1
|
Derin S, Tetik M, Bora E. Autistic traits in obsessive compulsive disorder: A systematic review and meta-analysis. J Psychiatr Res 2025; 187:181-191. [PMID: 40378691 DOI: 10.1016/j.jpsychires.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 03/11/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Several lines of evidence point to a strong association between OCD and autism-spectrum disorder and broader autism phenotype. However, the extent and nature of overlapping autistic traits has not been completely understood. METHOD A systematic review in Pubmed and Scopus databases was performed to compare autistic traits between OCD patients and healthy controls (December 1990 to March 2025). A random-effects meta-analyses were conducted. RESULTS Current meta-analysis included 27 studies consisting of 1677 patients with OCD and 1239 healthy controls. Compared to healthy controls, total autistic traits (g = 1.27, CI = 1.02, 1.53), also ratings in social-communication domain (g = 0.98, CI = 0.66, 1.31), and restricted/repetitive behaviors (RRBs) domain (g = 1.65, CI = 1.27, 2.04) were increased in OCD patients. OCD symptoms were more strongly related to RRBs domain scores (r = 0.34, CI = 0.19, 0.48) than social-communication domain scores (r = 0.18, CI = 0.09, 0.27). CONCLUSIONS OCD is associated with significant increases in both RRBs and social-communication domains. A substantial subset of OCD emerges in youth who have autistic traits, particularly RRBs. In adults, elevated social-communication scores might, at least partly, reflect the effect of chronic OCD symptoms on social functioning rather than true increase in this domain.
Collapse
Affiliation(s)
- Sıla Derin
- Department of Psychiatry, Faculty of Medicine, Izmir, Turkey
| | - Melike Tetik
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Emre Bora
- Department of Psychiatry, Faculty of Medicine, Izmir, Turkey; Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey; Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Carlton South, Victoria, 3053, Australia.
| |
Collapse
|
2
|
Ozler E, Sanlier N. Nutritional Approaches in Autism Spectrum Disorder: A Scoping Review. Curr Nutr Rep 2025; 14:61. [PMID: 40259156 PMCID: PMC12011661 DOI: 10.1007/s13668-025-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2025] [Indexed: 04/23/2025]
Abstract
PURPOSE OF REVIEW This review was conducted to discuss the etiology of autism in the light of current information, to draw attention to the fact that defects in different biological mechanisms cause autism, and to examine the effectiveness of dietary interventions and supplements in relieving ASD symptoms. RECENT FINDINGS Autism spectrum disorder (ASD) is an extremely heterogeneous condition characterized by delays in reciprocal social interaction and communication skills, stereotyped behaviors, and a narrowed range of interests and limited activities. Comorbid conditions such as cognitive impairment, epilepsy, psychiatric diseases, and behavioral symptoms such as impaired social communication, repetitive behaviors, lack of interest in the environment, nutritional disorders, gastrointestinal diseases and abnormal (dysbiotic) states, sleep disorders, and dysmorphism are frequently encountered in individuals with ASD. Although nutrition is one of the environmental factors affecting ASD, it can also be effective in alleviating the behavioral and gastrointestinal symptoms of ASD. Various dietary models (GFCF diet, low glycemic index diet, ketogenic diet, specific carbohydrate diet, Mediterranean diet, GAPS, Feingold, Candida body ecology, allergy elimination diets, etc.) and supplements (vitamin D, polyunsaturated fatty acids, probiotics and prebiotics, phytochemicals) can be used to alleviate symptoms in individuals with ASD. The effectiveness and reliability of dietary interventions in individuals with ASD are a matter of significant debate, and the evidence for these practices is limited. Furthermore, there is no consensus on establishing an ideal nutritional model for individuals with ASD.
Collapse
Affiliation(s)
- Ebru Ozler
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, 06050, Altındağ, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics, School of Health Sciences, Ankara Medipol University, 06050, Altındağ, Ankara, Turkey.
