1
|
Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Virijevic K, Dronjak S. URB597 modulates neuroplasticity, neuroinflammatory, and Nrf2/HO-1 signaling pathways in the hippocampus and prefrontal cortex of male and female rats in a stress-induced model of depression. Physiol Behav 2025; 295:114893. [PMID: 40157440 DOI: 10.1016/j.physbeh.2025.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Major depressive disorder is often associated with cognitive impairments, and neuroinflammation is considered a key contributor to the onset of depression. Pharmacological inhibition of fatty acid amide hydrolase (FAAH), which augments endocannabinoid signaling, has emerged as a promising approach to treating depression. The main purpose of this study is to asses the influence of FAAH inhibitor URB597 on inflammatory response and oxidative stress in chronic unpredictable stress (CUS)-induced depressive female and male rats and to explore the underlying molecular mechanisms. Chronically stressed animals showed long-term memory deficits, while URB597 improved memory only in stressed males. URB597 treatment enhanced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus and mPFC of stressed female and male rats and increased phosphorylated calcium/calmodulin-dependent protein kinase II (pCaMKII) levels in the hippocampus and mPFC of CUS males. Additionally, increased phosphorylation of JAK2 and STAT3 in the hippocampus and mPFC of CUS male and female rats, was reduced following URB597 treatment. URB597 decreased the CUS-enhanced iNOS protein expression in the hippocampus and mPFC of both sexes. Furthermore, URB597 normalized CUS-induced reductions in Nrf2 and HO-1 levels in the mPFC of both sexes, with no changes in the hippocampus. Our findings suggest that URB597 may inhibit the CUS-induced neuroinflammatory response by suppressing the pro-inflammatory mediators and the activation of the JAK2/STAT3 signaling in the hippocampus and mPFC of both sexes. URB597 treatment contributed to synaptic plasticity in a sex-specific manner by upregulating brain CaMKII signaling in males. URB597 also exerts neuroprotective effects through region-specific antioxidant properties. These results have implications for sex-specific treatment strategies in stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Milica Jankovic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Natasa Spasojevic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Harisa Ferizovic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojana Stefanovic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Kristina Virijevic
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Pereira CF, Boileau I, Kloiber S. Effects of pharmacological inhibition of fatty acid amide hydrolase on corticosterone release: a systematic review of preclinical studies. DISCOVER MENTAL HEALTH 2025; 5:51. [PMID: 40195219 PMCID: PMC11977098 DOI: 10.1007/s44192-025-00155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/02/2025] [Indexed: 04/09/2025]
Abstract
Psychiatric conditions are often linked to dysfunction of the Hypothalamic-Pituitary-Adrenal (HPA) axis. The Endocannabinoid System (ECS) plays a significant role in stress and anxiety and interacts with the HPA axis. The ECS metabolizing enzyme, Fatty Acid Amide Hydrolase (FAAH), may be integral for HPA axis response to stress by reducing levels of the endocannabinoid anandamide (AEA). However, there is conflicting evidence regarding the effects of FAAH inhibition on stress-related hormone changes, and no comprehensive evaluation of this literature exists. This review aims to synthesize the literature on the impact of pharmacological FAAH inhibition on corticosterone levels in rodents. A systematic search of PubMed/MEDLINE, APA PsychInfo, and Embase up to July 2024 was conducted. Articles reporting the effects of FAAH inhibition on corticosterone levels in rodents were included. Risk of Bias was assessed using SYRCLE's Risk of Bias tool. This review included 21 articles. FAAH inhibition showed limited effects depending on type of FAAH inhibitor, stress exposure, and rodent age. Selective FAAH inhibition did not significantly affect corticosterone levels in the absence of stress and showed minimal effects following acute stress. After chronic stress, these compounds showed more pronounced effects, reducing corticosterone in 40% of studies. Limited studies employing flavonoid-based and dual FAAH/TRPV1 inhibitors suggested blunted corticosterone after acute, but not chronic stress. This review found that FAAH inhibition has inconsistent effects on corticosterone regulation, highlighting the complex and context-dependent role of FAAH inhibition in modulating stress hormone responses, warranting further investigation to clarify its therapeutic potential in stress-related disorders.
