1
|
Ruge O, Hoppe JPM, Dalle Molle R, Silveira PP. Early environmental influences on the orbito-frontal cortex function and its effects on behavior. Neurosci Biobehav Rev 2025; 169:106013. [PMID: 39814119 DOI: 10.1016/j.neubiorev.2025.106013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Early-life adversity during pre- and early post-natal phases can impact brain development and lead to maladaptive changes in executive function related behaviors. This increases the risk for a range of psychopathologies and physical diseases. Importantly, exposure to adversities during these periods is also linked to alterations in the orbito-frontal cortex (OFC) which is a key player in these executive functions. The OFC thus appears to be a central node in this association between early life stress and disease risk. Gaining a clear, and detailed understanding of the association between early life stress, OFC function, and executive function, as well as the underlying mechanisms mediating this association is relevant to inform potential therapeutic interventions. In this paper, we begin by reviewing evidence linking early life adversities to 1) alterations in behaviors regulated by the OFC and 2) changes in OFC anatomy and function. We then present insights into the underlying mechanisms for these changes, stemming from early life adversity models, and highlight important future directions for this line of research.
Collapse
Affiliation(s)
- Olivia Ruge
- Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - João Paulo Maires Hoppe
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | - Patricia Pelufo Silveira
- Douglas Research Centre, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Jenni NL, Symonds N, Floresco SB. Medial orbitofrontal cortical regulation of different aspects of Pavlovian and instrumental reward seeking. Psychopharmacology (Berl) 2023; 240:441-459. [PMID: 36322185 DOI: 10.1007/s00213-022-06265-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
RATIONALE The medial subregion of the orbitofrontal cortex (mOFC) is thought to play an important role representing the expected outcome of a given course of action, as lesioning or inactivating this cortical region results in the adoption of choice strategies based more on observable (rather than previously learned) information. Despite this, its role in mediating basic associative learning remains to be fully clarified. OBJECTIVE The present series of experiments examined the role of the mOFC in (1) Pavlovian conditioned approach, (2) conditioned reinforcement, (3) extinction, and (4) cue-induced reinstatement of food-seeking behavior. METHODS Separate cohorts of rats went through Pavlovian or instrumental training. Intra-mOFC infusions of either saline or GABA agonists (to temporarily inactivate neural activity) were given prior to Pavlovian approach, conditioned reinforcement, first or second day of instrumental extinction training, or cue-induced reinstatement test days. RESULTS mOFC inactivation increased lever-CS contacts in Pavlovian conditioned approach and (2) had no effect on conditioned reinforcement. These manipulations (3) accelerated within-session instrumental extinction during the initial extinction session, but impaired subsequent extinction learning on drug-free days. (4) mOFC inactivation induced differential effects on reinstatement that depended on baseline performance. mOFC inactivation abolished reinstatement in "Reinstater" rats (who displayed robust responding under control conditions) and robustly increased reinstatement in "Non-Reinstater" rats (who showed little reinstatement under control conditions) suggesting that individual differences in reinstatement may be supported by differences in mOFC mediated representations of expected outcomes. CONCLUSIONS These findings have important implications for understanding how the mOFC uses stimulus-outcome and action-outcome expectancies to guide behavior, and how dysfunction within this region may contribute to pathological patterns of reward seeking.
Collapse
Affiliation(s)
- Nicole L Jenni
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, B.C, V6T 1Z4, Canada
| | - Nicola Symonds
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, B.C, V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, B.C, V6T 1Z4, Canada.
