010; 58:962-71. [DOI: 10.1016/j.neuropharm.2009.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 12/12/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
|
11
|
Gallo A, Lapointe S, Stip E, Potvin S, Rompré PP. Quetiapine blocks cocaine-induced enhancement of brain stimulation reward. Behav Brain Res 2010; 208:163-8. [DOI: 10.1016/j.bbr.2009.11.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/13/2009] [Accepted: 11/15/2009] [Indexed: 02/07/2023]
|
12
|
Tanibuchi Y, Fujita Y, Kohno M, Ishima T, Takatsu Y, Iyo M, Hashimoto K. Effects of quetiapine on phencyclidine-induced cognitive deficits in mice: a possible role of alpha1-adrenoceptors. Eur Neuropsychopharmacol 2009; 19:861-7. [PMID: 19656663 DOI: 10.1016/j.euroneuro.2009.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/15/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Accumulating evidence suggests that alpha(1)-adrenoceptors may be involved in the mechanisms of action of some antipsychotic drugs. The present study was undertaken to examine the effects of quetiapine, an atypical antipsychotic drug with alpha(1)-adrenoceptor antagonism, on cognitive deficits in mice after repeated administration of the NMDA receptor antagonist phencyclidine (PCP). Subsequent subchronic (14 days) administration of quetiapine (1.0, 10, or 30 mg/kg, p.o.) attenuated PCP (10 mg/kg/day for 10 days)-induced cognitive deficits in mice, in a dose dependent manner. Furthermore, PCP (10 mg/kg)-induced cognitive deficits were also significantly ameliorated by subsequent subchronic (14 days) administration of the selective alpha(1)-adrenoceptor antagonist prazosin (1.0 mg/kg/day, p.o.). Moreover, Western blot analysis revealed that levels of two subtypes (alpha(1A) and alpha(1B)) of alpha(1)-adrenoceptors were significantly lower in the brains of PCP-treated mice than in those of saline-treated mice. These findings suggest that repeated PCP administration could decrease the density of alpha(1)-adrenoceptors in mouse brain, and that subsequent subchronic administration of quetiapine might ameliorate PCP-induced cognitive deficits via alpha(1)-adrenoceptors. Therefore, it is likely that antagonism at alpha(1)-adrenoceptors is involved in the mechanism underlying quetiapine's psychopharmacological action.
Collapse
Affiliation(s)
- Yuko Tanibuchi
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Philibin SD, Walentiny DM, Vunck SA, Prus AJ, Meltzer HY, Porter JH. Further characterization of the discriminative stimulus properties of the atypical antipsychotic drug clozapine in C57BL/6 mice: role of 5-HT(2A) serotonergic and alpha (1) adrenergic antagonism. Psychopharmacology (Berl) 2009; 203:303-15. [PMID: 18989659 DOI: 10.1007/s00213-008-1385-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE The discriminative stimulus properties of the atypical antipsychotic drug (APD) clozapine (CLZ) have recently been studied in C57BL/6 mice, a common background strain for genetic alterations. However, further evaluation is needed to fully characterize CLZ's discriminative cue in this strain of mice. OBJECTIVES The objectives of the study were to confirm the previous findings using a shorter pretreatment time and to further characterize the receptor mechanisms mediating the discriminative stimulus properties of CLZ by testing APDs, selective ligands, and N-desmethylclozapine (CLZ's major metabolite) in C57BL/6 mice. MATERIALS AND METHODS C57BL/6 male mice were trained to discriminate 2.5 mg/kg CLZ (s.c.) from vehicle in a two-lever drug discrimination task. RESULTS Generalization testing with CLZ yielded an ED(50) = 1.19 mg/kg. Substitution testing with APDs showed that the atypical APDs quetiapine, sertindole, zotepine, iloperidone, and melperone fully substituted for CLZ (> or =80% CLZ-appropriate responding), but aripiprazole did not. The typical APDs chlorpromazine and thioridazine substituted for CLZ (fluphenazine and perphenazine did not). The serotonin (5-HT) (2A) antagonist M100907 and the alpha(1)-adrenoceptor antagonist prazosin fully substituted for CLZ. The H(1) histaminergic antagonist pyrilamine, dopamine agonist amphetamine, and the selective serotonin reuptake inhibitor fluoxetine did not substitute for CLZ. While N-desmethylclozapine did not substitute for CLZ when tested alone, N-desmethylclozapine plus a low dose of CLZ combined in an additive manner produced full substitution. CONCLUSIONS CLZ's discriminative cue in C57BL/6 mice is a "compound" cue mediated in part by antagonism of 5-HT(2A) and alpha(1) receptors.