Collapse
Affiliation(s)
- Christina F Pereira
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Isabelle Boileau
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Woodward TJ, Dimen D, Sizemore EF, Stockman S, Kazi F, Luquet S, Mackie K, Katona I, Hohmann AG. Genetic deletion of NAPE-PLD induces context-dependent dysregulation of anxiety-like behaviors, stress responsiveness, and HPA-axis functionality in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612324. [PMID: 39314440 PMCID: PMC11419048 DOI: 10.1101/2024.09.10.612324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The endocannabinoid (eCB) system regulates stress responsiveness and hypothalamic-pituitary-adrenal (HPA) axis activity. The enzyme N -acyl phosphatidylethanolamine phospholipase-D (NAPE-PLD) is primarily responsible for the synthesis of the endocannabinoid signaling molecule anandamide (AEA) and other structurally related lipid signaling molecules known as N -acylethanolamines (NAEs). However, little is known about how activity of this enzyme affects behavior. As AEA plays a regulatory role in stress adaptation, we hypothesized that reducing synthesis of AEA and other NAEs would dysregulate stress reactivity. To test this hypothesis, we evaluated wild type (WT) and NAPE-PLD knockout (KO) mice in behavioral assays that assess stress responsiveness and anxiety-like behavior. NAPE-PLD KO mice exhibited anxiety-like behaviors in the open field test and the light-dark box test after a period of single housing. NAPE-PLD KO mice exhibited a heightened freezing response to the testing environment that was further enhanced by exposure to 2,3,5-trimethyl-3-thiazoline (TMT) predator odor. NAPE-PLD KO mice exhibited an exaggerated freezing response at baseline but blunted response to TMT when compared to WT mice. NAPE-PLD KO mice also exhibited a context-dependent dysregulation of HPA axis in response to TMT in the paraventricular hypothalamic nucleus at a neuronal level, as measured by c-Fos immunohistochemstry. Male, but not female, NAPE-PLD knockout mice showed higher levels of circulating corticosterone relative to same-sex wildtype mice in response to TMT exposure, suggesting a sexually-dimorphic dysregulation of the HPA axis at the hormonal level. Together, these findings suggest the enzymatic activity of NAPE-PLD regulates emotional resilience and recovery from both acute and sustained stress. Significance Statement The endocannabinoid anandamide (AEA) regulates stress responsiveness and activity of the hypothalamic-pituitary-adrenal (HPA) axis. Currently, little is known about how an enzyme (i.e. N -acylphosphatidylethanolamine phospholipase-D (NAPE-PLD)) involved in the synthesis of AEA affects behavior. We hypothesized that genetic deletion of NAPE-PLD would dysregulate responsiveness to stress at a behavioral and neuronal level. Our studies provide insight into potential vulnerabilities to stress and anxiety that may result from dysregulation of the enzyme NAPE-PLD in people.
Collapse
|
4
|
Poitras M, Lebeau M, Plamondon H. The cycle of stress: A systematic review of the impact of chronic psychological stress models on the rodent estrous cycle. Neurosci Biobehav Rev 2024; 162:105730. [PMID: 38763179 DOI: 10.1016/j.neubiorev.2024.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Stress is known to impair reproduction through interactions between the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes. However, while it is well accepted that stress can alter estrous cycle regularity, a key indicator of female's HPG axis function, effects of different types of psychological stress have been inconsistent. This systematic review evaluated the impact of rodent models of psychological stress on estrous cyclicity, while reporting biological parameters pertaining to HPA or HPG axis function assessed within these studies. We performed a systematic database search and included articles that implemented a psychological stress model in rodents and reported estrous cyclicity for at least two cycles after initiation of stress. Of the 32 studies included, 62.5% reported post-stress alterations to estrous cyclicity, with Chronic Mild Stress (CMS) models showing the most conclusive effects. Twenty-five studies measured HPG or HPA axis markers, with cycle disruptions being commonly observed in parallel with altered estradiol and increased corticosterone levels. Our review highlights gaps in reporting estrous cyclicity assessments and makes recommendations to improve comparability between studies.
Collapse
Affiliation(s)
- Marilou Poitras
- Cerebro Vascular Accidents and Behavioural Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada
| | - Madison Lebeau
- Cerebro Vascular Accidents and Behavioural Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada
| | - Hélène Plamondon
- Cerebro Vascular Accidents and Behavioural Recovery Laboratory, School of Psychology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
5
|
Dragon J, Obuchowicz E. How depression and antidepressant drugs affect endocannabinoid system?-review of clinical and preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4511-4536. [PMID: 38280009 DOI: 10.1007/s00210-023-02938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/30/2023] [Indexed: 01/29/2024]
Abstract
As major depressive disorder is becoming a more and more common issue in modern society, it is crucial to discover new possible grip points for its diagnosis and antidepressive therapy. One of them is endocannabinoid system, which has been proposed as a manager of emotional homeostasis, and thus, endocannabinoid alterations have been found in animals undergoing various preclinical models of depression procedures as well as in humans suffering from depressive-like disorders. In this review article, studies regarding those alterations have been summed up and analyzed. Another important issue raised by the researchers is the impact of currently used antidepressive drugs on endocannabinoid system so that it would be possible to predict reversibility of endocannabinoid alterations following stress exposure and, in the future, to be able to design individually personalized therapies. Preclinical studies investigating this topic have been analyzed and described in this article. Unfortunately, too few clinical studies in this field exist, what indicates an urgent need for collecting such data, so that it would be possible to compare them with preclinical outcomes and draw reliable conclusions.
Collapse
Affiliation(s)
- Jonasz Dragon
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland.