| |
Collapse
|
3
|
Halliday AR, Vucic SN, Georges B, LaRoche M, Mendoza Pardo MA, Swiggard LO, McDonald K, Olofsson M, Menon SN, Francis SM, Oberman LM, White T, van der Velpen IF. Heterogeneity and convergence across seven neuroimaging modalities: a review of the autism spectrum disorder literature. Front Psychiatry 2024; 15:1474003. [PMID: 39479591 PMCID: PMC11521827 DOI: 10.3389/fpsyt.2024.1474003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background A growing body of literature classifies autism spectrum disorder (ASD) as a heterogeneous, complex neurodevelopmental disorder that often is identified prior to three years of age. We aim to provide a narrative review of key structural and functional properties that differentiate the neuroimaging profile of autistic youth from their typically developing (TD) peers across different neuroimaging modalities. Methods Relevant studies were identified by searching for key terms in PubMed, with the most recent search conducted on September 1, 2023. Original research papers were included if they applied at least one of seven neuroimaging modalities (structural MRI, functional MRI, DTI, MRS, fNIRS, MEG, EEG) to compare autistic children or those with a family history of ASD to TD youth or those without ASD family history; included only participants <18 years; and were published from 2013 to 2023. Results In total, 172 papers were considered for qualitative synthesis. When comparing ASD to TD groups, structural MRI-based papers (n = 26) indicated larger subcortical gray matter volume in ASD groups. DTI-based papers (n = 14) reported higher mean and radial diffusivity in ASD participants. Functional MRI-based papers (n = 41) reported a substantial number of between-network functional connectivity findings in both directions. MRS-based papers (n = 19) demonstrated higher metabolite markers of excitatory neurotransmission and lower inhibitory markers in ASD groups. fNIRS-based papers (n = 20) reported lower oxygenated hemoglobin signals in ASD. Converging findings in MEG- (n = 20) and EEG-based (n = 32) papers indicated lower event-related potential and field amplitudes in ASD groups. Findings in the anterior cingulate cortex, insula, prefrontal cortex, amygdala, thalamus, cerebellum, corpus callosum, and default mode network appeared numerous times across modalities and provided opportunities for multimodal qualitative analysis. Conclusions Comparing across neuroimaging modalities, we found significant differences between the ASD and TD neuroimaging profile in addition to substantial heterogeneity. Inconsistent results are frequently seen within imaging modalities, comparable study populations and research designs. Still, converging patterns across imaging modalities support various existing theories on ASD.
Collapse
Affiliation(s)
- Amanda R. Halliday
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Samuel N. Vucic
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Brianna Georges
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Madison LaRoche
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - María Alejandra Mendoza Pardo
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Liam O. Swiggard
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Kaylee McDonald
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michelle Olofsson
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sahit N. Menon
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Sunday M. Francis
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lindsay M. Oberman
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Isabelle F. van der Velpen
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
de Medeiros Marcos GVT, Feitosa DDM, Paiva KM, Oliveira RF, da Rocha GS, de Medeiros Guerra LM, de Araújo DP, Goes HM, Costa S, de Oliveira LC, Guzen FP, de Souza Júnior JE, de Moura Freire MA, de Aquino ACQ, de Gois Morais PLA, de Paiva Cavalcanti JRL. Volumetric alterations in the basal ganglia in autism Spectrum disorder: A systematic review. Int J Dev Neurosci 2024; 84:163-176. [PMID: 38488315 DOI: 10.1002/jdn.10322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 05/04/2024] Open
Abstract
INTRODUCTION Recent research indicates that some brain structures show alterations in conditions such as Autism Spectrum Disorder (ASD). Among them, are the basal ganglia that are involved in motor, cognitive and behavioral neural circuits. OBJECTIVE Review the literature that describes possible volumetric alterations in the basal ganglia of individuals with ASD and the impacts that these changes have on the severity of the condition. METHODOLOGY This systematic review was registered in the design and reported according to the PRISMA Items and registered in PROSPERO (CRD42023394787). The study analyzed data from published clinical, case-contemplate, and cohort trials. The following databases were consulted: PubMed, Embase, Scopus, and Cochrane Central Register of Controlled Trials, using the Medical Subject Titles (MeSH) "Autism Spectrum Disorder" and "Basal Ganglia". The last search was carried out on February 28, 2023. RESULTS Thirty-five eligible articles were collected, analyzed, and grouped according to the levels of alterations. CONCLUSION The present study showed important volumetric alterations in the basal ganglia in ASD. However, the examined studies have methodological weaknesses that do not allow generalization and correlation with ASD manifestations.