Collapse
Affiliation(s)
- Scott D Philibin
- Department of Behavioral Neuroscience, Oregon Health & Science University, VA Medical Center, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
14
|
Enhanced alpha1 adrenergic sensitivity in sensorimotor gating deficits in neonatal ventral hippocampus-lesioned rats. Int J Neuropsychopharmacol 2008; 11:1085-96. [PMID: 18460229 DOI: 10.1017/s1461145708008845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Neonatal ventral hippocampus (nVH) lesion in rats is a widely used animal model of schizophrenia due to the predominantly post-pubertal emergence of many schizophrenia-like behaviours. Our previous studies have shown increased ligand binding of alpha1 adrenergic receptors (AR) in the frontal cortex of post-pubertal, but not pre-pubertal, nVH-lesioned rats, compared to sham-lesioned control rats. Moreover, pretreatment with the alpha1 adrenergic receptor antagonist prazosin reversed amphetamine-induced hyperlocomotion in controls, but failed to do so in lesioned animals. This led to our hypothesis that nVH lesions may lead to post-pubertal hyperactivity of alpha1 adrenergic receptors. In order to test the functional relevance of alpha1 adrenergic hyperactivity to schizophrenia-like behaviours of nVH-lesioned animals, we conducted prepulse inhibition (PPI) studies in post-pubertal (postnatal days 56-120) sham and lesioned animals in response to systemic injections of alpha1 adrenergic receptor antagonist and agonist, prazosin and cirazoline, respectively. Our results show that PPI deficits in nVH-lesioned animals were reversed with prazosin treatment, without a significant effect on PPI in sham animals. Further, at various doses, cirazoline had a significantly greater PPI disruptive effect in nVH-lesioned animals than in sham animals. Together, these results suggest that nVH-lesioned animals show a hyperactive alpha1 adrenergic receptor system that may mediate sensorimotor gating abnormalities reported in these animals.
Collapse
|
15
|
Shi WX, Zhang XY, Pun CL, Bunney BS. Clozapine blocks D-amphetamine-induced excitation of dopamine neurons in the ventral tegmental area. Neuropsychopharmacology 2007; 32:1922-8. [PMID: 17299514 DOI: 10.1038/sj.npp.1301334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Current antipsychotic drugs are thought to inhibit central dopamine (DA) transmission by blocking DA receptors. Here, we provide evidence that the atypical antipsychotic drug clozapine may produce part of its effect by inhibiting a subset of excitatory inputs to DA neurons. Thus, in chloral hydrate-anesthetized rats, systemic administration of D-amphetamine produced two opposing effects on DA neurons in the ventral tegmental area. Under control conditions, D-amphetamine inhibited the firing of the cell through D2-like receptors. When D2-like receptors were blocked by raclopride, D-amphetamine excited DA neurons, instead of producing no effect. The excitation, expressed as an increase in firing rate and a slow oscillation in firing pattern, was suppressed by the adrenergic alpha1 receptor antagonist prazosin, suggesting an involvement of alpha1 receptors. In rats pretreated with the typical antipsychotic drug haloperidol, D-amphetamine also excited DA neurons. However, when given after clozapine, D-amphetamine produced no significant effects. The failure of D-amphetamine to produce an excitation is not due to an incomplete blockade of D2-like receptors by clozapine because co-treatment with clozapine and raclopride also failed to enable the excitatory effect of D-amphetamine. The suggestion that clozapine inhibits the excitatory effect of D-amphetamine is further supported by the finding that clozapine, given after D-amphetamine, reliably reversed D-amphetamine-induced excitation in raclopride-treated rats. Thus, different from raclopride and haloperidol, clozapine may inhibit DA transmission through two additive mechanisms: blockade of DA receptors and inhibition of an amphetamine-sensitive, excitatory pathway that innervates DA neurons.