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków Street 18, 40-752, Katowice, Poland
| |
Collapse
|
6
|
Barbetti M, Mancabelli L, Vacondio F, Longhi G, Ferlenghi F, Viglioli M, Turroni F, Carnevali L, Mor M, Ventura M, Sgoifo A, Rivara S. Social stress-induced depressive-like symptoms and changes in gut microbial and lipidomic profiles are prevented by pharmacological inhibition of FAAH activity in male rats. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110963. [PMID: 38354897 DOI: 10.1016/j.pnpbp.2024.110963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Pharmacological inhibition of fatty acid amide hydrolase (FAAH) activity has antidepressant-like effects in preclinical models of stress. In this study, we investigated whether the antidepressant-like effects of FAAH inhibition are associated with corresponding changes in gut microbial and lipidomic profiles, which are emerging as critical components in the pathophysiology of depression. Adult male Wistar rats experienced five weeks of repeated social defeat or control procedure and were treated with the FAAH inhibitor URB694 (0.3 mg/kg/day, i.p.) or vehicle starting from the third week. Repeated social defeat induced the emergence of depressive-like behavioral (sucrose preference reduction and passive coping behaviors in the forced swim test) and neuroendocrine (increased corticosterone levels) changes, which were prevented by URB694 treatment. Repeated social defeat also provoked a significant variation in gut microbiota (changes in the relative abundance of 14 bacterial taxa) and lipidic (e.g., glycerophospholipids) composition. These stress-induced changes were prevented by URB694 treatment. These findings indicate that inhibition of FAAH activity with URB694 blocks the co-occurrence of depressive-like behavioral and neuroendocrine changes and alterations in gut microbial and lipid composition in rats exposed to repeated social defeat. In conclusion, these results suggest that the gut microbiota-lipid crosstalk may represent a novel biological target for FAAH inhibitors to enhance stress resilience.
Collapse
Affiliation(s)
- Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | | | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | | | | | - Francesca Turroni
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy.
| | - Marco Mor
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Ventura
- Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy; Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy; Interdepartmental Research Centre "Microbiome Research Hub", University of Parma, Parma, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
7
|
Diksha, Singh L, Bhatia D. Mechanistic interplay of different mediators involved in mediating the anti-depressant effect of isoflavones. Metab Brain Dis 2024; 39:199-215. [PMID: 37855935 DOI: 10.1007/s11011-023-01302-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
Depression is one of the most prevalent severe CNS disorders, which negatively affects social lives, the ability to work, and the health of people. As per the World Health Organisation (WHO), it is a psychological disorder that is estimated to be a leading disease by 2030. Clinically, various medicines have been formulated to treat depression but they are having a setback due to their side effects, slow action, or poor bioavailability. Nowadays, flavonoids are regarded as an essential component in a variety of nutraceutical, pharmaceutical and medicinal. Isoflavones are a distinctive and important subclass of flavonoids that are generally obtained from soybean, chickpeas, and red clover. The molecules of this class have been extensively explored in various CNS disorders including depression and anxiety. Isoflavones such as genistein, daidzein, biochanin-A, formononetin, and glycitein have been reported to exert an anti-depressant effect through the modulation of different mediators. Fatty acid amide hydrolase (FAAH) mediated depletion of anandamide and hypothalamic-pituitary-adrenal (HPA) axis-mediated modulation of brain-derived neurotrophic factor (BDNF), monoamine oxidase (MAO) mediated depletion of biogenic amines and inflammatory signaling are the important underlying pathways leading to depression. Upregulation in the levels of BDNF, anandamide, antioxidants and monoamines, along with inhibition of MAO, FAAH, HPA axis, and inflammatory stress are the major modulations produced by different isoflavones in the observed anti-depressant effect. Therefore, the present review has been designed to explore the mechanistic interplay of various mediators involved in mediating the anti-depressant action of different isoflavones.
Collapse
Affiliation(s)
- Diksha
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Deepika Bhatia
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
8
|
Rullo L, Losapio LM, Morosini C, Mottarlini F, Schiavi S, Buzzelli V, Ascone F, Ciccocioppo R, Fattore L, Caffino L, Fumagalli F, Romualdi P, Trezza V, Candeletti S. Outcomes of early social experiences on glucocorticoid and endocannabinoid systems in the prefrontal cortex of male and female adolescent rats. Front Cell Neurosci 2023; 17:1270195. [PMID: 38174157 PMCID: PMC10762649 DOI: 10.3389/fncel.2023.1270195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Social and emotional experiences differently shape individual's neurodevelopment inducing substantial changes in neurobiological substrates and behavior, particularly when they occur early in life. In this scenario, the present study was aimed at (i) investigating the impact of early social environments on emotional reactivity of adolescent male and female rats and (ii) uncovering the underlying molecular features, focusing on the cortical endocannabinoid (eCB) and glucocorticoid systems. To this aim, we applied a protocol of environmental manipulation based on early postnatal socially enriched or impoverished conditions. Social enrichment was realized through communal nesting (CN). Conversely, an early social isolation (ESI) protocol was applied (post-natal days 14-21) to mimic an adverse early social environment. The two forms of social manipulation resulted in specific behavioral and molecular outcomes in both male and female rat offspring. Despite the combination of CN and ESI did not affect emotional reactivity in both sexes, the molecular results reveal that the preventive exposure to CN differently altered mRNA and protein expression of the main components of the glucocorticoid and eCB systems in male and female rats. In particular, adolescent females exposed to the combination of CN and ESI showed increased corticosterone levels, unaltered genomic glucocorticoid receptor, reduced cannabinoid receptor type-1 and fatty acid amide hydrolase protein levels, suggesting that the CN condition evokes different reorganization of these systems in males and females.