| |
Collapse
|
3
|
Critical review of RDoC approaches to the study of motivation with animal models: effort valuation/willingness to work. Emerg Top Life Sci 2022; 6:515-528. [PMID: 36218385 DOI: 10.1042/etls20220008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023]
Abstract
The NIMH research domain criteria (RDoC) approach was instigated to refocus mental health research on the neural circuits that mediate psychological functions, with the idea that this would foster an understanding of the neural basis of specific psychiatric dysfunctions (i.e. 'symptoms and circuits') and ultimately facilitate treatment. As a general idea, this attempt to go beyond traditional diagnostic categories and focus on neural circuit dysfunctions related to specific symptoms spanning multiple disorders has many advantages. For example, motivational dysfunctions are present in multiple disorders, including depression, schizophrenia, Parkinson's disease, and other conditions. A critical aspect of motivation is effort valuation/willingness to work, and several clinical studies have identified alterations in effort-based decision making in various patient groups. In parallel, formal animal models focusing on the exertion of effort and effort-based decision making have been developed. This paper reviews the literature on models of effort-based motivational function in the context of a discussion of the RDoC approach, with an emphasis on the dissociable nature of distinct aspects of motivation. For example, conditions associated with depression and schizophrenia blunt the selection of high-effort activities as measured by several tasks in animal models (e.g. lever pressing, barrier climbing, wheel running). Nevertheless, these manipulations also leave fundamental aspects of hedonic reactivity, food motivation, and reinforcement intact. This pattern of effects demonstrates that the general emphasis of the RDoC on the specificity of the neural circuits mediating behavioral pathologies, and the dissociative nature of these dysfunctions, is a valid concept. Nevertheless, the specific placement of effort-related processes as simply a 'sub-construct' of 'reward processing' is empirically and conceptually problematic. Thus, while the RDoC is an excellent general framework for new ways to approach research and therapeutics, it still needs further refinement.
Collapse
|
4
|
Woon EP, Butkovich LM, Peluso AA, Elbasheir A, Taylor K, Gourley SL. Medial orbitofrontal neurotrophin systems integrate hippocampal input into outcome-specific value representations. Cell Rep 2022; 40:111334. [PMID: 36103822 PMCID: PMC9799221 DOI: 10.1016/j.celrep.2022.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 08/18/2022] [Indexed: 01/02/2023] Open
Abstract
In everyday life, we mentally represent possible consequences of our behaviors and integrate specific outcome values into existing knowledge to inform decisions. The medial orbitofrontal cortex (MO) is necessary to adapt behaviors when outcomes are not immediately available-when they and their values need to be envisioned. Nevertheless, neurobiological mechanisms remain unclear. We find that the neuroplasticity-associated neurotrophin receptor tropomyosin receptor kinase B (TrkB) is necessary for mice to integrate outcome-specific value information into choice behavior. This function appears attributable to memory updating (and not retrieval) and the stabilization of dendritic spines on excitatory MO neurons, which led us to investigate inputs to the MO. Ventral hippocampal (vHC)-to-MO projections appear conditionally necessary for value updating, involved in long-term aversion-based value memory updating. Furthermore, vHC-MO-mediated control of choice is TrkB dependent. Altogether, we reveal a vHC-MO connection by which specific value memories are updated, and we position TrkB within this functional circuit.
Collapse
Affiliation(s)
- Ellen P Woon
- Graduate Training Program in Neuroscience, Emory University, Atlanta, GA 30322, USA; Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Laura M Butkovich
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Arianna A Peluso
- Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Aziz Elbasheir
- Graduate Training Program in Neuroscience, Emory University, Atlanta, GA 30322, USA; Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Kian Taylor
- Graduate Training Program in Neuroscience, Emory University, Atlanta, GA 30322, USA; Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Shannon L Gourley
- Graduate Training Program in Neuroscience, Emory University, Atlanta, GA 30322, USA; Departments of Pediatrics and Psychiatry, Emory University School of Medicine, Atlanta, GA 30322, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
5
|
Treadway MT, Salamone JD. Vigor, Effort-Related Aspects of Motivation and Anhedonia. Curr Top Behav Neurosci 2022; 58:325-353. [PMID: 35505057 DOI: 10.1007/7854_2022_355] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this chapter we provide an overview of the pharmacological and circuit mechanisms that determine the willingness to expend effort in pursuit of rewards. A particular focus will be on the role of the mesolimbic dopamine system, as well the contributing roles of limbic and cortical brains areas involved in the evaluation, selection, and invigoration of goal-directed actions. We begin with a review of preclinical studies, which have provided key insights into the brain systems that are necessary and sufficient for effort-based decision-making and have characterized novel compounds that enhance selection of high-effort activities. Next, we summarize translational studies identifying and expanding this circuitry in humans. Finally, we discuss the relevance of this work for understanding common motivational impairments as part of the broader anhedonia symptom domain associated with mental illness, and the identification of new treatment targets within this circuitry to improve motivation and effort-expenditure.