Collapse
Affiliation(s)
- Wei-Xing Shi
- Neuropsychopharmacological Research Unit, Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
16
|
Maccari L, Magnani M, Strappaghetti G, Corelli F, Botta M, Manetti F. A Genetic-Function-Approximation-Based QSAR Model for the Affinity of Arylpiperazines toward α1 Adrenoceptors. J Chem Inf Model 2006; 46:1466-78. [PMID: 16711766 DOI: 10.1021/ci060031z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genetic function approximation (GFA) algorithm has been used to derive a three-term QSAR equation able to correlate the structural properties of arylpiperazine derivatives with their affinity toward the alpha1 adrenoceptor (alpha1-AR). The number of rotatable bonds, the hydrogen-bond properties, and a variable belonging to a topological family of descriptors (chi) showed significant roles in the binding process toward alpha1-AR. The new model was also compared to a previous pharmacophore for alpha1-AR antagonists and a QSAR model for alpha2-AR antagonists with the aim of finding common or different key determinants influencing both affinity and selectivity toward alpha1- and alpha2-AR.
Collapse
Affiliation(s)
- Laura Maccari
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via Alcide de Gasperi, 2, I-53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Bastianetto S, Danik M, Mennicken F, Williams S, Quirion R. Prototypical antipsychotic drugs protect hippocampal neuronal cultures against cell death induced by growth medium deprivation. BMC Neurosci 2006; 7:28. [PMID: 16573831 PMCID: PMC1448194 DOI: 10.1186/1471-2202-7-28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 03/30/2006] [Indexed: 12/21/2022] Open
Abstract
Background Several clinical studies suggested that antipsychotic-based medications could ameliorate cognitive functions impaired in certain schizophrenic patients. Accordingly, we investigated the effects of various dopaminergic receptor antagonists – including atypical antipsychotics that are prescribed for the treatment of schizophrenia – in a model of toxicity using cultured hippocampal neurons, the hippocampus being a region of particular relevance to cognition. Results Hippocampal cell death induced by deprivation of growth medium constituents was strongly blocked by drugs including antipsychotics (10-10-10-6 M) that display nM affinities for D2 and/or D4 receptors (clozapine, haloperidol, (±)-sulpiride, domperidone, clozapine, risperidone, chlorpromazine, (+)-butaclamol and L-741,742). These effects were shared by some caspases inhibitors and were not accompanied by inhibition of reactive oxygen species. In contrast, (-)-raclopride and remoxipride, two drugs that preferentially bind D2 over D4 receptors were ineffective, as well as the selective D3 receptor antagonist U 99194. Interestingly, (-)-raclopride (10-6 M) was able to block the neuroprotective effect of the atypical antipsychotic clozapine (10-6 M). Conclusion Taken together, these data suggest that D2-like receptors, particularly the D4 subtype, mediate the neuroprotective effects of antipsychotic drugs possibly through a ROS-independent, caspase-dependent mechanism.
Collapse
Affiliation(s)
- Stéphane Bastianetto
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Montreal, Québec, H4H 1R3, Canada
| | - Marc Danik
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Montreal, Québec, H4H 1R3, Canada
| | - Françoise Mennicken
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Montreal, Québec, H4H 1R3, Canada
| | - Sylvain Williams
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Montreal, Québec, H4H 1R3, Canada
| | - Rémi Quirion
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Montreal, Québec, H4H 1R3, Canada
| |
Collapse
|