Collapse
Affiliation(s)
- Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Sara Schiavi
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Valeria Buzzelli
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Fabrizio Ascone
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Roberto Ciccocioppo
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Cagliari, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti,” Università degli Studi di Milano, Milan, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Viviana Trezza
- Section of Biomedical Sciences and Technologies, Department of Science, Roma Tre University, Rome, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Carnevali L, Barbetti M, Fotio Y, Ferlenghi F, Vacondio F, Mor M, Piomelli D, Sgoifo A. Enhancement of peripheral fatty acyl ethanolamide signaling prevents stress-induced social avoidance and anxiety-like behaviors in male rats. Psychopharmacology (Berl) 2023:10.1007/s00213-023-06473-w. [PMID: 37932554 DOI: 10.1007/s00213-023-06473-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
RATIONALE Exposure to traumatic events can lead to alterations in social and anxiety-related behaviors. Emerging evidence suggests that peripheral host-defense processes are implicated in the expression of stress-induced behavioral responses and may be targeted to mitigate the negative sequalae of stress exposure. OBJECTIVES In this study, we used the peripherally restricted FAAH inhibitor URB937 to investigate the effects of the fatty acyl ethanolamide (FAE) family of lipid mediators - which include the endocannabinoid anandamide and the endogenous PPAR-α agonists, oleoylethanolamide and palmitoylethanolamide - on behavioral and peripheral biochemical responses to two ethologically distinct rat models of stress. METHODS Male adult rats were exposed to acute social defeat, a model of psychological stress (Experiment 1), or to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a test of innate predator-evoked fear (Experiment 2), and subsequently treated with URB937 (1 or 3 mg/kg, intraperitoneal) or vehicle. Behavioral analyses were conducted 24 h (Experiment 1) or 7 days (Experiment 2) after exposure. RESULTS URB937 administration prevented the emergence of both social avoidance behavior after social defeat stress and anxiety-related behaviors after TMT exposure. Further, URB937 administration blocked social defeat-induced transient increase in plasma concentrations of pro-inflammatory cytokines and the elevation in plasma corticosterone levels observed 24 h after social defeat CONCLUSIONS: Enhancement of peripheral FAAH-regulated lipid signaling prevents the emergence of stress-induced social avoidance and anxiety-like behaviors in male rats through mechanisms that may involve an attenuation of peripheral cytokine release induced by stress exposure.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
| | - Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | | | | | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
10
|
Mikaeili H, Habib AM, Yeung CWL, Santana-Varela S, Luiz AP, Panteleeva K, Zuberi S, Athanasiou-Fragkouli A, Houlden H, Wood JN, Okorokov AL, Cox JJ. Molecular basis of FAAH-OUT-associated human pain insensitivity. Brain 2023; 146:3851-3865. [PMID: 37222214 PMCID: PMC10473560 DOI: 10.1093/brain/awad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/25/2023] Open
Abstract
Chronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme. We demonstrate that the disruption in FAAH-OUT lncRNA transcription leads to DNMT1-dependent DNA methylation within the FAAH promoter. In addition, FAAH-OUT contains a conserved regulatory element, FAAH-AMP, that acts as an enhancer for FAAH expression. Furthermore, using transcriptomic analyses in patient-derived cells we have uncovered a network of genes that are dysregulated from disruption of the FAAH-FAAH-OUT axis, thus providing a coherent mechanistic basis to understand the human phenotype observed. Given that FAAH is a potential target for the treatment of pain, anxiety, depression and other neurological disorders, this new understanding of the regulatory role of the FAAH-OUT gene provides a platform for the development of future gene and small molecule therapies.
Collapse
Affiliation(s)
- Hajar Mikaeili
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Charlix Wai-Lok Yeung
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Sonia Santana-Varela
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Ana P Luiz
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Kseniia Panteleeva
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Sana Zuberi
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | | | - Henry Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Andrei L Okorokov
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
Chen I, Murdaugh LB, Miliano C, Dong Y, Gregus AM, Buczynski MW. NAPE-PLD regulates specific baseline affective behaviors but is dispensable for inflammatory hyperalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100135. [PMID: 38099275 PMCID: PMC10719515 DOI: 10.1016/j.ynpai.2023.100135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 12/17/2023]
Abstract
N-acyl-ethanolamine (NAEs) serve as key endogenous lipid mediators as revealed by manipulation of fatty acid amide hydrolase (FAAH), the primary enzyme responsible for metabolizing NAEs. Preclinical studies focused on FAAH or NAE receptors indicate an important role for NAE signaling in nociception and affective behaviors. However, there is limited information on the role of NAE biosynthesis in these same behavioral paradigms. Biosynthesis of NAEs has been attributed largely to the enzyme N-acylphosphatidylethanolamine Phospholipase D (NAPE-PLD), one of three pathways capable of producing these bioactive lipids in the brain. In this report, we demonstrate that Nape-pld knockout (KO) mice displayed reduced sucrose preference and consumption, but other baseline anxiety-like or depression-like behaviors were unaltered. Additionally, we observed sex-dependent responses in thermal nociception and other baseline measures in wildtype (WT) mice that were absent in Nape-pld KO mice. In the Complete Freund's Adjuvant (CFA) model of inflammatory arthritis, WT mice exhibited sex-dependent changes in paw edema that were lost in Nape-pld KO mice. However, there was no effect of Nape-pld deletion on arthritic pain-like behaviors (grip force deficit and tactile allodynia) in either sex, indicating that while NAPE-PLD may alter local inflammation, it does not contribute to pain-like behaviors associated with inflammatory arthritis. Collectively, these findings indicate that chronic and systemic NAPE-PLD inactivation will likely be well-tolerated, warranting further pharmacological evaluation of this target in other disease indications.
