1
|
Lu J, Zhao XJ, Ruan Y, Liu XJ, Di X, Xu R, Wang JY, Qian MY, Jin HM, Li WJ, Shen X. Desloratadine ameliorates paclitaxel-induced peripheral neuropathy and hypersensitivity reactions in mice. Acta Pharmacol Sin 2024; 45:2061-2076. [PMID: 38789495 PMCID: PMC11420356 DOI: 10.1038/s41401-024-01301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Paclitaxel (PTX) serves as a primary chemotherapy agent against diverse solid tumors including breast cancer, lung cancer, head and neck cancer and ovarian cancer, having severe adverse effects including PTX-induced peripheral neuropathy (PIPN) and hypersensitivity reactions (HSR). A recommended anti-allergic agent diphenhydramine (DIP) has been used to alleviate PTX-induced HSR. Desloratadine (DLT) is a third generation of histamine H1 receptor antagonist, but also acted as a selective antagonist of 5HTR2A. In this study we investigated whether DLT ameliorated PIPN-like symptoms in mice and the underlying mechanisms. PIPN was induced in male mice by injection of PTX (4 mg/kg, i.p.) every other day for 4 times. The mice exhibited 50% reduction in mechanical threshold, paw thermal response latency and paw cold response latency compared with control mice. PIPN mice were treated with DLT (10, 20 mg/kg, i.p.) 30 min before each PTX administration in the phase of establishing PIPN mice model and then administered daily for 4 weeks after the model was established. We showed that DLT administration dose-dependently elevated the mechanical, thermal and cold pain thresholds in PIPN mice, whereas administration of DIP (10 mg/kg, i.p.) had no ameliorative effects on PIPN-like symptoms. We found that the expression of 5HTR2A was selectively elevated in the activated spinal astrocytes of PIPN mice. Spinal cord-specific 5HTR2A knockdown by intrathecal injection of AAV9-5Htr2a-shRNA significantly alleviated the mechanical hyperalgesia, thermal and cold hypersensitivity in PIPN mice, while administration of DLT (20 mg/kg) did not further ameliorate PIPN-like symptoms. We demonstrated that DLT administration alleviated dorsal root ganglion neuronal damage and suppressed sciatic nerve destruction, spinal neuron apoptosis and neuroinflammation in the spinal cord of PIPN mice. Furthermore, we revealed that DLT administration suppressed astrocytic neuroinflammation via the 5HTR2A/c-Fos/NLRP3 pathway and blocked astrocyte-neuron crosstalk by targeting 5HTR2A. We conclude that spinal 5HTR2A inhibition holds promise as a therapeutic approach for PIPN and we emphasize the potential of DLT as a dual-functional agent in ameliorating PTX-induced both PIPN and HSR in chemotherapy. In summary, we determined that spinal 5HTR2A was selectively activated in PIPN mice and DLT could ameliorate the PTX-induced both PIPN- and HSR-like pathologies in mice. DLT alleviated the damages of DRG neurons and sciatic nerves, while restrained spinal neuronal apoptosis and CGRP release in PIPN mice. The underlying mechanisms were intensively investigated by assay against the PIPN mice with 5HTR2A-specific knockdown in the spinal cord by injection of adeno-associated virus 9 (AAV9)-5Htr2a-shRNA. DLT inhibited astrocytic NLRP3 inflammasome activation-mediated spinal neuronal damage through 5HTR2A/c-FOS pathway. Our findings have supported that spinal 5HTR2A inhibition shows promise as a therapeutic strategy for PIPN and highlighted the potential advantage of DLT as a dual-functional agent in preventing against PTX-induced both PIPN and HSR effects in anticancer chemotherapy.