Collapse
Affiliation(s)
| | | | - Karina Maia Paiva
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Rodrigo Freire Oliveira
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Gabriel Sousa da Rocha
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Luís Marcos de Medeiros Guerra
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Dayane Pessoa de Araújo
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | | | - Silva Costa
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Lucidio Clebeson de Oliveira
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Fausto Pierdoná Guzen
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - José Edvan de Souza Júnior
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Marco Aurélio de Moura Freire
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Antonio Carlos Queiroz de Aquino
- Laboratory of Experimental Neurology, Department of Health Sciences, State University of Rio Grande do Norte, Mossoró, RN, Brazil
| | | | | |
Collapse
|
5
|
Oblong LM, Llera A, Mei T, Haak K, Isakoglou C, Floris DL, Durston S, Moessnang C, Banaschewski T, Baron-Cohen S, Loth E, Dell'Acqua F, Charman T, Murphy DGM, Ecker C, Buitelaar JK, Beckmann CF, Forde NJ. Linking functional and structural brain organisation with behaviour in autism: a multimodal EU-AIMS Longitudinal European Autism Project (LEAP) study. Mol Autism 2023; 14:32. [PMID: 37653516 PMCID: PMC10472578 DOI: 10.1186/s13229-023-00564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023] Open
Abstract
Neuroimaging analyses of brain structure and function in autism have typically been conducted in isolation, missing the sensitivity gains of linking data across modalities. Here we focus on the integration of structural and functional organisational properties of brain regions. We aim to identify novel brain-organisation phenotypes of autism. We utilised multimodal MRI (T1-, diffusion-weighted and resting state functional), behavioural and clinical data from the EU AIMS Longitudinal European Autism Project (LEAP) from autistic (n = 206) and non-autistic (n = 196) participants. Of these, 97 had data from 2 timepoints resulting in a total scan number of 466. Grey matter density maps, probabilistic tractography connectivity matrices and connectopic maps were extracted from respective MRI modalities and were then integrated with Linked Independent Component Analysis. Linear mixed-effects models were used to evaluate the relationship between components and group while accounting for covariates and non-independence of participants with longitudinal data. Additional models were run to investigate associations with dimensional measures of behaviour. We identified one component that differed significantly between groups (coefficient = 0.33, padj = 0.02). This was driven (99%) by variance of the right fusiform gyrus connectopic map 2. While there were multiple nominal (uncorrected p < 0.05) associations with behavioural measures, none were significant following multiple comparison correction. Our analysis considered the relative contributions of both structural and functional brain phenotypes simultaneously, finding that functional phenotypes drive associations with autism. These findings expanded on previous unimodal studies by revealing the topographic organisation of functional connectivity patterns specific to autism and warrant further investigation.
Collapse
Affiliation(s)
- Lennart M Oblong
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands.
| | - Alberto Llera
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Ting Mei
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Koen Haak
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Christina Isakoglou
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
- Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Sarah Durston
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Eva Loth
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Flavio Dell'Acqua
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Tony Charman
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Declan G M Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
- Department of Child and Adolescent Psychiatry, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Christian F Beckmann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Kapittelweg 29, 6525 EN, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Galineau L, Arlicot N, Dupont AC, Briend F, Houy-Durand E, Tauber C, Gomot M, Gissot V, Barantin L, Lefevre A, Vercouillie J, Roussel C, Roux S, Nadal L, Mavel S, Laumonnier F, Belzung C, Chalon S, Emond P, Santiago-Ribeiro MJ, Bonnet-Brilhault F. Glutamatergic synapse in autism: a complex story for a complex disorder. Mol Psychiatry 2023; 28:801-809. [PMID: 36434055 DOI: 10.1038/s41380-022-01860-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD. Thus, our objective was to characterize glutamate dysfunctions in adult subjects with ASD by quantifying (1) glutamate levels in the cingulate cortex and periphery using proton magnetic resonance spectroscopy and metabolomics, and (2) mGluR5 brain density in this population and in a validated animal model of ASD (prenatal exposure to valproate) at developmental stages corresponding to childhood and adolescence in humans using positron emission tomography. No modifications in cingulate Glu levels were observed between individuals with ASD and controls further supporting the difficulty to evaluate modifications in excitatory transmission using spectroscopy in this population, and the complexity of its glutamate-related changes. Our imaging results showed an overall increased density in mGluR5 in adults with ASD, that was only observed mostly subcortically in adolescent male rats prenatally exposed to valproic acid, and not detected in the stage corresponding to childhood in the same animals. This suggest that clinical changes in mGluR5 density could reflect the adaptation of the glutamatergic dysfunctions occurring earlier rather than being key to the pathophysiology of ASD.
Collapse
Affiliation(s)
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France
| | - Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frederic Briend
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Emmanuelle Houy-Durand
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marie Gomot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | | | | | - Antoine Lefevre
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Roux
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Lydie Nadal
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvie Mavel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Maria-Joao Santiago-Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. .,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France.