Collapse
Affiliation(s)
- Irene Chen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Laura B. Murdaugh
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Yuyang Dong
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
12
|
Shirenova SD, Khlebnikova NN, Krupina NA. Changes in Sociability and Preference for Social Novelty in Female Rats in Prolonged Social Isolation. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2023; 53:103-118. [PMID: 36969361 PMCID: PMC10006548 DOI: 10.1007/s11055-023-01395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/26/2022] [Indexed: 03/25/2023]
Abstract
Chronic stress due to social isolation (SI) can lead to distress with negative consequences for both humans and animals. Numerous disorders caused by SI include disorders in the emotional-motivational domain and cognitive functions, as well as changes in social behavior. There are currently no data identifying the sequelae of SI when its duration is significantly increased. Although female rats have been shown to be highly sensitive to stress, research on them is lacking. The present study assessed sociability and preference for "social novelty" in a three-chamber social test in female Wistar rats in two series of experiments at different time points during prolonged SI, which began at adolescence and continued to ages 5.5 and 9.5 months. At two months of SI, rats showed an increased preference for a social object over a non-social object (increased sociability) simultaneously with the appearance of signs of a decrease in the preference for a new social object over an already familiar social object (signs of a decrease in the preference for social novelty). In a social interaction test, the rats also displayed increases in the durations of social contacts, including aggressive interactions; they showed a decrease in exploratory risk assessments (head dips from the open arms) in the elevated plus maze test and a decrease in exploratory activity. After SI lasting 8.5 months, the rats showed signs of social deficit and a marked decrease in the preference for social novelty. No signs of increased aggressiveness were found. Thus, the impact of SI on social behavior depended on its duration and, we believe, was accompanied by a change in coping strategies.
Collapse
Affiliation(s)
- S. D. Shirenova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - N. N. Khlebnikova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - N. A. Krupina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
13
|
Carnevali L, Barbetti M, Statello R, Williams DP, Thayer JF, Sgoifo A. Sex differences in heart rate and heart rate variability in rats: Implications for translational research. Front Physiol 2023; 14:1170320. [PMID: 37035663 PMCID: PMC10080026 DOI: 10.3389/fphys.2023.1170320] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
The present study aimed to investigate sex differences in measures of cardiac chronotropy and heart rate variability (HRV) in 132 young adult wild-type Groningen rats (n = 45 females). Electrocardiographic signals were recorded for 48 h in freely moving rats to quantify heart rate (HR) and inter-beat interval (IBI) as measures of cardiac chronotropy, and time- and frequency-domain HRV parameters as physiological readouts of cardiac vagal modulation. Females showed greater vagally-mediated HRV despite having higher HR and shorter IBI than males during undisturbed conditions. Such differences were evident i) at any given level of HRV, and ii) both during the 12-h light/inactive and 12-h dark/active phase of the daily cycle. These findings replicate the paradoxical cardiac chronotropic control reported by human meta-analytic findings, since one would expect greater vagally-mediated HRV to be associated with lower HR and longer IBI. Lastly, the association between some HRV measures and HR was stronger in female than male rats. Overall, the current study in young adult rats provides data illustrating a sex-dependent association between vagally-mediated HRV and indexes of cardiac chronotropy. The current results i) are in line with human findings, ii) suggest to always consider biological sex in the analysis and interpretation of HRV data in rats, and iii) warrant the use of rats for investigating the neuro-hormonal basis and temporal evolution of the impact of sex on the association between vagally-mediated HRV and cardiac chronotropy, which could inform the human condition.