Collapse
Affiliation(s)
- Jian Lu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xue-Jian Zhao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Ruan
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Jing Liu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Di
- School of Pharmacy, Experiment Center for Science and Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rui Xu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Ying Wang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min-Yi Qian
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hong-Ming Jin
- School of Pharmacy, Experiment Center for Science and Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Jun Li
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xu Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Bravo L, Llorca-Torralba M, Berrocoso E, Micó JA. Monoamines as Drug Targets in Chronic Pain: Focusing on Neuropathic Pain. Front Neurosci 2019; 13:1268. [PMID: 31942167 PMCID: PMC6951279 DOI: 10.3389/fnins.2019.01268] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Monoamines are involved in regulating the endogenous pain system and indeed, peripheral and central monoaminergic dysfunction has been demonstrated in certain types of pain, particularly in neuropathic pain. Accordingly, drugs that modulate the monaminergic system and that were originally designed to treat depression are now considered to be first line treatments for certain types of neuropathic pain (e.g., serotonin and noradrenaline (and also dopamine) reuptake inhibitors). The analgesia induced by these drugs seems to be mediated by inhibiting the reuptake of these monoamines, thereby reinforcing the descending inhibitory pain pathways. Hence, it is of particular interest to study the monoaminergic mechanisms involved in the development and maintenance of chronic pain. Other analgesic drugs may also be used in combination with monoamines to facilitate descending pain inhibition (e.g., gabapentinoids and opioids) and such combinations are often also used to alleviate certain types of chronic pain. By contrast, while NSAIDs are thought to influence the monoaminergic system, they just produce consistent analgesia in inflammatory pain. Thus, in this review we will provide preclinical and clinical evidence of the role of monoamines in the modulation of chronic pain, reviewing how this system is implicated in the analgesic mechanism of action of antidepressants, gabapentinoids, atypical opioids, NSAIDs and histaminergic drugs.
Collapse
Affiliation(s)
- Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain
| | - Juan Antonio Micó
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Juan Antonio Micó,
| |
Collapse
|
3
|
Lynch JJ, Van Vleet TR, Mittelstadt SW, Blomme EAG. Potential functional and pathological side effects related to off-target pharmacological activity. J Pharmacol Toxicol Methods 2017; 87:108-126. [PMID: 28216264 DOI: 10.1016/j.vascn.2017.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 12/22/2022]
Abstract
Most pharmaceutical companies test their discovery-stage proprietary molecules in a battery of in vitro pharmacology assays to try to determine off-target interactions. During all phases of drug discovery and development, various questions arise regarding potential side effects associated with such off-target pharmacological activity. Here we present a scientific literature curation effort undertaken to determine and summarize the most likely functional and pathological outcomes associated with interactions at 70 receptors, enzymes, ion channels and transporters with established links to adverse effects. To that end, the scientific literature was reviewed using an on-line database, and the most commonly reported effects were summarized in tabular format. The resultant table should serve as a practical guide for research scientists and clinical investigators for the prediction and interpretation of adverse side effects associated with molecules interacting with components of this screening battery.
Collapse
Affiliation(s)
- James J Lynch
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA.
| | | | | | - Eric A G Blomme
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
4
|
Mogilski S, Kubacka M, Redzicka A, Kazek G, Dudek M, Malinka W, Filipek B. Antinociceptive, anti-inflammatory and smooth muscle relaxant activities of the pyrrolo[3,4-d]pyridazinone derivatives: Possible mechanisms of action. Pharmacol Biochem Behav 2015; 133:99-110. [PMID: 25847619 DOI: 10.1016/j.pbb.2015.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/21/2015] [Accepted: 03/31/2015] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the analgesic as well as anti-inflammatory activities of the new pyrrolo[3,4-d]pyridazinone derivatives. Moreover, the present study attempted to assess some of the mechanisms involved in the pharmacological activity of these compounds. In the previous studies it was shown that these compounds were highly active in the phenylbenzoquinone-induced 'writhing syndrome' test and had much lower activity in the hot plate, which indicates that mainly peripheral mechanisms of analgesia are involved in their effects. In these extended studies the analgesic activity of two tested compounds (4c, 4f) was confirmed in some animal models of pain. The studied compounds showed a significant and dose-related antinociceptive effect in the models of pain induced by formalin, capsaicin and glutamic acid. Both compounds decreased the edema formation and one of them (4c) attenuated mechanical hyperalgesia in carrageenan-induced paw inflammation in rats. Furthermore, both compounds inhibited cell migration, plasma exudation and nociceptive reaction in zymosan A-induced mouse peritonitis. In the subsequent studies, including experiments on isolated organs (ileum, trachea, aorta), radioligand assays and biochemical tests, it was demonstrated that analgesic and anti-inflammatory effects of the investigated structures are largely due to their competitive antagonism for histamine H1 receptor. The influence on the level of cAMP in inflammatory cells (shown in RAW 264.7 macrophages) and subsequent inhibition of cytokine (TNFα, IL-1β) release can also be one of the important mechanisms of their action. Moreover some additional mechanisms may also be involved in the eventual analgesic effect of tested pyrrolo[3,4-d]pyridazinone derivatives.