Collapse
Affiliation(s)
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
6
|
Aomine Y, Sakurai K, Macpherson T, Ozawa T, Miyamoto Y, Yoneda Y, Oka M, Hikida T. Importin α3 (KPNA3) Deficiency Augments Effortful Reward-Seeking Behavior in Mice. Front Neurosci 2022; 16:905991. [PMID: 35844217 PMCID: PMC9279672 DOI: 10.3389/fnins.2022.905991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Importin α3 (Gene: Kpna3, the ortholog of human Importin α4) is a member of the importin α family and participates in nucleocytoplasmic transport by forming trimeric complexes between cargo proteins and importin β1. Evidence from human studies has indicated that single nucleotide polymorphisms (SNP) in the KPNA3 gene are associated with the occurrence of several psychiatric disorders accompanied by abnormal reward-related behavior, including schizophrenia, major depression, and substance addiction. However, the precise roles of importin α3 in controlling reward processing and motivation are still unclear. In this study, we evaluated the behavioral effects of Kpna3 knockout (KO) in mice on performance in touchscreen operant chamber-based tasks evaluating simple (fixed-ratio) and effortful (progressive-ratio) reward-seeking behaviors. While Kpna3 KO mice showed no significant differences in operant reward learning on a fixed-ratio schedule, they demonstrated significantly increased motivation (increased break point) to instrumentally respond for sucrose on a progressive-ratio schedule. We additionally measured the number of c-Fos-positive cells, a marker of neural activity, in 20 regions of the brain and identified a network of brain regions based on their interregional correlation coefficients. Network and graph-theoretic analyses suggested that Kpna3 deficiency enhanced overall interregional functional connectivity. These findings suggest the importance of Kpna3 in motivational control and indicate that Kpna3 KO mice may be an attractive line for modeling motivational abnormalities associated with several psychiatric disorders.
Collapse
Affiliation(s)
- Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoshihiro Yoneda
- National Institutes for Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- *Correspondence: Takatoshi Hikida,
| |
Collapse
|
7
|
Salamone J, Ecevitoglu A, Carratala-Ros C, Presby R, Edelstein G, Fleeher R, Rotolo R, Meka N, Srinath S, Masthay JC, Correa M. Complexities and Paradoxes in Understanding the Role of Dopamine in Incentive Motivation and Instrumental Action: Exertion of Effort vs. Anhedonia. Brain Res Bull 2022; 182:57-66. [DOI: 10.1016/j.brainresbull.2022.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 02/08/2023]
|
8
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Medial orbitofrontal cortex dopamine D 1/D 2 receptors differentially modulate distinct forms of probabilistic decision-making. Neuropsychopharmacology 2021; 46:1240-1251. [PMID: 33452435 PMCID: PMC8134636 DOI: 10.1038/s41386-020-00931-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 01/29/2023]
Abstract
Efficient decision-making involves weighing the costs and benefits associated with different actions and outcomes to maximize long-term utility. The medial orbitofrontal cortex (mOFC) has been implicated in guiding choice in situations involving reward uncertainty, as inactivation in rats alters choice involving probabilistic rewards. The mOFC receives considerable dopaminergic input, yet how dopamine (DA) modulates mOFC function has been virtually unexplored. Here, we assessed how mOFC D1 and D2 receptors modulate two forms of reward seeking mediated by this region, probabilistic reversal learning and probabilistic discounting. Separate groups of well-trained rats received intra-mOFC microinfusions of selective D1 or D2 antagonists or agonists prior to task performance. mOFC D1 and D2 blockade had opposing effects on performance during probabilistic reversal learning and probabilistic discounting. D1 blockade impaired, while D2 blockade increased the number of reversals completed, both mediated by changes in errors and negative feedback sensitivity apparent during the initial discrimination of the task, which suggests changes in probabilistic reinforcement learning rather than flexibility. Similarly, D1 blockade reduced, while D2 blockade increased preference for larger/risky rewards. Excess D1 stimulation had no effect on either task, while excessive D2 stimulation impaired probabilistic reversal performance, and reduced both profitable risky choice and overall task engagement. These findings highlight a previously uncharacterized role for mOFC DA, showing that D1 and D2 receptors play dissociable and opposing roles in different forms of reward-related action selection. Elucidating how DA biases behavior in these situations will expand our understanding of the mechanisms regulating optimal and aberrant decision-making.