Collapse
Affiliation(s)
- Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- *Correspondence: Luca Carnevali,
| | - Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rosario Statello
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - DeWayne P. Williams
- Department of Psychological Science, University of California, Irvine, Irvine, United States
| | - Julian F. Thayer
- Department of Psychological Science, University of California, Irvine, Irvine, United States
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Cammarota M, Ferlenghi F, Vacondio F, Vincenzi F, Varani K, Bedini A, Rivara S, Mor M, Boscia F. Combined targeting of fatty acid amide hydrolase and melatonin receptors promotes neuroprotection and stimulates inflammation resolution in rats. Br J Pharmacol 2022; 180:1316-1338. [PMID: 36526591 DOI: 10.1111/bph.16014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Devising novel strategies to therapeutically favour inflammation resolution and provide neuroprotection is an unmet clinical need. Enhancing endocannabinoid tone by inhibiting the catabolic enzyme fatty acid amide hydrolase (FAAH), or stimulating melatonin receptors has therapeutic potential to treat neuropathological states in which neuroinflammation plays a central role. EXPERIMENTAL APPROACH A rodent hippocampal explant model of inflammatory injury was used to assess the effects of UCM1341, a dual-acting compound with FAAH inhibitory action and agonist activity at melatonin receptors, against neuroinflammatory damage. FAAH activity was measured by a radiometric assay, and N-acylethanolamine levels were assessed by HPLC-MS/MS methods. FAAH distribution, evolution of inflammation and the contribution of UCM1341 to the expression of proteins controlling macrophage behaviour were investigated by biochemical and confocal analyses. KEY RESULTS UCM1341 exhibited greater neuroprotection against neuroinflammatory degeneration, compared with the reference compounds URB597 (FAAH inhibitor) and melatonin. During neuroinflammation, UCM1341 augmented the levels of anandamide and N-oleoylethanolamine, but not N-palmitoylethanolamine, up-regulated PPAR-α levels, attenuated demyelination and prevented the release of TNF-α. UCM1341 modulated inflammatory responses by contributing to microglia/macrophage polarization, stimulating formation of lipid-laden macrophages and regulating expression of proteins controlling cholesterol metabolism and efflux. The neuroprotective effects of UCM1341 were prevented by PPARα, TRPV1 and melatonin receptor antagonists. CONCLUSION AND IMPLICATIONS UCM1341, by enhancing endocannabinoid and melatoninergic signalling, benefits neuroprotection and stimulates inflammation resolution pathways. Our findings provide an encouraging prospect of therapeutically targeting endocannabinoid and melatoninergic systems in inflammatory demyelinating states in the CNS.
Collapse
Affiliation(s)
- Mariarosaria Cammarota
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| | | | | | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Annalida Bedini
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Urbino, Italy
| | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
15
|
Akinbo OI, McNeal N, Hylin M, Hite N, Dagner A, Grippo AJ. The Influence of Environmental Enrichment on Affective and Neural Consequences of Social Isolation Across Development. AFFECTIVE SCIENCE 2022; 3:713-733. [PMID: 36519141 PMCID: PMC9743881 DOI: 10.1007/s42761-022-00131-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/10/2022] [Indexed: 05/15/2023]
Abstract
Social stress is associated with depression and anxiety, physiological disruptions, and altered brain morphology in central stress circuitry across development. Environmental enrichment strategies may improve responses to social stress. Socially monogamous prairie voles exhibit analogous social and emotion-related behaviors to humans, with potential translational insight into interactions of social stress, age, and environmental enrichment. This study explored the effects of social isolation and environmental enrichment on behaviors related to depression and anxiety, physiological indicators of stress, and dendritic structural changes in amygdala and hippocampal subregions in young adult and aging prairie voles. Forty-nine male prairie voles were assigned to one of six groups divided by age (young adult vs. aging), social structure (paired vs. isolated), and housing environment (enriched vs. non-enriched). Following 4 weeks of these conditions, behaviors related to depression and anxiety were investigated in the forced swim test and elevated plus maze, body and adrenal weights were evaluated, and dendritic morphology analyses were conducted in hippocampus and amygdala subregions. Environmental enrichment decreased immobility duration in the forced swim test, increased open arm exploration in the elevated plus maze, and reduced adrenal/body weight ratio in aging and young adult prairie voles. Age and social isolation influenced dendritic morphology in the basolateral amygdala. Age, but not social isolation, influenced dendritic morphology in the hippocampal dentate gyrus. Environmental enrichment did not influence dendritic morphology in either brain region. These data may inform interventions to reduce the effects of social stressors and age-related central changes associated with affective behavioral consequences in humans.