| |
Collapse
|
7
|
Chen J, Tian C, Zhang Q, Xiang H, Wang R, Hu X, Zeng X. Changes in Volume of Subregions Within Basal Ganglia in Obsessive-Compulsive Disorder: A Study With Atlas-Based and VBM Methods. Front Neurosci 2022; 16:890616. [PMID: 35794954 PMCID: PMC9251343 DOI: 10.3389/fnins.2022.890616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The role of basal ganglia in the pathogenesis of obsessive-compulsive disorder (OCD) remains unclear. The studies on volume changes of basal ganglia in OCD commonly use the VBM method; however, the Atlas-based method used in such research has not been reported. Atlas-based method has a lower false positive rate compared with VBM method, thus having advantages partly. OBJECTIVES The current study aimed to detect the volume changes of subregions within basal ganglia in OCD using Atlas-based method to further delineate the precise neural circuitry of OCD. What is more, we explored the influence of software used in Atlas-based method on the volumetric analysis of basal ganglia and compared the results of Atlas-based method and regularly used VBM method. METHODS We analyzed the brain structure images of 37 patients with OCD and 41 healthy controls (HCs) using the VBM method, Atlas-based method based on SPM software, or Freesurfer software to find the areas with significant volumetric variation between the two groups, and calculated the effects size of these areas. RESULTS VBM analysis revealed a significantly increased volume of bilateral lenticular nucleus in patients compared to HCs. In contrast, Atlas-based method based on Freesurfer revealed significantly increased volume of left globus pallidus in patients, and the largest effect size of volumetric variation was revealed by Freesurfer analysis. CONCLUSIONS This study showed that the volume of bilateral lenticular nucleus significantly increased in patients compared to HCs, especially left globus pallidus, which was in accordance with the previous findings. In addition, Freesurfer is better than SPM and a good choice for Atlas-based volumetric analysis of basal ganglia.
Collapse
Affiliation(s)
- Jiaxiang Chen
- School of Medicine, Guizhou University, Guiyang, China
| | - Chong Tian
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qun Zhang
- Department of Psychology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hui Xiang
- Department of Psychology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rongpin Wang
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xianchun Zeng
- School of Medicine, Guizhou University, Guiyang, China
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
8
|
Wang Z, Fontaine M, Cyr M, Rynn MA, Simpson HB, Marsh R, Pagliaccio D. Subcortical shape in pediatric and adult obsessive-compulsive disorder. Depress Anxiety 2022; 39:504-514. [PMID: 35485920 PMCID: PMC9813975 DOI: 10.1002/da.23261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) implicates alterations in cortico-striato-thalamo-cortical and fronto-limbic circuits. Building on prior structural findings, this is the largest study to date examining subcortical surface morphometry in OCD. METHODS Structural magnetic resonance imaging data were collected from 200 participants across development (5-55 years): 28 youth and 75 adults with OCD and 27 psychiatrically healthy youth and 70 adults. General linear models were used to assess group differences and group-by-age interactions on subcortical shape (FSL FIRST). RESULTS Compared to healthy participants, those with OCD exhibited surface expansions on the right nucleus accumbens and inward left amygdala deformations, which were associated with greater OCD symptom severity ([Children's] Yale-Brown Obsessive-Compulsive Scale). Group-by-age interactions indicated that accumbens group differences were driven by younger participants and that right pallidum shape was associated inversely with age in healthy participants, but not in participants with OCD. No differences in the shape of other subcortical regions or in volumes (FreeSurfer) were detected in supplementary analyses. CONCLUSIONS This study is the largest to date examining subcortical shape in OCD and the first to do so across the developmental spectrum. NAcc and amygdala shape deformation builds on extant neuroimaging findings and suggests subtle, subregional alterations beyond volumetric findings. Results shed light on morphometric alterations in OCD, informing current pathophysiological models.
Collapse
Affiliation(s)
- Zhishun Wang
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Martine Fontaine
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Marilyn Cyr
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Moira A. Rynn
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helen Blair Simpson
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Rachel Marsh
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - David Pagliaccio
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
9
|
Wang J, Huang H, Liu C, Zhang Y, Wang W, Zou Z, Yang L, He X, Wu J, Ma J, Liu Y. Research Progress on the Role of Vitamin D in Autism Spectrum Disorder. Front Behav Neurosci 2022; 16:859151. [PMID: 35619598 PMCID: PMC9128593 DOI: 10.3389/fnbeh.2022.859151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that can lead to severe social behavioral difficulties, which mainly manifests as social communication and interaction disorders; narrow interests; and repetitive, stereotyped behaviors. In recent years, the prevalence of ASD has increased annually, and it has evolved from a rare disease to one with a high incidence among childhood developmental disorders. The pathogenesis of ASD is considered to be the interaction of genetic and environmental factors. There is increasing evidence that vitamin D deficiency in pregnancy and early childhood can lead to the occurrence of ASD. Studies have demonstrated that vitamin D intervention can significantly improve the symptoms of ASD, but the underlying mechanism is still unclear. Therefore, exploring the neuroprotective mechanism of vitamin D against ASD is a huge challenge currently being worked on by current basic and clinical researchers, a task which is of great significance for the clinical promotion and optimization of vitamin D in the treatment of ASD. To further clarify the relationship between vitamin D and ASD, this review summarizes the correlation between vitamin D level and ASD, the effects of vitamin D supplementation on ASD, the possible mechanism of vitamin D involved in ASD, and insights from ASD animal models.