Collapse
Affiliation(s)
- Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland.
| | - Monika Kubacka
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Aleksandra Redzicka
- Department of Chemistry of Drugs, Wrocław Medical University, 211 Borowska Str., 50-556 Wrocław, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Magdalena Dudek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Wiesław Malinka
- Department of Chemistry of Drugs, Wrocław Medical University, 211 Borowska Str., 50-556 Wrocław, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
5
|
Yu J, Fang Q, Lou GD, Shou WT, Yue JX, Tang YY, Hou WW, Xu TL, Ohtsu H, Zhang SH, Chen Z. Histamine modulation of acute nociception involves regulation of Nav 1.8 in primary afferent neurons in mice. CNS Neurosci Ther 2013; 19:649-58. [PMID: 23773488 DOI: 10.1111/cns.12134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 11/27/2022] Open
Abstract
AIMS To explore the role of histamine in acute pain perception and its possible mechanisms. METHODS Pain-like behaviors induced by four types of noxious stimuli (hot-plate, tail-pressure, acetic acid, and formalin) were accessed in mice. Nav 1.8 expression and functions in primary afferent neurons were compared between histidine decarboxylase knockout (HDC(-/-) ) mice and their wild-types. RESULTS HDC(-/-) mice, lacking in endogenous histamine, showed elevated sensitivity to all these noxious stimuli, as compared with the wild-types. In addition, a depletion of endogenous histamine with α-fluoromethylhistidine (α-FMH), a specific HDC inhibitor, or feeding mice a low-histamine diet also enhanced nociception in the wild-types. Nav 1.8 expression in primary afferent neurons was increased both in HDC(-/-) and in α-FMH-treated wild-type mice. A higher Nav 1.8 current density, a lower action potential (AP) threshold, and a higher firing rate in response to suprathreshold stimulation were observed in nociception-related small DRG neurons of HDC(-/-) mice. Nav 1.8 inhibitor A-803467, but not TTX, diminished the hyperexcitability and blocked repetitive AP firing of these neurons. CONCLUSION Our results indicate that histamine participates in acute pain modulation in a dose-related manner. The regulation of Nav 1.8 expression and the excitability of nociceptive primary afferent neurons may be involved in the underlying mechanisms.
Collapse
Affiliation(s)
- Jie Yu
- Department of Pharmacology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chatterjea D, Wetzel A, Mack M, Engblom C, Allen J, Mora-Solano C, Paredes L, Balsells E, Martinov T. Mast cell degranulation mediates compound 48/80-induced hyperalgesia in mice. Biochem Biophys Res Commun 2012; 425:237-43. [PMID: 22828511 DOI: 10.1016/j.bbrc.2012.07.074] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 02/08/2023]
Abstract
Mast cells mediate allergies, hypersensitivities, host defense, and venom neutralization. An area of recent interest is the contribution of mast cells to inflammatory pain. Here we found that specific, local activation of mast cells produced plantar hyperalgesia in mice. Basic secretagogue compound 48/80 induced plantar mast cell degranulation accompanied by thermal hyperalgesia, tissue edema, and neutrophil influx in the hindpaws of ND4 Swiss mice. Blocking mast cell degranulation, neutrophil extravasation, and histamine signaling abrogated these responses. Compound 48/80 also produced edema, pain, and neutrophil influx in WT C57BL/6 but not in genetically mast cell-deficient C57BL/6-Kit(W-sh)(/)(W-sh) mice. These responses were restored following plantar reconstitution with bone marrow-derived cultured mast cells.