Collapse
Affiliation(s)
- Oreoluwa I. Akinbo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Neal McNeal
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Michael Hylin
- Department of Psychology, Southern Illinois University, Carbondale, IL 62901 USA
| | - Natalee Hite
- Department of Physiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Ashley Dagner
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115 USA
| |
Collapse
|
16
|
Watts JJ, Guma E, Chavez S, Tyndale RF, Ross RA, Houle S, Wilson AA, Chakravarty M, Rusjan PM, Mizrahi R. In vivo brain endocannabinoid metabolism is related to hippocampus glutamate and structure - a multimodal imaging study with PET, 1H-MRS, and MRI. Neuropsychopharmacology 2022; 47:1984-1991. [PMID: 35906490 PMCID: PMC9485131 DOI: 10.1038/s41386-022-01384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
Dysregulation of hippocampus glutamatergic neurotransmission and reductions in hippocampal volume have been associated with psychiatric disorders. The endocannabinoid system modulates glutamate neurotransmission and brain development, including hippocampal remodeling. In humans, elevated levels of anandamide and lower activity of its catabolic enzyme fatty acid amide hydrolase (FAAH) are associated with schizophrenia diagnosis and psychotic symptom severity, respectively (Neuropsychopharmacol, 29(11), 2108-2114; Biol. Psychiatry 88 (9), 727-735). Although preclinical studies provide strong evidence linking anandamide and FAAH to hippocampus neurotransmission and structure, these relationships remain poorly understood in humans. We recruited young adults with and without psychotic disorders and measured FAAH activity, hippocampal glutamate and glutamine (Glx), and hippocampal volume using [11C]CURB positron emission tomography (PET), proton magnetic resonance spectroscopy (1H-MRS) and T1-weighted structural MRI, respectively. We hypothesized that higher FAAH activity would be associated with greater hippocampus Glx and lower hippocampus volume, and that these effects would differ in patients with psychotic disorders relative to healthy control participants. After attrition and quality control, a total of 37 participants (62% male) completed [11C]CURB PET and 1H-MRS of the left hippocampus, and 45 (69% male) completed [11C]CURB PET and hippocampal volumetry. Higher FAAH activity was associated with greater concentration of hippocampal Glx (F1,36.36 = 9.17, p = 0.0045; Cohen's f = 0.30, medium effect size) and smaller hippocampal volume (F1,44.70 = 5.94, p = 0.019, Cohen's f = 0.26, medium effect size). These effects did not differ between psychosis and healthy control groups (no group interaction). This multimodal imaging study provides the first in vivo evidence linking hippocampal Glx and hippocampus volume with endocannabinoid metabolism in the human brain.
Collapse
Affiliation(s)
- Jeremy J Watts
- Research Centre, CHU Sainte-Justine, Montreal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montreal, QC, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Elisa Guma
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Developmental Neurogenomics Unit, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Sofia Chavez
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Sylvain Houle
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Alan A Wilson
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mallar Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Pablo M Rusjan
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Romina Mizrahi
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
17
|
Epps SA. Commonalities for comorbidity: Overlapping features of the endocannabinoid system in depression and epilepsy. Front Psychiatry 2022; 13:1041460. [PMID: 36339877 PMCID: PMC9626804 DOI: 10.3389/fpsyt.2022.1041460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
A wealth of clinical and pre-clinical data supports a bidirectional comorbidity between depression and epilepsy. This suggests commonalities in underlying mechanisms that may serve as targets for more effective treatment strategies. Unfortunately, many patients with this comorbidity are highly refractory to current treatment strategies, while others experience a worsening of one arm of the comorbidity when treating the other arm. This highlights the need for novel pharmaceutical targets that may provide safe and effective relief for both depression and epilepsy symptoms. The endocannabinoid system (ECS) of the brain has become an area of intense interest for possible roles in depression and epilepsy. Several existing literature reviews have provided in-depth analysis of the involvement of various aspects of the ECS in depression or epilepsy separately, while others have addressed the effectiveness of different treatment strategies targeting the ECS in either condition individually. However, there is not currently a review that considers the ECS when both conditions are comorbid. This mini-review will address areas of common overlap between the ECS in depression and in epilepsy, such as commonalities in endocannabinoids themselves, their receptors, and degradative enzymes. These areas of overlap will be discussed alongside their implications for treatment of this challenging comorbidity.
Collapse
Affiliation(s)
- S Alisha Epps
- Department of Psychology, Whitworth University, Spokane, WA, United States
| |
Collapse
|
18
|
On the Biomedical Properties of Endocannabinoid Degradation and Reuptake Inhibitors: Pre-clinical and Clinical Evidence. Neurotox Res 2021; 39:2072-2097. [PMID: 34741755 DOI: 10.1007/s12640-021-00424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 10/19/2022]
Abstract
The endocannabinoid system (ECS) is composed of endogenous cannabinoids; components involved in their synthesis, transport, and degradation; and an expansive variety of cannabinoid receptors. Hypofunction or deregulation of the ECS is related to pathological conditions. Consequently, endogenous enhancement of endocannabinoid levels and/or regulation of their metabolism represent promising therapeutic approaches. Several major strategies have been suggested for the modulation of the ECS: (1) blocking endocannabinoids degradation, (2) inhibition of endocannabinoid cellular uptake, and (3) pharmacological modulation of cannabinoid receptors as potential therapeutic targets. Here, we focused in this review on degradation/reuptake inhibitors over cannabinoid receptor modulators in order to provide an updated synopsis of contemporary evidence advancing mechanisms of endocannabinoids as pharmacological tools with therapeutic properties for the treatment of several disorders. For this purpose, we revisited the available literature and reported the latest advances regarding the biomedical properties of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors in pre-clinical and clinical studies. We also highlighted anandamide and 2-arachidonoylglycerol reuptake inhibitors with promising results in pre-clinical studies using in vitro and animal models as an outlook for future research in clinical trials.