Collapse
Affiliation(s)
- Jing Wang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Haoyu Huang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Chunming Liu
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Yangping Zhang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Wenjuan Wang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Zhuo Zou
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Lei Yang
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Xuemei He
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Jinting Wu
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
| | - Jing Ma
- Department of Otolaryngology, Head and Neck Surgery, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
- *Correspondence: Jing Ma,
| | - Yun Liu
- Department of Rehabilitation, Kunming Children’s Hospital, Kunming Medical University, Yunnan, China
- *Correspondence: Jing Ma,
| |
Collapse
|
10
|
Kang QQ, Li X, Tong GL, Fan YL, Shi L. Magnetic resonance spectroscopy features of the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder: a prospective study. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1250-1255. [PMID: 34911608 PMCID: PMC8690718 DOI: 10.7499/j.issn.1008-8830.2108137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES To study the changes in biochemical metabolites in the thalamus and the cerebellum and their association with clinical features in children with autism spectrum disorder (ASD). METHODS In this prospective study, magnetic resonance spectroscopy (MRS) with point-resolved spatial selection was used to analyze the thalamus and the cerebellum at both sides in 50 children with ASD aged 2-6 years. Creatine (Cr) was as the internal standard to measure the relative values of N-acetylaspartate (NAA)/Cr, choline (Cho)/Cr, myoinositol (MI)/Cr, and glutamine and glutamate complex (Glx)/Cr, and the differences in metabolites and their association with clinical symptoms were compared. RESULTS In the children with ASD, NAA/Cr in the left thalamus was positively correlated with the scores of hearing-language and hand-eye coordination in the Griffiths Development Scales-Chinese (P<0.05). Cho/Cr in the right cerebellum was positively correlated with the scores of personal-social competence, hearing-language, and hand-eye coordination (P<0.05). NAA/Cr and Glx/Cr in the left thalamus were positively correlated with those in the left cerebellum (P<0.05). There was no significant difference in metabolites between the left and right sides of the thalamus and the cerebellum in the children with ASD (P>0.05). CONCLUSIONS There are metabolic disorders in the cerebellum and the thalamus in children with ASD, and there is a correlation between the changes of metabolites in the left cerebellum and the left thalamus. Some metabolic indexes are related to the clinical symptoms of ASD. MRS may reveal the pathological basis of ASD and provide a basis for diagnosis and prognosis assessment of ASD as a noninvasive and quantitative detection method.
Collapse
Affiliation(s)
- Qian-Qian Kang
- Anhui Hospital Affiliated to Children's Hospital of Fudan University/Anhui Children's Hospital, Hefei 230022, China
| | - Xu Li
- Anhui Hospital Affiliated to Children's Hospital of Fudan University/Anhui Children's Hospital, Hefei 230022, China
| | - Guang-Lei Tong
- Anhui Hospital Affiliated to Children's Hospital of Fudan University/Anhui Children's Hospital, Hefei 230022, China
| | - Ya-Lan Fan
- Anhui Hospital Affiliated to Children's Hospital of Fudan University/Anhui Children's Hospital, Hefei 230022, China
| | - Lei Shi
- Anhui Hospital Affiliated to Children's Hospital of Fudan University/Anhui Children's Hospital, Hefei 230022, China
| |
Collapse
|
11
|
Lefebvre A, Cohen A, Maruani A, Amsellem F, Beggiato A, Amestoy A, Moal MLL, Umbricht D, Chatham C, Murtagh L, Bouvard M, Leboyer M, Bourgeron T, Delorme R. Discriminant value of repetitive behaviors in families with autism spectrum disorder and obsessional compulsive disorder probands. Autism Res 2021; 14:2373-2382. [PMID: 34278736 DOI: 10.1002/aur.2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
Repetitive behaviors (RB) represent a wide spectrum of symptoms ranging from sensory-motor stereotypies to complex cognitive rituals, frequently dichotomized as low- and high-order sub-groups of symptoms. Even though these subgroups are considered as phenomenologically distinct in autism spectrum disorder (ASD) and obsessive-compulsive disorder (OCD), brain imaging and genetic studies suggest that they have common mechanisms and pathways. This discrepancy may be explained by the frequent intellectual disability reported in ASD, which blurs the RB expressivity. Given the high heritability of RB, that is, the diversity of symptoms expressed in the relatives are dependent on those expressed in their probands, we hypothesize that if RB expressed in ASD or OCD are two distinct entities, then the RB expressed in relatives will also reflect these two dimensions. We thus conduct a linear discriminant analysis on RB in both the relatives of probands with ASD and OCD and subjects from the general population (n = 1023). The discriminant analysis results in a classification of 81.1% of the controls (p < 10-4 ), but poorly differentiated the ASD and OCD relatives (≈46%). The stepwise analysis reveals that five symptoms attributed to high-order RB and two related to low-order RB (including hypersensitivity) are the most discriminant. Our results support the idea that the difference of RB patterns in the relatives is mild compared with the distribution of symptoms in controls. Our findings reinforce the evidence of a common biological pattern of RB both in ASD and OCD but with minor differences, specific to each of these two neuro-developmental disorders. LAY SUMMARY: Repetitive behaviors (RB), a key symptom in the classification of both OCD and ASD, are phenomenologically considered as distinct in the two disorders, which is in contrast with brain imaging studies describing a common neural circuit. Intellectual disability, which is frequently associated with ASD, makes RB in ASD more difficult to understand as it affects the expression of the RB symptoms. To avoid this bias, we propose to consider the familial aggregation in ASD and OCD by exploring RB in the first-degree relatives of ASD and OCD. Our results highlight the existence of RB expressed in relatives compared to the general population, with a common pattern of symptoms in relatives of both ASD and OCD but also minor differences, specific to each of these two neuro-developmental disorders.