Collapse
|
10
|
Lothmann K, Amunts K, Herold C. The Neurotransmitter Receptor Architecture of the Mouse Olfactory System. Front Neuroanat 2021; 15:632549. [PMID: 33967704 PMCID: PMC8102831 DOI: 10.3389/fnana.2021.632549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
The uptake, transmission and processing of sensory olfactory information is modulated by inhibitory and excitatory receptors in the olfactory system. Previous studies have focused on the function of individual receptors in distinct brain areas, but the receptor architecture of the whole system remains unclear. Here, we analyzed the receptor profiles of the whole olfactory system of adult male mice. We examined the distribution patterns of glutamatergic (AMPA, kainate, mGlu2/3, and NMDA), GABAergic (GABAA, GABAA(BZ), and GABAB), dopaminergic (D1/5) and noradrenergic (α1 and α2) neurotransmitter receptors by quantitative in vitro receptor autoradiography combined with an analysis of the cyto- and myelo-architecture. We observed that each subarea of the olfactory system is characterized by individual densities of distinct neurotransmitter receptor types, leading to a region- and layer-specific receptor profile. Thereby, the investigated receptors in the respective areas and strata showed a heterogeneous expression. Generally, we detected high densities of mGlu2/3Rs, GABAA(BZ)Rs and GABABRs. Noradrenergic receptors revealed a highly heterogenic distribution, while the dopaminergic receptor D1/5 displayed low concentrations, except in the olfactory tubercle and the dorsal endopiriform nucleus. The similarities and dissimilarities of the area-specific multireceptor profiles were analyzed by a hierarchical cluster analysis. A three-cluster solution was found that divided the areas into the (1) olfactory relay stations (main and accessory olfactory bulb), (2) the olfactory cortex (anterior olfactory cortex, dorsal peduncular cortex, taenia tecta, piriform cortex, endopiriform nucleus, entorhinal cortex, orbitofrontal cortex) and the (3) olfactory tubercle, constituting its own cluster. The multimodal receptor-architectonic analysis of each component of the olfactory system provides new insights into its neurochemical organization and future possibilities for pharmaceutic targeting.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
11
|
Münster A, Votteler A, Sommer S, Hauber W. Role of the Medial Orbitofrontal Cortex and Ventral Tegmental Area in Effort-Related Responding. Cereb Cortex Commun 2020; 1:tgaa086. [PMID: 34296142 PMCID: PMC8152852 DOI: 10.1093/texcom/tgaa086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/02/2022] Open
Abstract
The posterior subdivision of the medial orbitofrontal cortex (mOFC-p) mediates the willingness to expend effort to reach a selected goal. However, the neural circuitry through which the mOFC-p modulates effort-related function is as yet unknown. The mOFC-p projects prominently to the posterior ventral tegmental area (pVTA). Therefore, we analyzed the role of the mOFC-p and interactions with the pVTA in effort-related responding using a combination of behavioral, pharmacological, and neural circuit analysis methods in rats. Pharmacological inhibition of the mOFC-p was found to increase lever pressing for food under a progressive ratio (PR) schedule of reinforcement. These findings provide further support for a modulation of effort-related function by the mOFC-p. Then, we investigated effects of disconnecting the mOFC-p and pVTA on PR responding using unilateral pharmacological inhibition of both areas. This asymmetric intervention was also found to increase PR responding suggesting that the mOFC-p controls effort-related function through interactions with the pVTA. Possibly, a reduced excitatory mOFC-p drive on pVTA gamma-aminobutyric acid (GABA)ergic relays disinhibits VTA dopamine neurons which are known to support PR responding. Collectively, our findings suggest that the mOFC-p and pVTA are key components of a neural circuit mediating the willingness to expend effort to reach a goal.