Collapse
|
19
|
Elevated Brain Fatty Acid Amide Hydrolase Induces Depressive-Like Phenotypes in Rodent Models: A Review. Int J Mol Sci 2021; 22:ijms22031047. [PMID: 33494322 PMCID: PMC7864498 DOI: 10.3390/ijms22031047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Altered activity of fatty acid amide hydrolase (FAAH), an enzyme of the endocannabinoid system, has been implicated in several neuropsychiatric disorders, including major depressive disorder (MDD). It is speculated that increased brain FAAH expression is correlated with increased depressive symptoms. The aim of this scoping review was to establish the role of FAAH expression in animal models of depression to determine the translational potential of targeting FAAH in clinical studies. A literature search employing multiple databases was performed; all original articles that assessed FAAH expression in animal models of depression were considered. Of the 216 articles that were screened for eligibility, 24 articles met inclusion criteria and were included in this review. Three key findings emerged: (1) FAAH expression is significantly increased in depressive-like phenotypes; (2) genetic knockout or pharmacological inhibition of FAAH effectively reduces depressive-like behavior, with a dose-dependent effect; and (3) differences in FAAH expression in depressive-like phenotypes were largely localized to animal prefrontal cortex, hippocampus and striatum. We conclude, based on the animal literature, that a positive relationship can be established between brain FAAH level and expression of depressive symptoms. In summary, we suggest that FAAH is a tractable target for developing novel pharmacotherapies for MDD.
Collapse
|
20
|
Metabolomic changes in animal models of depression: a systematic analysis. Mol Psychiatry 2021; 26:7328-7336. [PMID: 34471249 PMCID: PMC8872989 DOI: 10.1038/s41380-021-01269-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Extensive research has been carried out on the metabolomic changes in animal models of depression; however, there is no general agreement about which metabolites exhibit constant changes. Therefore, the aim of this study was to identify consistently altered metabolites in large-scale metabolomics studies of depression models. We performed vote counting analyses to identify consistently upregulated or downregulated metabolites in the brain, blood, and urine of animal models of depression based on 3743 differential metabolites from 241 animal metabolomics studies. We found that serotonin, dopamine, gamma-aminobutyric acid, norepinephrine, N-acetyl-L-aspartic acid, anandamide, and tryptophan were downregulated in the brain, while kynurenine, myo-inositol, hydroxykynurenine, and the kynurenine to tryptophan ratio were upregulated. Regarding blood metabolites, tryptophan, leucine, tyrosine, valine, trimethylamine N-oxide, proline, oleamide, pyruvic acid, and serotonin were downregulated, while N-acetyl glycoprotein, corticosterone, and glutamine were upregulated. Moreover, citric acid, oxoglutaric acid, proline, tryptophan, creatine, betaine, L-dopa, palmitic acid, and pimelic acid were downregulated, and hippuric acid was upregulated in urine. We also identified consistently altered metabolites in the hippocampus, prefrontal cortex, serum, and plasma. These findings suggested that metabolomic changes in depression models are characterized by decreased neurotransmitter and increased kynurenine metabolite levels in the brain, decreased amino acid and increased corticosterone levels in blood, and imbalanced energy metabolism and microbial metabolites in urine. This study contributes to existing knowledge of metabolomic changes in depression and revealed that the reproducibility of candidate metabolites was inadequate in previous studies.
Collapse
|
21
|
Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Dronjak S. Inhibition of the fatty acid amide hydrolase changes behaviors and brain catecholamines in a sex-specific manner in rats exposed to chronic unpredictable stress. Physiol Behav 2020; 227:113174. [PMID: 32966816 DOI: 10.1016/j.physbeh.2020.113174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 01/26/2023]
Abstract
Sex differences in the susceptibility to chronic unpredictable stress (CUS) and the effects of fatty acid amide hydrolase (FAAH) inhibitor URB597 in rats have been investigated in this study. In this context, we investigated the effects of prolonged treatment with URB597 on behavior, pro-inflammatory interleukin-6 (IL-6) and anti-inflammatory interleukin-10 (IL-10), catecholamine content and the expression of its biosynthetic and degrading enzymes in the hippocampus, hypothalamus and medial prefrontal cortex (mPFC) of rats subjected to CUS. The results show that CUS increases anxiety-like and depression-like behaviors but it was more pronounced in females. The data suggests sex differences in brain cytokines, catecholamines and their enzymes of synthesis and degradation expression in response to CUS. Our findings indicate that the FAAH inhibitor URB597 differently regulated catecholamine levels and its enzymes of synthesis and degradation in the examined brain areas of male and female rats. URB treatment failed to reduce anxiety or restore reduced norepinephrine and did not affect enzymes of catecholamine degradation in the mPFC, hippocampus and hypothalamus of CUS female rats. These studies are important because they investigate the neurochemical consequences of stress related mood disorders that might lead to the development of sex specific treatments.
Collapse
Affiliation(s)
- Milica Jankovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
22
|
Ferber SG, Roth TL, Weller A. Epigenetic fragility of the endocannabinoid system under stress: risk for mood disorders and pharmacogenomic implications. Epigenomics 2020; 12:657-660. [PMID: 32396405 DOI: 10.2217/epi-2020-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/19/2020] [Indexed: 01/31/2023] Open
Affiliation(s)
- Sari Goldstein Ferber
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Tania L Roth
- Department of Psychological & Brain Sciences, University of Delaware, DE 19716, USA
| | - Aron Weller
- Psychology Department, Bar-Ilan University, Ramat Gan, Israel
- Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|