Collapse
|
7
|
Cowart M, Hsieh G, Black LA, Zhan C, Gomez EJ, Pai M, Strakhova M, Manelli A, Carr T, Wetter J, Lee A, Diaz G, Garrison T, Brioni JD. Pharmacological characterization of A-960656, a histamine H₃ receptor antagonist with efficacy in animal models of osteoarthritis and neuropathic pain. Eur J Pharmacol 2012; 684:87-94. [PMID: 22504024 DOI: 10.1016/j.ejphar.2012.03.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/19/2022]
Abstract
Histamine H(3) receptor antagonists have been widely reported to improve performance in preclinical models of cognition, but more recently efficacy in pain models has also been described. Here, A-960656 ((R)-2-(2-(3-(piperidin-1-yl)pyrrolidin-1-yl)benzo[d]thiazol-6-yl)pyridazin-3(2H)-one) was profiled as a new structural chemotype. A-960656 was potent in vitro in histamine H(3) receptor binding assays (rat K(i)=76 nM, human K(i)=21 nM), and exhibited functional antagonism in blocking agonist-induced [(35)S]GTPγS binding (rat H(3) K(b)=107 nM, human H(3) K(b)=22 nM), and was highly specific for H(3) receptors in broad screens for non-H(3) sites. In a spinal nerve ligation model of neuropathic pain in rat, oral doses of 1 and 3mg/kg were effective 60 min post dosing with an ED(50) of 2.17 mg/kg and a blood EC(50) of 639 ng/ml. In a model of osteoarthritis pain, oral doses of 0.1, 0.3, and 1mg/kg were effective 1h post dosing with an ED(50) of 0.52 mg/kg and a blood EC(50) of 233 ng/ml. The antinociceptive effect of A-960656 in both pain models was maintained after sub-chronic dosing up to 12 days. A-960656 had excellent rat pharmacokinetics (t(1/2)=1.9h, 84% oral bioavailability) with rapid and efficient brain penetration, and was well tolerated in CNS behavioral safety screens. In summary, A-960656 has properties well suited to probe the pharmacology of histamine H(3) receptors in pain. Its potency and efficacy in animal pain models provide support to the notion that histamine H(3) receptor antagonists are effective in attenuating nociceptive processes.
Collapse
Affiliation(s)
- Marlon Cowart
- Department of Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hsieh GC, Honore P, Pai M, Wensink EJ, Chandran P, Salyers AK, Wetter JM, Zhao C, Liu H, Decker MW, Esbenshade TA, Cowart MD, Brioni JD. Antinociceptive effects of histamine H3 receptor antagonist in the preclinical models of pain in rats and the involvement of central noradrenergic systems. Brain Res 2010; 1354:74-84. [DOI: 10.1016/j.brainres.2010.07.083] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 07/21/2010] [Accepted: 07/23/2010] [Indexed: 01/07/2023]
|
9
|
Hough LB, Rice FL. H3 receptors and pain modulation: peripheral, spinal, and brain interactions. J Pharmacol Exp Ther 2010; 336:30-7. [PMID: 20864501 DOI: 10.1124/jpet.110.171264] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histamine H(3) receptors (H(3)Rs), distributed within the brain, the spinal cord, and on specific types of primary sensory neurons, can modulate pain transmission by several mechanisms. In the skin, H(3)Rs are found on certain Aβ fibers, and on keratinocytes and Merkel cells, as well as on deep dermal, peptidergic Aδ fibers terminating on deep dermal blood vessels. Activation of H(3)Rs on the latter in the skin, heart, lung, and dura mater reduces calcitonin gene-related peptide and substance P release, leading to anti-inflammatory (but not antinociceptive) actions. However, activation of H(3)Rs on the spinal terminals of these sensory fibers reduces nociceptive responding to low-intensity mechanical stimuli and inflammatory stimuli such as formalin. These findings suggest that H(3)R agonists might be useful analgesics, but these drugs have not been tested in clinically relevant pain models. Paradoxically, H(3) antagonists/inverse agonists have also been reported to attenuate several types of pain responses, including phase II responses to formalin. In the periaqueductal gray (an important pain regulatory center), the H(3) inverse agonist thioperamide releases neuronal histamine and mimics histamine's biphasic modulatory effects in thermal nociceptive tests. Newer H(3) inverse agonists with potent, selective, and brain-penetrating properties show efficacy in several neuropathic and arthritis pain models, but the sites and mechanisms for these actions remain poorly understood.
Collapse
Affiliation(s)
- Lindsay B Hough
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA.
| | | |
Collapse
|
10
|
Jesse CR, Savegnago L, Nogueira CW. Mechanisms involved in the antinociceptive and anti-inflammatory effects of bis selenide in mice. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.05.0011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The present study examined the mechanisms involved in the antinociceptive effects of bis selenide [(Z)-2,3-bis(4-chlorophenylselanyl)prop-2-en-1-ol].
Methods
The effects of oral bis selenide were tested against licking behaviour and oedema in mice induced by formalin, serotonin, histamine, glutamate, phorbol 12-myristate 13-acetate (PMA), 8-bromoadenosine 3′,5′-cyclic monophosphate (8-BrcAMP) and pros-taglandin E2. The effects of a variety of receptor antagonists on the antinociceptive activity were tested to determine the likely mechanism of action of bis selenide.