Collapse
Affiliation(s)
- Aline Lefebvre
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.,UMR3571 CNRS, Universite de Paris, Paris 7 Denis Diderot University, Paris, France
| | - Alicia Cohen
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Ecole Normale Supérieure, PSL Research University, Paris, France
| | - Anna Maruani
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Fréderique Amsellem
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Anita Beggiato
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Anouck Amestoy
- Autism Expert Centre, Charles Perrens Hospital, Bordeaux, France.,Medical Sciences Department, University of Bordeaux, Bordeaux, France
| | - Myriam Ly-Le Moal
- Institut Roche, Tour Horizons- Bureau 18M3, Boulogne-Billancourt, France
| | - Daniel Umbricht
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christopher Chatham
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Lorraine Murtagh
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Manuel Bouvard
- Autism Expert Centre, Charles Perrens Hospital, Bordeaux, France.,Medical Sciences Department, University of Bordeaux, Bordeaux, France
| | - Marion Leboyer
- Fondation FondaMental, French National Science Foundation, Creteil, France.,Université Paris Est Créteil, AP-HP, DMU IMPACT, Psychiatry and Addictology Department, Mondor University Hospital, Créteil, France.,INSERM, U955, IMRB, Laboratoire de NeuroPsychiatrie translationnelle, Créteil, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.,UMR3571 CNRS, Universite de Paris, Paris 7 Denis Diderot University, Paris, France
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.,UMR3571 CNRS, Universite de Paris, Paris 7 Denis Diderot University, Paris, France.,Fondation FondaMental, French National Science Foundation, Creteil, France
| |
Collapse
|
12
|
Pazuniak M, Pekrul SR. Obsessive-Compulsive Disorder in Autism Spectrum Disorder Across the Lifespan. Psychiatr Clin North Am 2020; 43:745-758. [PMID: 33127006 DOI: 10.1016/j.psc.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Obsessive-compulsive disorder is a relatively common disorder seen in autism spectrum disorder across the lifespan. Many obsessive-compulsive disorder symptoms can present similarly to the core features of autism spectrum disorder and it is often difficult to differentiate between obsessive-compulsive disorder and stereotypic behaviors or restricted interests in autism spectrum disorder. However, there are differences between the 2 disorders. This article is a review of the current literature with the goal of helping the clinician to diagnose and treat obsessive-compulsive disorder in a patient with autism spectrum disorder.
Collapse
Affiliation(s)
- Markian Pazuniak
- Department of Child and Adolescent Psychiatry, University of Maryland Medical Center, 701 West Pratt Street, 2nd Floor, Baltimore, MD 21201, USA
| | - Scott R Pekrul
- Sheppard Pratt Health System, 6501 North Charles Street, Baltimore, MD 21204, USA.
| |
Collapse
|
13
|
Hodge SM, Haselgrove C, Honor L, Kennedy DN, Frazier JA. An assessment of the autism neuroimaging literature for the prospects of re-executability. F1000Res 2020; 9:1031. [PMID: 33796274 PMCID: PMC7968525 DOI: 10.12688/f1000research.25306.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The degree of reproducibility of the neuroimaging literature in psychiatric application areas has been called into question and the issues that relate to this reproducibility are extremely complex. Some of these complexities have to do with the underlying biology of the disorders that we study and others arise due to the technology we apply to the analysis of the data we collect. Ultimately, the observations we make get communicated to the rest of the community through publications in the scientific literature. Methods: We sought to perform a 're-executability survey' to evaluate the recent neuroimaging literature with an eye toward seeing if the technical aspects of our publication practices are helping or hindering the overall quest for a more reproducible understanding of brain development and aging. The topic areas examined include availability of the data, the precision of the imaging method description and the reporting of the statistical analytic approach, and the availability of the complete results. We applied the survey to 50 publications in the autism neuroimaging literature that were published between September 16, 2017 to October 1, 2018. Results: The results of the survey indicate that for the literature examined, data that is not already part of a public repository is rarely available, software tools are usually named but versions and operating system are not, it is expected that reasonably skilled analysts could approximately perform the analyses described, and the complete results of the studies are rarely available. Conclusions: We have identified that there is ample room for improvement in research publication practices. We hope exposing these issues in the retrospective literature can provide guidance and motivation for improving this aspect of our reporting practices in the future.