Collapse
Affiliation(s)
- Alexandra Münster
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart D-70569, Germany
| | - Angeline Votteler
- Department of Neurobiology, University of Stuttgart, Stuttgart D-70569, Germany
| | - Susanne Sommer
- Department of Neurobiology, University of Stuttgart, Stuttgart D-70569, Germany
| | - Wolfgang Hauber
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart D-70569, Germany
| |
Collapse
|
12
|
Yang JH, Presby RE, Rotolo RA, Quiles T, Okifo K, Zorda E, Fitch RH, Correa M, Salamone JD. The dopamine depleting agent tetrabenazine alters effort-related decision making as assessed by mouse touchscreen procedures. Psychopharmacology (Berl) 2020; 237:2845-2854. [PMID: 32561947 DOI: 10.1007/s00213-020-05578-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
RATIONALE Effort-based decision-making tasks allow animals to choose between preferred reinforcers that require high effort to obtain vs. low-effort/low reward options. Mesolimbic dopamine (DA) and related neural systems regulate effort-based choice. Tetrabenazine (TBZ) is a vesicular monoamine transport type-2 inhibitor that blocks DA storage and depletes DA. In humans, TBZ induces motivational dysfunction and depression. TBZ has been shown reliably to induce a low-effort bias in rats, but there are fewer mouse studies. OBJECTIVES The present studies used touchscreen operant procedures (Bussey-Saksida chambers) to assess the effects of TBZ on effort-based choice in mice. METHODS C57BL6 mice were trained to press an elevated lit panel on the touchscreen on a fixed ratio 1 schedule reinforced by strawberry milkshake, vs. approaching and consuming a concurrently available but less preferred food pellets (Bio-serv). RESULTS TBZ (2.0-8.0 mg/kg IP) shifted choice, producing a dose-related decrease in panel pressing but an increase in pellet intake. In contrast, reinforcer devaluation by pre-feeding substantially decreased both panel pressing and pellet intake. In free-feeding choice tests, mice strongly preferred the milkshake vs. the pellets, and TBZ had no effect on milkshake intake or preference, indicating that the TBZ-induced low-effort bias was not due to changes in primary food motivation or preference. TBZ significantly decreased tissue levels of nucleus accumbens DA. CONCLUSION The DA depleting agent TBZ induced an effort-related motivational dysfunction in mice, which may have clinical relevance for assessing novel drug targets for their potential use as therapeutic agents in patients with motivation impairments.
Collapse
Affiliation(s)
- Jen-Hau Yang
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Rose E Presby
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Renee A Rotolo
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Taina Quiles
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Kevin Okifo
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Emma Zorda
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Roslyn Holly Fitch
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Mercè Correa
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.,Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | - John D Salamone
- Behavioral Neuroscience Division, Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
13
|
Yang JH, Presby RE, Cayer S, Rotolo RA, Perrino PA, Fitch RH, Correa M, Chesler EJ, Salamone JD. Effort-related decision making in humanized COMT mice: Effects of Val 158Met polymorphisms and possible implications for negative symptoms in humans. Pharmacol Biochem Behav 2020; 196:172975. [PMID: 32593787 DOI: 10.1016/j.pbb.2020.172975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 01/05/2023]
Abstract
Catechol-o-methyltransferase (COMT) is an enzyme that metabolizes catecholamines, and is crucial for clearance of dopamine (DA) in prefrontal cortex. Val158Met polymorphism, which causes a valine (Val) to methionine (Met) substitution at codon 158, is reported to be associated with human psychopathologies in some studies. The Val/Val variant of the enzyme results in higher dopamine metabolism, which results in reduced dopamine transmission. Thus, it is important to investigate the relation between Val158Met polymorphisms using rodent models of psychiatric symptoms, including negative symptoms such as motivational dysfunction. In the present study, humanized COMT transgenic mice with two genotype groups (Val/Val (Val) and Met/Met (Met) homozygotes) and wild-type (WT) mice from the S129 background were tested using a touchscreen effort-based choice paradigm. Mice were trained to choose between delivery of a preferred liquid diet that reinforced panel pressing on various fixed ratio (FR) schedules (high-effort alternative), vs. intake of pellets concurrently available in the chamber (low-effort alternative). Panel pressing requirements were controlled by varying the FR levels (FR1, 2, 4, 8, 16) in ascending and descending sequences across weeks of testing. All mice were able to acquire the initial touchscreen operant training, and there was an inverse relationship between the number of reinforcers delivered by panel pressing and pellet intake across different FR levels. There was a significant group x FR level interaction in the ascending limb, with panel presses in the Val group being significantly lower than the WT group in FR1-8, and lower than Met in FR4. These findings indicate that the humanized Val allele in mice modulates FR/pellet-choice performance, as marked by lower levels of panel pressing in the Val group when the ratio requirement was moderately high. These studies may contribute to the understanding of the role of COMT polymorphisms in negative symptoms such as motivational dysfunctions in schizophrenic patients.
Collapse
Affiliation(s)
- Jen-Hau Yang
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA; Present address: Dept. of Psychiatry, Yale University, New Haven, CT, USA
| | - Rose E Presby
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Suzanne Cayer
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Renee A Rotolo
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Peter A Perrino
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - R Holly Fitch
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA
| | - Merce Correa
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA; Area de Psicobiologia, Universitat Jaume I, Castelló, Spain
| | | | - John D Salamone
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|