Key findings
Bis selenide caused antinociception on the first and second phases of the formalin test, with mean ID50 values of 34.21 (29.66–39.45) and 15.86 (12.17–20.67) mg/kg and maximal inhibition of 65 ± 3% and 90 ± 1%, respectively. At 50 mg/kg bis selenide significantly inhibited (31 ± 2%) paw oedema induced by intraplantar injection of formalin. At 25 mg/kg given 5 min after the formalin injection, bis selenide caused a significant inhibition (42 ± 5%) in the second phase of the formalin test, whereas the prophylactic treatment caused more intense inhibition (64 ± 3%). Oral administration of bis selenide reduced licking and paw oedema induced by serotonin, histamine, glutamate, PGE2, PMA and 8-BrcAMP. The antinociceptive effect of bis selenide (25 mg/kg, p.o.) on the formalin test was reversed by i.p. administration of p-chlorophenylalanine methyl ester (an inhibitor of serotonin synthesis), ketanserin (a selective 5-HT2a receptor antagonist), ondansetron (a 5-HT3 receptor antagonist) and ranitidine (a histamine H2-receptor antagonist).
Conclusions
Glutamatergic, prostaglandin E2, serotonergic (5-HT2a and 5-HT3) and histamine H2 receptors are involved in the antinociceptive effects of bis selenide in mice. The interaction of bis selenide with protein kinase C and A signalling pathways was also demonstrated.
Collapse
Affiliation(s)
- Cristiano R Jesse
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Lucielli Savegnago
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
11
|
Possible involvement of histamine, dopamine, and noradrenalin in the periaqueductal gray in electroacupuncture pain relief. Brain Res 2009; 1306:62-8. [PMID: 19819232 DOI: 10.1016/j.brainres.2009.09.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2009] [Revised: 09/14/2009] [Accepted: 09/30/2009] [Indexed: 11/21/2022]
Abstract
Acupuncture and electroacupuncture are used in pain relief; however, the mechanism underlying the analgesic effect of acupuncture is unclear. Several lines of evidence propose that the periaqueductal gray (PAG), which is one of the regions that contributes to the endogenous pain inhibitory system, is involved in the analgesic effect of acupuncture, and the region receives several neural projections such as histamine and noradrenalin and contains the dopamine cell bodies. The current study examined the effects of electroacupuncture at Zusanli (ST36) and Shangjuxu (ST37) acupoints, which are used for clinical pain control, on the release of neurotransmitters in the PAG in rats. Histamine and dopamine release was increased after pain stimulus, while the changes were completely abolished by electroacupuncture. Pain stimulus had no effect on noradrenalin release, but electroacupuncture increased its release. These findings indicate that acupuncture at Zusanli and Shangjuxu exerts an antinociceptive effect via the activation of neurons in the PAG and that the histaminergic, dopaminergic, and noradrenalinergic systems in the PAG are related to electroacupuncture-induced pain relief.
Collapse
|
12
|
Gemkow MJ, Davenport AJ, Harich S, Ellenbroek BA, Cesura A, Hallett D. The histamine H3 receptor as a therapeutic drug target for CNS disorders. Drug Discov Today 2009; 14:509-15. [PMID: 19429511 DOI: 10.1016/j.drudis.2009.02.011] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/26/2022]
|
13
|
Kiss R, Keseru˝ GM. Histamine H4 receptor ligands and their potential therapeutic applications. Expert Opin Ther Pat 2009; 19:119-35. [DOI: 10.1517/13543770802691085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
15
|
Mojtahedin A, Tamaddonfard E, Zanbouri A. Effects of mepyramine and famotidine on the physostigmine-induced antinociception in the formalin test in rats. Pak J Biol Sci 2008; 11:2573-8. [PMID: 19260335 DOI: 10.3923/pjbs.2008.2573.2578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, the effects of mepyramine (H1-receptor antagonist), famotidine (H2-receptor antagonist), physostigmine (a cholinesterase inhibitor) and atropine (muscarinic-receptor antagonist) have investigated on the formalin-induced nociception in rats. The effects of mepyramine and famotidine have also examined on nociceptive changes induced by physostigmine and atropine. Nociception was induced by intraplantar injection of formalin (50 microL, 1%) into the right hind paw and the time spent licking and biting of the injected paw, was taken as a measure of pain. Formalin induced a marked biphasic (first phase: 0-5 min and second phase: 15-45 min) pain response. The used drugs did not change the first phase of formalin-induced pain. Subcutaneous injection of physostigmine significantly (p<0.05) suppressed pain. Subcutaneous injection of atropine alone did not change the intensity of pain, but pretreatment with atropine significantly (p<0.05) prevented physostigmine-induced antinociception. Intraperitoneal injections of mepyramine and famotidine significantly (p<0.05) decreased pain response. Mepyramine did not significantly change, but famotidine significantly (p<0.05) prevented analgesic effect of physostigmine on pain. Atropine did not inhibit the antinociceptive effects of both mepyramine and famotidine on formalin-induced nociception. These results indicate that physostigmine through muscarinic cholinergic receptors suppresses the pain induced by formalin. Both H1 and H2 receptor antagonists produce antinociception. Histamine H2, but no H1 antagonists may be involved in physostigmine-induced antinociception.