Collapse
Affiliation(s)
- Steven M. Hodge
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Christian Haselgrove
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Leah Honor
- Lamar Soutter Library, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - David N. Kennedy
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
14
|
Hodge SM, Haselgrove C, Honor L, Kennedy DN, Frazier JA. An assessment of the autism neuroimaging literature for the prospects of re-executability. F1000Res 2020; 9:1031. [PMID: 33796274 PMCID: PMC7968525 DOI: 10.12688/f1000research.25306.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 05/04/2024] Open
Abstract
Background: The degree of reproducibility of the neuroimaging literature in psychiatric application areas has been called into question and the issues that relate to this reproducibility are extremely complex. Some of these complexities have to do with the underlying biology of the disorders that we study and others arise due to the technology we apply to the analysis of the data we collect. Ultimately, the observations we make get communicated to the rest of the community through publications in the scientific literature. Methods: We sought to perform a 're-executability survey' to evaluate the recent neuroimaging literature with an eye toward seeing if our publication practices are helping or hindering the overall quest for a more reproducible understanding of brain development and aging. The topic areas examined include availability of the data, the precision of the imaging method description and the reporting of the statistical analytic approach, and the availability of the complete results. We applied the survey to 50 publications in the autism neuroimaging literature that were published between September 16, 2017 to October 1, 2018. Results: The results of the survey indicate that for the literature examined, data that is not already part of a public repository is rarely available, software tools are usually named but versions and operating system are not, it is expected that reasonably skilled analysts could approximately perform the analyses described, and the complete results of the studies are rarely available. Conclusions: We have identified that there is ample room for improvement in research publication practices. We hope exposing these issues in the retrospective literature can provide guidance and motivation for improving this aspect of our reporting practices in the future.
Collapse
Affiliation(s)
- Steven M. Hodge
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Christian Haselgrove
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Leah Honor
- Lamar Soutter Library, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - David N. Kennedy
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
15
|
Pazuniak M, Pekrul SR. Obsessive-Compulsive Disorder in Autism Spectrum Disorder Across the Lifespan. Child Adolesc Psychiatr Clin N Am 2020; 29:419-432. [PMID: 32169271 DOI: 10.1016/j.chc.2019.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Obsessive-compulsive disorder is a relatively common disorder seen in autism spectrum disorder across the lifespan. Many obsessive-compulsive disorder symptoms can present similarly to the core features of autism spectrum disorder and it is often difficult to differentiate between obsessive-compulsive disorder and stereotypic behaviors or restricted interests in autism spectrum disorder. However, there are differences between the 2 disorders. This article is a review of the current literature with the goal of helping the clinician to diagnose and treat obsessive-compulsive disorder in a patient with autism spectrum disorder.
Collapse
Affiliation(s)
- Markian Pazuniak
- Department of Child and Adolescent Psychiatry, University of Maryland Medical Center, 701 West Pratt Street, 2nd Floor, Baltimore, MD 21201, USA
| | - Scott R Pekrul
- Sheppard Pratt Health System, 6501 North Charles Street, Baltimore, MD 21204, USA.
| |
Collapse
|
16
|
Marotta R, Risoleo MC, Messina G, Parisi L, Carotenuto M, Vetri L, Roccella M. The Neurochemistry of Autism. Brain Sci 2020; 10:E163. [PMID: 32182969 PMCID: PMC7139720 DOI: 10.3390/brainsci10030163] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) refers to complex neurobehavioral and neurodevelopmental conditions characterized by impaired social interaction and communication, restricted and repetitive patterns of behavior or interests, and altered sensory processing. Environmental, immunological, genetic, and epigenetic factors are implicated in the pathophysiology of autism and provoke the occurrence of neuroanatomical and neurochemical events relatively early in the development of the central nervous system. Many neurochemical pathways are involved in determining ASD; however, how these complex networks interact and cause the onset of the core symptoms of autism remains unclear. Further studies on neurochemical alterations in autism are necessary to clarify the early neurodevelopmental variations behind the enormous heterogeneity of autism spectrum disorder, and therefore lead to new approaches for the treatment and prevention of autism. In this review, we aim to delineate the state-of-the-art main research findings about the neurochemical alterations in autism etiology, and focuses on gamma aminobutyric acid (GABA) and glutamate, serotonin, dopamine, N-acetyl aspartate, oxytocin and arginine-vasopressin, melatonin, vitamin D, orexin, endogenous opioids, and acetylcholine. We also aim to suggest a possible related therapeutic approach that could improve the quality of ASD interventions. Over one hundred references were collected through electronic database searching in Medline and EMBASE (Ovid), Scopus (Elsevier), ERIC (Proquest), PubMed, and the Web of Science (ISI).
Collapse
Affiliation(s)
- Rosa Marotta
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
| | - Maria C. Risoleo
- Department of Medical and Surgical Sciences, University "Magna Graecia", Catanzaro 88100, Italy; (R.M.); (M.C.R.)
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy;
| | - Lucia Parisi
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Napoli 80138, Italy;
| | - Luigi Vetri
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, Palermo 90127, Italy
| | - Michele Roccella
- Department of Psychology, Educational and Science and Human Movement, University of Palermo, Palermo 90128, Italy; (L.P.); (M.R.)
| |
Collapse
|
17
|
Patel AM, Wierda K, Thorrez L, van Putten M, De Smedt J, Ribeiro L, Tricot T, Gajjar M, Duelen R, Van Damme P, De Waele L, Goemans N, Tanganyika-de Winter C, Costamagna D, Aartsma-Rus A, van Duyvenvoorde H, Sampaolesi M, Buyse GM, Verfaillie CM. Dystrophin deficiency leads to dysfunctional glutamate clearance in iPSC derived astrocytes. Transl Psychiatry 2019; 9:200. [PMID: 31434868 PMCID: PMC6704264 DOI: 10.1038/s41398-019-0535-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) results, beside muscle degeneration in cognitive defects. As neuronal function is supported by astrocytes, which express dystrophin, we hypothesized that loss of dystrophin from DMD astrocytes might contribute to these cognitive defects. We generated cortical neuronal and astrocytic progeny from induced pluripotent stem cells (PSC) from six DMD subjects carrying different mutations and several unaffected PSC lines. DMD astrocytes displayed cytoskeletal abnormalities, defects in Ca+2 homeostasis and nitric oxide signaling. In addition, defects in glutamate clearance were identified in DMD PSC-derived astrocytes; these deficits were related to a decreased neurite outgrowth and hyperexcitability of neurons derived from healthy PSC. Read-through molecule restored dystrophin expression in DMD PSC-derived astrocytes harboring a premature stop codon mutation, corrected the defective astrocyte glutamate clearance and prevented associated neurotoxicity. We propose a role for dystrophin deficiency in defective astroglial glutamate homeostasis which initiates defects in neuronal development.
Collapse
Affiliation(s)
- Abdulsamie M. Patel
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Keimpe Wierda
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium
| | - Lieven Thorrez
- 0000 0001 0668 7884grid.5596.fKU Leuven Department of Development and Regeneration, Campus Kulak, Kortrijk, Belgium
| | - Maaike van Putten
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jonathan De Smedt
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Luis Ribeiro
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium
| | - Tine Tricot
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Madhavsai Gajjar
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Robin Duelen
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Philip Van Damme
- 0000000104788040grid.11486.3aCenter for Brain & Disease Research, VIB, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fLaboratory of Neurobiology, Department of Neuroscience, KU Leuven, Leuven, Belgium ,0000 0004 0626 3338grid.410569.fNeurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Liesbeth De Waele
- 0000 0001 0668 7884grid.5596.fKU Leuven Department of Development and Regeneration, Campus Kulak, Kortrijk, Belgium ,0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fVesalius Research Center, Laboratory of Neurobiology, KU Leuven, Leuven, Belgium
| | - Nathalie Goemans
- 0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Christa Tanganyika-de Winter
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Domiziana Costamagna
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Annemieke Aartsma-Rus
- 0000000089452978grid.10419.3dDepartment of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermine van Duyvenvoorde
- 0000000089452978grid.10419.3dLaboratory for Diagnostic Genome Analysis, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurilio Sampaolesi
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium ,0000 0001 0668 7884grid.5596.fTranslational Cardiomyology Lab, Stem Cell Biology and Embryology Unit, KU Leuven, Leuven, Belgium
| | - Gunnar M. Buyse
- 0000 0004 0626 3338grid.410569.fDepartment of Paediatric Child Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Catherine M. Verfaillie
- 0000 0001 0668 7884grid.5596.fStem Cell Institute Leuven, Dept. of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|