Collapse
Affiliation(s)
- A Mojtahedin
- Physiology Division, Department of Basic Sciences, Faculty of Veterinary Medicine, P.O. Box 1177, Urmia University, Urmia 57135, Urmia, Iran
| | | | | |
Collapse
|
16
|
Wijtmans M, Leurs R, de Esch I. Histamine H3 receptor ligands break ground in a remarkable plethora of therapeutic areas. Expert Opin Investig Drugs 2007; 16:967-85. [PMID: 17594183 DOI: 10.1517/13543784.16.7.967] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The neurotransmitter histamine exerts its action through four distinct histamine receptors. The histamine H(1) and H(2) receptor are well established drug targets, whereas the histamine H(4) receptor is undergoing rigorous characterisation at present. The histamine H(3) receptor (H(3)R) is a G(i/o)-protein coupled receptor and is mostly expressed in the CNS. A remarkably large and different array of therapeutic areas, in which ligands for the H(3)R may prove useful, has been identified and a massive research undertaking is underway to substantiate the high expectations for H(3)R ligands. At present, several ligands for the H(3)R are being evaluated in clinical studies. In this review, the many potential therapeutic areas for H(3)R antagonists, inverse agonists and agonists is discussed. Promising medicinal chemistry and toxicological developments, as well as the advancement of several H(3)R ligands into the clinic, will be highlighted. This review also describes the problems that have been overcome and the questions that remain in developing H(3)R-related drugs. Considering the tremendous efforts by industry, it can be expected that the first H(3)R drugs will reach the market soon.
Collapse
Affiliation(s)
- Maikel Wijtmans
- Vrije Universiteit Amsterdam, Leiden/Amsterdam Center of Drug Research, Division of Medicinal Chemistry, Faculty of Sciences, De Boelelaan 1083, Amsterdam, The Netherlands
| | | | | |
Collapse
|
17
|
Coruzzi G, Adami M, Guaita E, de Esch IJP, Leurs R. Antiinflammatory and antinociceptive effects of the selective histamine H4-receptor antagonists JNJ7777120 and VUF6002 in a rat model of carrageenan-induced acute inflammation. Eur J Pharmacol 2007; 563:240-4. [PMID: 17382315 DOI: 10.1016/j.ejphar.2007.02.026] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 02/09/2007] [Accepted: 02/13/2007] [Indexed: 11/16/2022]
Abstract
The effects of the highly selective histamine H4 receptor antagonists JNJ7777120 and VUF6002 were investigated on the carrageenan-induced inflammation and thermal hyperalgesia in rats. JNJ7777120 (10 and 30 mg/kg, s.c.) and VUF6002 (10 mg/kg, s.c.) significantly reduced paw edema and hyperalgesia provoked by subplantar injection of carrageenan; the effect was evident against the early (2 h) phase of inflammation. An inactive analog of VUF6002, VUF6007 (10 mg/kg, s.c.) slightly aggravated paw edema, while leaving unaltered carrageenan-induced nociception. These findings indicate that histamine H4 receptors participate in the early phase of acute inflammation induced by carrageenan in rats, influencing both edema and thermal hyperalgesia.
Collapse
Affiliation(s)
- Gabriella Coruzzi
- Department of Human Anatomy, Pharmacology and Forensic Medicine, Section of Pharmacology, University of Parma, via Volturno 39, 43100 Parma, Italy.
| | | | | | | | | |
Collapse
|